Properties

Label 4608.2.a
Level $4608$
Weight $2$
Character orbit 4608.a
Rep. character $\chi_{4608}(1,\cdot)$
Character field $\Q$
Dimension $80$
Newform subspaces $29$
Sturm bound $1536$
Trace bound $25$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4608 = 2^{9} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4608.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 29 \)
Sturm bound: \(1536\)
Trace bound: \(25\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(17\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4608))\).

Total New Old
Modular forms 832 80 752
Cusp forms 705 80 625
Eisenstein series 127 0 127

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim.
\(+\)\(+\)\(+\)\(16\)
\(+\)\(-\)\(-\)\(26\)
\(-\)\(+\)\(-\)\(16\)
\(-\)\(-\)\(+\)\(22\)
Plus space\(+\)\(38\)
Minus space\(-\)\(42\)

Trace form

\( 80q + O(q^{10}) \) \( 80q + 80q^{25} + 80q^{49} - 32q^{65} - 32q^{73} - 32q^{89} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4608))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3
4608.2.a.a \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(-4\) \(-4\) \(-\) \(-\) \(q+(-2+\beta )q^{5}+(-2-\beta )q^{7}+2q^{11}+\cdots\)
4608.2.a.b \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(-4\) \(0\) \(+\) \(-\) \(q+(-2+\beta )q^{5}-\beta q^{7}+(-2+2\beta )q^{11}+\cdots\)
4608.2.a.c \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(-4\) \(0\) \(+\) \(-\) \(q-2q^{5}+2\beta q^{7}+3\beta q^{11}+6q^{13}+\cdots\)
4608.2.a.d \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(-4\) \(0\) \(-\) \(-\) \(q+(-2+\beta )q^{5}+\beta q^{7}+(2-2\beta )q^{11}+\cdots\)
4608.2.a.e \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(-4\) \(4\) \(-\) \(-\) \(q+(-2+\beta )q^{5}+(2+\beta )q^{7}-2q^{11}+\cdots\)
4608.2.a.f \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(-8\) \(-\) \(-\) \(q+2\beta q^{5}-4q^{7}-\beta q^{11}+2\beta q^{13}+\cdots\)
4608.2.a.g \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) \(+\) \(-\) \(q+\beta q^{5}-3\beta q^{7}-6q^{11}-4\beta q^{13}+\cdots\)
4608.2.a.h \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) \(-\) \(-\) \(q+\beta q^{5}-\beta q^{7}-2q^{11}-2q^{17}+4q^{19}+\cdots\)
4608.2.a.i \(2\) \(36.795\) \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-2}) \) \(0\) \(0\) \(0\) \(0\) \(+\) \(-\) \(q+(-2+3\beta )q^{11}+4\beta q^{17}+(6-\beta )q^{19}+\cdots\)
4608.2.a.j \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) \(-\) \(-\) \(q+\beta q^{5}+\beta q^{7}+2q^{11}-2q^{17}-4q^{19}+\cdots\)
4608.2.a.k \(2\) \(36.795\) \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-2}) \) \(0\) \(0\) \(0\) \(0\) \(-\) \(-\) \(q+(2-3\beta )q^{11}+4\beta q^{17}+(-6+\beta )q^{19}+\cdots\)
4608.2.a.l \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) \(+\) \(-\) \(q+\beta q^{5}+3\beta q^{7}+6q^{11}-4\beta q^{13}+\cdots\)
4608.2.a.m \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(8\) \(+\) \(-\) \(q+2\beta q^{5}+4q^{7}+\beta q^{11}+2\beta q^{13}+\cdots\)
4608.2.a.n \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(4\) \(-4\) \(+\) \(-\) \(q+(2+\beta )q^{5}+(-2+\beta )q^{7}-2q^{11}+\cdots\)
4608.2.a.o \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(4\) \(0\) \(-\) \(-\) \(q+(2+\beta )q^{5}-\beta q^{7}+(-2-2\beta )q^{11}+\cdots\)
4608.2.a.p \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(4\) \(0\) \(-\) \(-\) \(q+2q^{5}+2\beta q^{7}-3\beta q^{11}-6q^{13}+\cdots\)
4608.2.a.q \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(4\) \(0\) \(+\) \(-\) \(q+(2+\beta )q^{5}+\beta q^{7}+(2+2\beta )q^{11}+(-2+\cdots)q^{13}+\cdots\)
4608.2.a.r \(2\) \(36.795\) \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(4\) \(4\) \(+\) \(-\) \(q+(2+\beta )q^{5}+(2-\beta )q^{7}+2q^{11}+2\beta q^{13}+\cdots\)
4608.2.a.s \(4\) \(36.795\) \(\Q(\zeta_{24})^+\) \(\Q(\sqrt{-6}) \) \(0\) \(0\) \(-8\) \(0\) \(+\) \(+\) \(q+(-2-\beta _{2})q^{5}+(\beta _{1}+\beta _{3})q^{7}-\beta _{3}q^{11}+\cdots\)
4608.2.a.t \(4\) \(36.795\) 4.4.4352.1 None \(0\) \(0\) \(0\) \(0\) \(-\) \(-\) \(q+\beta _{1}q^{5}-\beta _{3}q^{7}+(-2-\beta _{2})q^{11}+\cdots\)
4608.2.a.u \(4\) \(36.795\) \(\Q(\zeta_{24})^+\) None \(0\) \(0\) \(0\) \(0\) \(+\) \(+\) \(q+\beta _{1}q^{5}-\beta _{1}q^{7}-2q^{11}-\beta _{2}q^{13}+\cdots\)
4608.2.a.v \(4\) \(36.795\) \(\Q(\zeta_{24})^+\) None \(0\) \(0\) \(0\) \(0\) \(+\) \(+\) \(q+\beta _{2}q^{5}+\beta _{1}q^{7}-\beta _{3}q^{11}-2\beta _{2}q^{13}+\cdots\)
4608.2.a.w \(4\) \(36.795\) \(\Q(\zeta_{24})^+\) None \(0\) \(0\) \(0\) \(0\) \(+\) \(-\) \(q+\beta _{2}q^{5}+\beta _{3}q^{7}+\beta _{1}q^{11}+\beta _{2}q^{13}+\cdots\)
4608.2.a.x \(4\) \(36.795\) \(\Q(\sqrt{2}, \sqrt{5})\) None \(0\) \(0\) \(0\) \(0\) \(+\) \(+\) \(q+\beta _{1}q^{5}-\beta _{2}q^{7}+\beta _{3}q^{11}-\beta _{3}q^{13}+\cdots\)
4608.2.a.y \(4\) \(36.795\) \(\Q(\sqrt{2}, \sqrt{5})\) None \(0\) \(0\) \(0\) \(0\) \(-\) \(+\) \(q+\beta _{1}q^{5}+\beta _{2}q^{7}-\beta _{3}q^{11}-\beta _{3}q^{13}+\cdots\)
4608.2.a.z \(4\) \(36.795\) \(\Q(\zeta_{24})^+\) None \(0\) \(0\) \(0\) \(0\) \(-\) \(+\) \(q+\beta _{2}q^{5}+\beta _{1}q^{7}-\beta _{3}q^{11}+2\beta _{2}q^{13}+\cdots\)
4608.2.a.ba \(4\) \(36.795\) 4.4.4352.1 None \(0\) \(0\) \(0\) \(0\) \(+\) \(-\) \(q+\beta _{1}q^{5}+\beta _{3}q^{7}+(2+\beta _{2})q^{11}+(-\beta _{1}+\cdots)q^{13}+\cdots\)
4608.2.a.bb \(4\) \(36.795\) \(\Q(\zeta_{24})^+\) None \(0\) \(0\) \(0\) \(0\) \(-\) \(+\) \(q+\beta _{1}q^{5}+\beta _{1}q^{7}+2q^{11}-\beta _{2}q^{13}+\cdots\)
4608.2.a.bc \(4\) \(36.795\) \(\Q(\zeta_{24})^+\) \(\Q(\sqrt{-6}) \) \(0\) \(0\) \(8\) \(0\) \(-\) \(+\) \(q+(2+\beta _{2})q^{5}+(\beta _{1}+\beta _{3})q^{7}+\beta _{3}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4608))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4608)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(384))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(512))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(576))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(768))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1152))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1536))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2304))\)\(^{\oplus 2}\)