Defining parameters
Level: | \( N \) | \(=\) | \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4600.q (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1440\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4600, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1488 | 216 | 1272 |
Cusp forms | 1392 | 216 | 1176 |
Eisenstein series | 96 | 0 | 96 |
Decomposition of \(S_{2}^{\mathrm{new}}(4600, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4600, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1150, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2300, [\chi])\)\(^{\oplus 2}\)