Properties

Label 4600.2.e.t.4049.5
Level $4600$
Weight $2$
Character 4600.4049
Analytic conductor $36.731$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4600,2,Mod(4049,4600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4600.4049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7311849298\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.61734359296.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 38x^{4} + 25x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4049.5
Root \(0.491317i\) of defining polynomial
Character \(\chi\) \(=\) 4600.4049
Dual form 4600.2.e.t.4049.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.329452i q^{3} -4.07069i q^{7} +2.89146 q^{9} -3.08806 q^{11} +6.32062i q^{13} +0.982634i q^{17} +7.08806 q^{19} +1.34110 q^{21} -1.00000i q^{23} +1.94095i q^{27} +7.63270 q^{29} -5.92047 q^{31} -1.01737i q^{33} +11.4825i q^{37} -2.08234 q^{39} -5.74124 q^{41} -1.74696i q^{43} +2.24992i q^{47} -9.57054 q^{49} -0.323730 q^{51} -1.31781i q^{53} +2.33517i q^{57} -7.92901 q^{59} +9.51722 q^{61} -11.7703i q^{63} -3.34110i q^{67} +0.329452 q^{69} -3.92619 q^{71} +1.66744i q^{73} +12.5705i q^{77} +15.9231 q^{79} +8.03493 q^{81} +11.9116i q^{83} +2.51461i q^{87} +10.4998 q^{89} +25.7293 q^{91} -1.95051i q^{93} +2.84125i q^{97} -8.92901 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{9} + 2 q^{11} + 30 q^{19} + 16 q^{21} - 2 q^{29} - 24 q^{31} + 6 q^{39} - 18 q^{41} + 6 q^{49} - 4 q^{51} + 10 q^{59} + 28 q^{61} - 4 q^{71} + 42 q^{79} + 88 q^{81} + 32 q^{89} + 66 q^{91} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times\).

\(n\) \(1151\) \(1201\) \(2301\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.329452i 0.190209i 0.995467 + 0.0951045i \(0.0303185\pi\)
−0.995467 + 0.0951045i \(0.969681\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.07069i − 1.53858i −0.638901 0.769289i \(-0.720611\pi\)
0.638901 0.769289i \(-0.279389\pi\)
\(8\) 0 0
\(9\) 2.89146 0.963821
\(10\) 0 0
\(11\) −3.08806 −0.931085 −0.465542 0.885026i \(-0.654141\pi\)
−0.465542 + 0.885026i \(0.654141\pi\)
\(12\) 0 0
\(13\) 6.32062i 1.75302i 0.481380 + 0.876512i \(0.340136\pi\)
−0.481380 + 0.876512i \(0.659864\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.982634i 0.238324i 0.992875 + 0.119162i \(0.0380207\pi\)
−0.992875 + 0.119162i \(0.961979\pi\)
\(18\) 0 0
\(19\) 7.08806 1.62611 0.813056 0.582185i \(-0.197802\pi\)
0.813056 + 0.582185i \(0.197802\pi\)
\(20\) 0 0
\(21\) 1.34110 0.292651
\(22\) 0 0
\(23\) − 1.00000i − 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.94095i 0.373536i
\(28\) 0 0
\(29\) 7.63270 1.41736 0.708679 0.705531i \(-0.249292\pi\)
0.708679 + 0.705531i \(0.249292\pi\)
\(30\) 0 0
\(31\) −5.92047 −1.06335 −0.531674 0.846949i \(-0.678437\pi\)
−0.531674 + 0.846949i \(0.678437\pi\)
\(32\) 0 0
\(33\) − 1.01737i − 0.177101i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 11.4825i 1.88771i 0.330362 + 0.943854i \(0.392829\pi\)
−0.330362 + 0.943854i \(0.607171\pi\)
\(38\) 0 0
\(39\) −2.08234 −0.333441
\(40\) 0 0
\(41\) −5.74124 −0.896631 −0.448316 0.893875i \(-0.647976\pi\)
−0.448316 + 0.893875i \(0.647976\pi\)
\(42\) 0 0
\(43\) − 1.74696i − 0.266409i −0.991089 0.133205i \(-0.957473\pi\)
0.991089 0.133205i \(-0.0425268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.24992i 0.328185i 0.986445 + 0.164093i \(0.0524696\pi\)
−0.986445 + 0.164093i \(0.947530\pi\)
\(48\) 0 0
\(49\) −9.57054 −1.36722
\(50\) 0 0
\(51\) −0.323730 −0.0453313
\(52\) 0 0
\(53\) − 1.31781i − 0.181015i −0.995896 0.0905073i \(-0.971151\pi\)
0.995896 0.0905073i \(-0.0288489\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.33517i 0.309301i
\(58\) 0 0
\(59\) −7.92901 −1.03227 −0.516134 0.856508i \(-0.672629\pi\)
−0.516134 + 0.856508i \(0.672629\pi\)
\(60\) 0 0
\(61\) 9.51722 1.21855 0.609277 0.792957i \(-0.291460\pi\)
0.609277 + 0.792957i \(0.291460\pi\)
\(62\) 0 0
\(63\) − 11.7703i − 1.48291i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 3.34110i − 0.408180i −0.978952 0.204090i \(-0.934576\pi\)
0.978952 0.204090i \(-0.0654235\pi\)
\(68\) 0 0
\(69\) 0.329452 0.0396613
\(70\) 0 0
\(71\) −3.92619 −0.465954 −0.232977 0.972482i \(-0.574847\pi\)
−0.232977 + 0.972482i \(0.574847\pi\)
\(72\) 0 0
\(73\) 1.66744i 0.195159i 0.995228 + 0.0975793i \(0.0311100\pi\)
−0.995228 + 0.0975793i \(0.968890\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.5705i 1.43255i
\(78\) 0 0
\(79\) 15.9231 1.79149 0.895743 0.444572i \(-0.146644\pi\)
0.895743 + 0.444572i \(0.146644\pi\)
\(80\) 0 0
\(81\) 8.03493 0.892771
\(82\) 0 0
\(83\) 11.9116i 1.30747i 0.756723 + 0.653736i \(0.226799\pi\)
−0.756723 + 0.653736i \(0.773201\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.51461i 0.269594i
\(88\) 0 0
\(89\) 10.4998 1.11298 0.556491 0.830854i \(-0.312147\pi\)
0.556491 + 0.830854i \(0.312147\pi\)
\(90\) 0 0
\(91\) 25.7293 2.69716
\(92\) 0 0
\(93\) − 1.95051i − 0.202258i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.84125i 0.288485i 0.989542 + 0.144242i \(0.0460745\pi\)
−0.989542 + 0.144242i \(0.953925\pi\)
\(98\) 0 0
\(99\) −8.92901 −0.897399
\(100\) 0 0
\(101\) 4.74696 0.472340 0.236170 0.971712i \(-0.424108\pi\)
0.236170 + 0.971712i \(0.424108\pi\)
\(102\) 0 0
\(103\) − 5.05333i − 0.497919i −0.968514 0.248960i \(-0.919911\pi\)
0.968514 0.248960i \(-0.0800886\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) −10.1067 −0.968042 −0.484021 0.875056i \(-0.660824\pi\)
−0.484021 + 0.875056i \(0.660824\pi\)
\(110\) 0 0
\(111\) −3.78292 −0.359059
\(112\) 0 0
\(113\) − 0.335173i − 0.0315304i −0.999876 0.0157652i \(-0.994982\pi\)
0.999876 0.0157652i \(-0.00501843\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 18.2758i 1.68960i
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −1.46389 −0.133081
\(122\) 0 0
\(123\) − 1.89146i − 0.170547i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 5.92047i 0.525357i 0.964883 + 0.262679i \(0.0846059\pi\)
−0.964883 + 0.262679i \(0.915394\pi\)
\(128\) 0 0
\(129\) 0.575540 0.0506735
\(130\) 0 0
\(131\) 7.02309 0.613610 0.306805 0.951772i \(-0.400740\pi\)
0.306805 + 0.951772i \(0.400740\pi\)
\(132\) 0 0
\(133\) − 28.8533i − 2.50190i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.1414i 1.03731i 0.854984 + 0.518654i \(0.173567\pi\)
−0.854984 + 0.518654i \(0.826433\pi\)
\(138\) 0 0
\(139\) 14.2499 1.20866 0.604331 0.796733i \(-0.293440\pi\)
0.604331 + 0.796733i \(0.293440\pi\)
\(140\) 0 0
\(141\) −0.741241 −0.0624238
\(142\) 0 0
\(143\) − 19.5184i − 1.63221i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 3.15303i − 0.260058i
\(148\) 0 0
\(149\) 18.7826 1.53873 0.769366 0.638808i \(-0.220572\pi\)
0.769366 + 0.638808i \(0.220572\pi\)
\(150\) 0 0
\(151\) 12.3566 1.00556 0.502782 0.864413i \(-0.332310\pi\)
0.502782 + 0.864413i \(0.332310\pi\)
\(152\) 0 0
\(153\) 2.84125i 0.229701i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 12.9997i − 1.03749i −0.854929 0.518744i \(-0.826400\pi\)
0.854929 0.518744i \(-0.173600\pi\)
\(158\) 0 0
\(159\) 0.434154 0.0344306
\(160\) 0 0
\(161\) −4.07069 −0.320816
\(162\) 0 0
\(163\) 12.5384i 0.982085i 0.871136 + 0.491042i \(0.163384\pi\)
−0.871136 + 0.491042i \(0.836616\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 11.2121i − 0.867617i −0.901005 0.433808i \(-0.857169\pi\)
0.901005 0.433808i \(-0.142831\pi\)
\(168\) 0 0
\(169\) −26.9502 −2.07309
\(170\) 0 0
\(171\) 20.4949 1.56728
\(172\) 0 0
\(173\) − 17.2133i − 1.30870i −0.756190 0.654352i \(-0.772942\pi\)
0.756190 0.654352i \(-0.227058\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 2.61222i − 0.196347i
\(178\) 0 0
\(179\) 25.1859 1.88248 0.941240 0.337737i \(-0.109661\pi\)
0.941240 + 0.337737i \(0.109661\pi\)
\(180\) 0 0
\(181\) 15.3411 1.14029 0.570147 0.821542i \(-0.306886\pi\)
0.570147 + 0.821542i \(0.306886\pi\)
\(182\) 0 0
\(183\) 3.13546i 0.231780i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 3.03443i − 0.221900i
\(188\) 0 0
\(189\) 7.90102 0.574715
\(190\) 0 0
\(191\) −17.2232 −1.24623 −0.623114 0.782131i \(-0.714133\pi\)
−0.623114 + 0.782131i \(0.714133\pi\)
\(192\) 0 0
\(193\) 9.30064i 0.669475i 0.942311 + 0.334737i \(0.108648\pi\)
−0.942311 + 0.334737i \(0.891352\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 22.8938i − 1.63111i −0.578677 0.815557i \(-0.696431\pi\)
0.578677 0.815557i \(-0.303569\pi\)
\(198\) 0 0
\(199\) 6.35969 0.450827 0.225413 0.974263i \(-0.427627\pi\)
0.225413 + 0.974263i \(0.427627\pi\)
\(200\) 0 0
\(201\) 1.10073 0.0776395
\(202\) 0 0
\(203\) − 31.0704i − 2.18071i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 2.89146i − 0.200970i
\(208\) 0 0
\(209\) −21.8883 −1.51405
\(210\) 0 0
\(211\) −10.3656 −0.713598 −0.356799 0.934181i \(-0.616132\pi\)
−0.356799 + 0.934181i \(0.616132\pi\)
\(212\) 0 0
\(213\) − 1.29349i − 0.0886286i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 24.1004i 1.63604i
\(218\) 0 0
\(219\) −0.549339 −0.0371209
\(220\) 0 0
\(221\) −6.21085 −0.417787
\(222\) 0 0
\(223\) 5.75289i 0.385242i 0.981273 + 0.192621i \(0.0616988\pi\)
−0.981273 + 0.192621i \(0.938301\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.49393i 0.630134i 0.949069 + 0.315067i \(0.102027\pi\)
−0.949069 + 0.315067i \(0.897973\pi\)
\(228\) 0 0
\(229\) −1.83532 −0.121282 −0.0606408 0.998160i \(-0.519314\pi\)
−0.0606408 + 0.998160i \(0.519314\pi\)
\(230\) 0 0
\(231\) −4.14139 −0.272483
\(232\) 0 0
\(233\) 20.5687i 1.34750i 0.738960 + 0.673749i \(0.235317\pi\)
−0.738960 + 0.673749i \(0.764683\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 5.24589i 0.340757i
\(238\) 0 0
\(239\) 12.4014 0.802178 0.401089 0.916039i \(-0.368632\pi\)
0.401089 + 0.916039i \(0.368632\pi\)
\(240\) 0 0
\(241\) 15.7829 1.01667 0.508334 0.861160i \(-0.330262\pi\)
0.508334 + 0.861160i \(0.330262\pi\)
\(242\) 0 0
\(243\) 8.46998i 0.543349i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 44.8009i 2.85061i
\(248\) 0 0
\(249\) −3.92431 −0.248693
\(250\) 0 0
\(251\) −9.71662 −0.613308 −0.306654 0.951821i \(-0.599209\pi\)
−0.306654 + 0.951821i \(0.599209\pi\)
\(252\) 0 0
\(253\) 3.08806i 0.194145i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 19.3115i − 1.20462i −0.798263 0.602309i \(-0.794248\pi\)
0.798263 0.602309i \(-0.205752\pi\)
\(258\) 0 0
\(259\) 46.7417 2.90439
\(260\) 0 0
\(261\) 22.0697 1.36608
\(262\) 0 0
\(263\) 1.74819i 0.107798i 0.998546 + 0.0538990i \(0.0171649\pi\)
−0.998546 + 0.0538990i \(0.982835\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 3.45919i 0.211699i
\(268\) 0 0
\(269\) −11.7079 −0.713843 −0.356921 0.934134i \(-0.616174\pi\)
−0.356921 + 0.934134i \(0.616174\pi\)
\(270\) 0 0
\(271\) 10.1051 0.613843 0.306921 0.951735i \(-0.400701\pi\)
0.306921 + 0.951735i \(0.400701\pi\)
\(272\) 0 0
\(273\) 8.47656i 0.513025i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 5.29319i − 0.318037i −0.987276 0.159018i \(-0.949167\pi\)
0.987276 0.159018i \(-0.0508329\pi\)
\(278\) 0 0
\(279\) −17.1188 −1.02488
\(280\) 0 0
\(281\) −13.8062 −0.823610 −0.411805 0.911272i \(-0.635101\pi\)
−0.411805 + 0.911272i \(0.635101\pi\)
\(282\) 0 0
\(283\) 7.79437i 0.463327i 0.972796 + 0.231663i \(0.0744168\pi\)
−0.972796 + 0.231663i \(0.925583\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 23.3708i 1.37954i
\(288\) 0 0
\(289\) 16.0344 0.943202
\(290\) 0 0
\(291\) −0.936054 −0.0548724
\(292\) 0 0
\(293\) − 24.0171i − 1.40309i −0.712624 0.701546i \(-0.752494\pi\)
0.712624 0.701546i \(-0.247506\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 5.99377i − 0.347794i
\(298\) 0 0
\(299\) 6.32062 0.365531
\(300\) 0 0
\(301\) −7.11135 −0.409891
\(302\) 0 0
\(303\) 1.56389i 0.0898434i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 1.66483 0.0947087
\(310\) 0 0
\(311\) −26.8507 −1.52256 −0.761282 0.648421i \(-0.775430\pi\)
−0.761282 + 0.648421i \(0.775430\pi\)
\(312\) 0 0
\(313\) 31.5110i 1.78111i 0.454879 + 0.890553i \(0.349682\pi\)
−0.454879 + 0.890553i \(0.650318\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.1110i 1.24188i 0.783858 + 0.620940i \(0.213249\pi\)
−0.783858 + 0.620940i \(0.786751\pi\)
\(318\) 0 0
\(319\) −23.5702 −1.31968
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.96497i 0.387541i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 3.32965i − 0.184130i
\(328\) 0 0
\(329\) 9.15875 0.504938
\(330\) 0 0
\(331\) 23.8953 1.31340 0.656702 0.754150i \(-0.271951\pi\)
0.656702 + 0.754150i \(0.271951\pi\)
\(332\) 0 0
\(333\) 33.2012i 1.81941i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 20.1647i 1.09844i 0.835678 + 0.549220i \(0.185075\pi\)
−0.835678 + 0.549220i \(0.814925\pi\)
\(338\) 0 0
\(339\) 0.110423 0.00599737
\(340\) 0 0
\(341\) 18.2828 0.990068
\(342\) 0 0
\(343\) 10.4639i 0.564997i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.2465i 1.73108i 0.500837 + 0.865542i \(0.333026\pi\)
−0.500837 + 0.865542i \(0.666974\pi\)
\(348\) 0 0
\(349\) −35.3203 −1.89065 −0.945327 0.326125i \(-0.894257\pi\)
−0.945327 + 0.326125i \(0.894257\pi\)
\(350\) 0 0
\(351\) −12.2680 −0.654818
\(352\) 0 0
\(353\) − 30.7409i − 1.63618i −0.575094 0.818088i \(-0.695034\pi\)
0.575094 0.818088i \(-0.304966\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.31781i 0.0697457i
\(358\) 0 0
\(359\) 34.4053 1.81584 0.907920 0.419143i \(-0.137669\pi\)
0.907920 + 0.419143i \(0.137669\pi\)
\(360\) 0 0
\(361\) 31.2406 1.64424
\(362\) 0 0
\(363\) − 0.482281i − 0.0253132i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.2524i 0.535173i 0.963534 + 0.267586i \(0.0862261\pi\)
−0.963534 + 0.267586i \(0.913774\pi\)
\(368\) 0 0
\(369\) −16.6006 −0.864192
\(370\) 0 0
\(371\) −5.36439 −0.278505
\(372\) 0 0
\(373\) 22.6993i 1.17532i 0.809107 + 0.587662i \(0.199951\pi\)
−0.809107 + 0.587662i \(0.800049\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 48.2434i 2.48466i
\(378\) 0 0
\(379\) 1.03503 0.0531661 0.0265831 0.999647i \(-0.491537\pi\)
0.0265831 + 0.999647i \(0.491537\pi\)
\(380\) 0 0
\(381\) −1.95051 −0.0999276
\(382\) 0 0
\(383\) − 25.8707i − 1.32193i −0.750417 0.660965i \(-0.770147\pi\)
0.750417 0.660965i \(-0.229853\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 5.05128i − 0.256771i
\(388\) 0 0
\(389\) 9.21678 0.467309 0.233655 0.972320i \(-0.424932\pi\)
0.233655 + 0.972320i \(0.424932\pi\)
\(390\) 0 0
\(391\) 0.982634 0.0496939
\(392\) 0 0
\(393\) 2.31377i 0.116714i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.84825i 0.444081i 0.975037 + 0.222040i \(0.0712717\pi\)
−0.975037 + 0.222040i \(0.928728\pi\)
\(398\) 0 0
\(399\) 9.50577 0.475884
\(400\) 0 0
\(401\) 11.7281 0.585672 0.292836 0.956163i \(-0.405401\pi\)
0.292836 + 0.956163i \(0.405401\pi\)
\(402\) 0 0
\(403\) − 37.4210i − 1.86408i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 35.4586i − 1.75762i
\(408\) 0 0
\(409\) 22.8709 1.13089 0.565446 0.824785i \(-0.308704\pi\)
0.565446 + 0.824785i \(0.308704\pi\)
\(410\) 0 0
\(411\) −4.00000 −0.197305
\(412\) 0 0
\(413\) 32.2765i 1.58823i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.69466i 0.229899i
\(418\) 0 0
\(419\) −2.41771 −0.118113 −0.0590565 0.998255i \(-0.518809\pi\)
−0.0590565 + 0.998255i \(0.518809\pi\)
\(420\) 0 0
\(421\) −16.6583 −0.811876 −0.405938 0.913901i \(-0.633055\pi\)
−0.405938 + 0.913901i \(0.633055\pi\)
\(422\) 0 0
\(423\) 6.50557i 0.316312i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 38.7417i − 1.87484i
\(428\) 0 0
\(429\) 6.43038 0.310462
\(430\) 0 0
\(431\) 7.51722 0.362092 0.181046 0.983475i \(-0.442052\pi\)
0.181046 + 0.983475i \(0.442052\pi\)
\(432\) 0 0
\(433\) 28.6003i 1.37444i 0.726449 + 0.687221i \(0.241170\pi\)
−0.726449 + 0.687221i \(0.758830\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 7.08806i − 0.339068i
\(438\) 0 0
\(439\) 8.52886 0.407060 0.203530 0.979069i \(-0.434759\pi\)
0.203530 + 0.979069i \(0.434759\pi\)
\(440\) 0 0
\(441\) −27.6729 −1.31776
\(442\) 0 0
\(443\) − 35.9224i − 1.70673i −0.521317 0.853363i \(-0.674559\pi\)
0.521317 0.853363i \(-0.325441\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.18797i 0.292681i
\(448\) 0 0
\(449\) −5.11165 −0.241234 −0.120617 0.992699i \(-0.538487\pi\)
−0.120617 + 0.992699i \(0.538487\pi\)
\(450\) 0 0
\(451\) 17.7293 0.834840
\(452\) 0 0
\(453\) 4.07090i 0.191267i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.7944i 0.551717i 0.961198 + 0.275859i \(0.0889621\pi\)
−0.961198 + 0.275859i \(0.911038\pi\)
\(458\) 0 0
\(459\) −1.90724 −0.0890226
\(460\) 0 0
\(461\) 15.7079 0.731589 0.365795 0.930696i \(-0.380797\pi\)
0.365795 + 0.930696i \(0.380797\pi\)
\(462\) 0 0
\(463\) − 35.7752i − 1.66261i −0.555814 0.831307i \(-0.687593\pi\)
0.555814 0.831307i \(-0.312407\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 21.2118i − 0.981564i −0.871282 0.490782i \(-0.836711\pi\)
0.871282 0.490782i \(-0.163289\pi\)
\(468\) 0 0
\(469\) −13.6006 −0.628016
\(470\) 0 0
\(471\) 4.28277 0.197340
\(472\) 0 0
\(473\) 5.39472i 0.248050i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 3.81039i − 0.174466i
\(478\) 0 0
\(479\) −24.6077 −1.12436 −0.562178 0.827016i \(-0.690036\pi\)
−0.562178 + 0.827016i \(0.690036\pi\)
\(480\) 0 0
\(481\) −72.5764 −3.30920
\(482\) 0 0
\(483\) − 1.34110i − 0.0610220i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15.3507i 0.695605i 0.937568 + 0.347802i \(0.113072\pi\)
−0.937568 + 0.347802i \(0.886928\pi\)
\(488\) 0 0
\(489\) −4.13080 −0.186801
\(490\) 0 0
\(491\) −13.1430 −0.593134 −0.296567 0.955012i \(-0.595842\pi\)
−0.296567 + 0.955012i \(0.595842\pi\)
\(492\) 0 0
\(493\) 7.50015i 0.337790i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 15.9823i 0.716906i
\(498\) 0 0
\(499\) 20.6841 0.925949 0.462975 0.886371i \(-0.346782\pi\)
0.462975 + 0.886371i \(0.346782\pi\)
\(500\) 0 0
\(501\) 3.69384 0.165029
\(502\) 0 0
\(503\) − 35.7956i − 1.59605i −0.602627 0.798023i \(-0.705879\pi\)
0.602627 0.798023i \(-0.294121\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 8.87879i − 0.394321i
\(508\) 0 0
\(509\) −33.9242 −1.50366 −0.751832 0.659355i \(-0.770830\pi\)
−0.751832 + 0.659355i \(0.770830\pi\)
\(510\) 0 0
\(511\) 6.78762 0.300267
\(512\) 0 0
\(513\) 13.7576i 0.607412i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 6.94790i − 0.305568i
\(518\) 0 0
\(519\) 5.67095 0.248927
\(520\) 0 0
\(521\) 12.3346 0.540387 0.270194 0.962806i \(-0.412912\pi\)
0.270194 + 0.962806i \(0.412912\pi\)
\(522\) 0 0
\(523\) 5.25274i 0.229686i 0.993384 + 0.114843i \(0.0366365\pi\)
−0.993384 + 0.114843i \(0.963363\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 5.81766i − 0.253421i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −22.9264 −0.994922
\(532\) 0 0
\(533\) − 36.2882i − 1.57182i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8.29753i 0.358065i
\(538\) 0 0
\(539\) 29.5544 1.27300
\(540\) 0 0
\(541\) −28.4715 −1.22408 −0.612042 0.790825i \(-0.709652\pi\)
−0.612042 + 0.790825i \(0.709652\pi\)
\(542\) 0 0
\(543\) 5.05415i 0.216894i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 25.6025i − 1.09468i −0.836910 0.547341i \(-0.815640\pi\)
0.836910 0.547341i \(-0.184360\pi\)
\(548\) 0 0
\(549\) 27.5187 1.17447
\(550\) 0 0
\(551\) 54.1011 2.30478
\(552\) 0 0
\(553\) − 64.8180i − 2.75634i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 15.7938i − 0.669203i −0.942360 0.334602i \(-0.891398\pi\)
0.942360 0.334602i \(-0.108602\pi\)
\(558\) 0 0
\(559\) 11.0419 0.467022
\(560\) 0 0
\(561\) 0.999698 0.0422073
\(562\) 0 0
\(563\) 41.8996i 1.76586i 0.469507 + 0.882929i \(0.344432\pi\)
−0.469507 + 0.882929i \(0.655568\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 32.7078i − 1.37360i
\(568\) 0 0
\(569\) −24.5485 −1.02913 −0.514563 0.857453i \(-0.672046\pi\)
−0.514563 + 0.857453i \(0.672046\pi\)
\(570\) 0 0
\(571\) −38.3231 −1.60377 −0.801886 0.597476i \(-0.796170\pi\)
−0.801886 + 0.597476i \(0.796170\pi\)
\(572\) 0 0
\(573\) − 5.67422i − 0.237044i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 23.9288i − 0.996169i −0.867128 0.498085i \(-0.834037\pi\)
0.867128 0.498085i \(-0.165963\pi\)
\(578\) 0 0
\(579\) −3.06411 −0.127340
\(580\) 0 0
\(581\) 48.4886 2.01165
\(582\) 0 0
\(583\) 4.06947i 0.168540i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.8130i 1.43689i 0.695585 + 0.718443i \(0.255145\pi\)
−0.695585 + 0.718443i \(0.744855\pi\)
\(588\) 0 0
\(589\) −41.9647 −1.72912
\(590\) 0 0
\(591\) 7.54239 0.310252
\(592\) 0 0
\(593\) − 15.5702i − 0.639393i −0.947520 0.319697i \(-0.896419\pi\)
0.947520 0.319697i \(-0.103581\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.09521i 0.0857513i
\(598\) 0 0
\(599\) −31.2121 −1.27529 −0.637645 0.770330i \(-0.720092\pi\)
−0.637645 + 0.770330i \(0.720092\pi\)
\(600\) 0 0
\(601\) 31.2553 1.27493 0.637466 0.770478i \(-0.279983\pi\)
0.637466 + 0.770478i \(0.279983\pi\)
\(602\) 0 0
\(603\) − 9.66065i − 0.393412i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 30.6469i − 1.24392i −0.783050 0.621959i \(-0.786337\pi\)
0.783050 0.621959i \(-0.213663\pi\)
\(608\) 0 0
\(609\) 10.2362 0.414791
\(610\) 0 0
\(611\) −14.2209 −0.575317
\(612\) 0 0
\(613\) 0.459494i 0.0185588i 0.999957 + 0.00927940i \(0.00295377\pi\)
−0.999957 + 0.00927940i \(0.997046\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.6010i 0.950140i 0.879948 + 0.475070i \(0.157577\pi\)
−0.879948 + 0.475070i \(0.842423\pi\)
\(618\) 0 0
\(619\) −24.8893 −1.00038 −0.500192 0.865914i \(-0.666737\pi\)
−0.500192 + 0.865914i \(0.666737\pi\)
\(620\) 0 0
\(621\) 1.94095 0.0778877
\(622\) 0 0
\(623\) − 42.7417i − 1.71241i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 7.21115i − 0.287986i
\(628\) 0 0
\(629\) −11.2831 −0.449886
\(630\) 0 0
\(631\) −20.8918 −0.831690 −0.415845 0.909435i \(-0.636514\pi\)
−0.415845 + 0.909435i \(0.636514\pi\)
\(632\) 0 0
\(633\) − 3.41497i − 0.135733i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 60.4917i − 2.39677i
\(638\) 0 0
\(639\) −11.3524 −0.449096
\(640\) 0 0
\(641\) −16.0056 −0.632184 −0.316092 0.948729i \(-0.602371\pi\)
−0.316092 + 0.948729i \(0.602371\pi\)
\(642\) 0 0
\(643\) 15.0242i 0.592497i 0.955111 + 0.296249i \(0.0957357\pi\)
−0.955111 + 0.296249i \(0.904264\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 45.3791i − 1.78404i −0.452001 0.892018i \(-0.649290\pi\)
0.452001 0.892018i \(-0.350710\pi\)
\(648\) 0 0
\(649\) 24.4852 0.961130
\(650\) 0 0
\(651\) −7.93993 −0.311190
\(652\) 0 0
\(653\) 14.2506i 0.557671i 0.960339 + 0.278835i \(0.0899484\pi\)
−0.960339 + 0.278835i \(0.910052\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.82133i 0.188098i
\(658\) 0 0
\(659\) 10.3535 0.403314 0.201657 0.979456i \(-0.435367\pi\)
0.201657 + 0.979456i \(0.435367\pi\)
\(660\) 0 0
\(661\) 26.4651 1.02937 0.514687 0.857378i \(-0.327908\pi\)
0.514687 + 0.857378i \(0.327908\pi\)
\(662\) 0 0
\(663\) − 2.04618i − 0.0794669i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 7.63270i − 0.295539i
\(668\) 0 0
\(669\) −1.89530 −0.0732765
\(670\) 0 0
\(671\) −29.3897 −1.13458
\(672\) 0 0
\(673\) 12.0587i 0.464831i 0.972617 + 0.232415i \(0.0746628\pi\)
−0.972617 + 0.232415i \(0.925337\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.54878i 0.213257i 0.994299 + 0.106629i \(0.0340056\pi\)
−0.994299 + 0.106629i \(0.965994\pi\)
\(678\) 0 0
\(679\) 11.5658 0.443856
\(680\) 0 0
\(681\) −3.12779 −0.119857
\(682\) 0 0
\(683\) 0.397032i 0.0151920i 0.999971 + 0.00759601i \(0.00241791\pi\)
−0.999971 + 0.00759601i \(0.997582\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 0.604651i − 0.0230689i
\(688\) 0 0
\(689\) 8.32935 0.317323
\(690\) 0 0
\(691\) 21.4949 0.817703 0.408851 0.912601i \(-0.365929\pi\)
0.408851 + 0.912601i \(0.365929\pi\)
\(692\) 0 0
\(693\) 36.3472i 1.38072i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 5.64154i − 0.213688i
\(698\) 0 0
\(699\) −6.77638 −0.256306
\(700\) 0 0
\(701\) 44.6027 1.68462 0.842311 0.538992i \(-0.181195\pi\)
0.842311 + 0.538992i \(0.181195\pi\)
\(702\) 0 0
\(703\) 81.3885i 3.06963i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 19.3234i − 0.726732i
\(708\) 0 0
\(709\) −29.7476 −1.11719 −0.558597 0.829439i \(-0.688660\pi\)
−0.558597 + 0.829439i \(0.688660\pi\)
\(710\) 0 0
\(711\) 46.0410 1.72667
\(712\) 0 0
\(713\) 5.92047i 0.221723i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.08565i 0.152582i
\(718\) 0 0
\(719\) −35.1758 −1.31184 −0.655918 0.754832i \(-0.727718\pi\)
−0.655918 + 0.754832i \(0.727718\pi\)
\(720\) 0 0
\(721\) −20.5705 −0.766087
\(722\) 0 0
\(723\) 5.19971i 0.193379i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 27.6030i − 1.02374i −0.859063 0.511870i \(-0.828953\pi\)
0.859063 0.511870i \(-0.171047\pi\)
\(728\) 0 0
\(729\) 21.3144 0.789421
\(730\) 0 0
\(731\) 1.71662 0.0634916
\(732\) 0 0
\(733\) − 51.0939i − 1.88720i −0.331093 0.943598i \(-0.607417\pi\)
0.331093 0.943598i \(-0.392583\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.3175i 0.380050i
\(738\) 0 0
\(739\) −13.5558 −0.498658 −0.249329 0.968419i \(-0.580210\pi\)
−0.249329 + 0.968419i \(0.580210\pi\)
\(740\) 0 0
\(741\) −14.7597 −0.542212
\(742\) 0 0
\(743\) 53.8006i 1.97375i 0.161477 + 0.986877i \(0.448374\pi\)
−0.161477 + 0.986877i \(0.551626\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 34.4420i 1.26017i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −44.6539 −1.62944 −0.814722 0.579852i \(-0.803111\pi\)
−0.814722 + 0.579852i \(0.803111\pi\)
\(752\) 0 0
\(753\) − 3.20116i − 0.116657i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 25.1581i 0.914388i 0.889367 + 0.457194i \(0.151146\pi\)
−0.889367 + 0.457194i \(0.848854\pi\)
\(758\) 0 0
\(759\) −1.01737 −0.0369281
\(760\) 0 0
\(761\) −22.9387 −0.831526 −0.415763 0.909473i \(-0.636485\pi\)
−0.415763 + 0.909473i \(0.636485\pi\)
\(762\) 0 0
\(763\) 41.1411i 1.48941i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 50.1162i − 1.80959i
\(768\) 0 0
\(769\) 35.7337 1.28859 0.644295 0.764777i \(-0.277151\pi\)
0.644295 + 0.764777i \(0.277151\pi\)
\(770\) 0 0
\(771\) 6.36220 0.229129
\(772\) 0 0
\(773\) 10.9587i 0.394158i 0.980388 + 0.197079i \(0.0631456\pi\)
−0.980388 + 0.197079i \(0.936854\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 15.3991i 0.552440i
\(778\) 0 0
\(779\) −40.6943 −1.45802
\(780\) 0 0
\(781\) 12.1243 0.433842
\(782\) 0 0
\(783\) 14.8147i 0.529435i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 3.56216i 0.126977i 0.997983 + 0.0634887i \(0.0202227\pi\)
−0.997983 + 0.0634887i \(0.979777\pi\)
\(788\) 0 0
\(789\) −0.575944 −0.0205042
\(790\) 0 0
\(791\) −1.36439 −0.0485120
\(792\) 0 0
\(793\) 60.1547i 2.13616i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 44.7128i − 1.58381i −0.610646 0.791903i \(-0.709090\pi\)
0.610646 0.791903i \(-0.290910\pi\)
\(798\) 0 0
\(799\) −2.21085 −0.0782143
\(800\) 0 0
\(801\) 30.3599 1.07271
\(802\) 0 0
\(803\) − 5.14914i − 0.181709i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 3.85718i − 0.135779i
\(808\) 0 0
\(809\) −9.68159 −0.340387 −0.170193 0.985411i \(-0.554439\pi\)
−0.170193 + 0.985411i \(0.554439\pi\)
\(810\) 0 0
\(811\) −35.5981 −1.25002 −0.625009 0.780618i \(-0.714905\pi\)
−0.625009 + 0.780618i \(0.714905\pi\)
\(812\) 0 0
\(813\) 3.32915i 0.116758i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 12.3826i − 0.433212i
\(818\) 0 0
\(819\) 74.3953 2.59958
\(820\) 0 0
\(821\) 8.17888 0.285445 0.142722 0.989763i \(-0.454414\pi\)
0.142722 + 0.989763i \(0.454414\pi\)
\(822\) 0 0
\(823\) 1.50587i 0.0524914i 0.999656 + 0.0262457i \(0.00835523\pi\)
−0.999656 + 0.0262457i \(0.991645\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 25.3652i − 0.882035i −0.897499 0.441017i \(-0.854618\pi\)
0.897499 0.441017i \(-0.145382\pi\)
\(828\) 0 0
\(829\) −38.2130 −1.32719 −0.663596 0.748091i \(-0.730971\pi\)
−0.663596 + 0.748091i \(0.730971\pi\)
\(830\) 0 0
\(831\) 1.74385 0.0604935
\(832\) 0 0
\(833\) − 9.40434i − 0.325841i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 11.4914i − 0.397199i
\(838\) 0 0
\(839\) 13.1575 0.454248 0.227124 0.973866i \(-0.427068\pi\)
0.227124 + 0.973866i \(0.427068\pi\)
\(840\) 0 0
\(841\) 29.2582 1.00890
\(842\) 0 0
\(843\) − 4.54848i − 0.156658i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 5.95904i 0.204755i
\(848\) 0 0
\(849\) −2.56787 −0.0881290
\(850\) 0 0
\(851\) 11.4825 0.393614
\(852\) 0 0
\(853\) − 13.2756i − 0.454549i −0.973831 0.227274i \(-0.927019\pi\)
0.973831 0.227274i \(-0.0729814\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.18894i 0.0747729i 0.999301 + 0.0373864i \(0.0119032\pi\)
−0.999301 + 0.0373864i \(0.988097\pi\)
\(858\) 0 0
\(859\) −21.4092 −0.730472 −0.365236 0.930915i \(-0.619012\pi\)
−0.365236 + 0.930915i \(0.619012\pi\)
\(860\) 0 0
\(861\) −7.69956 −0.262400
\(862\) 0 0
\(863\) − 14.2923i − 0.486514i −0.969962 0.243257i \(-0.921784\pi\)
0.969962 0.243257i \(-0.0782159\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 5.28257i 0.179405i
\(868\) 0 0
\(869\) −49.1714 −1.66803
\(870\) 0 0
\(871\) 21.1178 0.715549
\(872\) 0 0
\(873\) 8.21536i 0.278048i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.7835i 0.769346i 0.923053 + 0.384673i \(0.125686\pi\)
−0.923053 + 0.384673i \(0.874314\pi\)
\(878\) 0 0
\(879\) 7.91246 0.266881
\(880\) 0 0
\(881\) −43.1007 −1.45210 −0.726050 0.687642i \(-0.758646\pi\)
−0.726050 + 0.687642i \(0.758646\pi\)
\(882\) 0 0
\(883\) − 9.35101i − 0.314687i −0.987544 0.157343i \(-0.949707\pi\)
0.987544 0.157343i \(-0.0502929\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.9902i 0.771936i 0.922512 + 0.385968i \(0.126132\pi\)
−0.922512 + 0.385968i \(0.873868\pi\)
\(888\) 0 0
\(889\) 24.1004 0.808302
\(890\) 0 0
\(891\) −24.8124 −0.831245
\(892\) 0 0
\(893\) 15.9476i 0.533666i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.08234i 0.0695272i
\(898\) 0 0
\(899\) −45.1892 −1.50714
\(900\) 0 0
\(901\) 1.29492 0.0431401
\(902\) 0 0
\(903\) − 2.34285i − 0.0779650i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 29.3070i − 0.973123i −0.873646 0.486561i \(-0.838251\pi\)
0.873646 0.486561i \(-0.161749\pi\)
\(908\) 0 0
\(909\) 13.7257 0.455251
\(910\) 0 0
\(911\) −52.8533 −1.75111 −0.875554 0.483120i \(-0.839504\pi\)
−0.875554 + 0.483120i \(0.839504\pi\)
\(912\) 0 0
\(913\) − 36.7838i − 1.21737i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 28.5888i − 0.944086i
\(918\) 0 0
\(919\) 27.3696 0.902840 0.451420 0.892312i \(-0.350918\pi\)
0.451420 + 0.892312i \(0.350918\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 24.8160i − 0.816828i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 14.6115i − 0.479905i
\(928\) 0 0
\(929\) −4.64485 −0.152393 −0.0761963 0.997093i \(-0.524278\pi\)
−0.0761963 + 0.997093i \(0.524278\pi\)
\(930\) 0 0
\(931\) −67.8366 −2.22325
\(932\) 0 0
\(933\) − 8.84601i − 0.289605i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 19.6704i 0.642606i 0.946977 + 0.321303i \(0.104121\pi\)
−0.946977 + 0.321303i \(0.895879\pi\)
\(938\) 0 0
\(939\) −10.3813 −0.338783
\(940\) 0 0
\(941\) −7.31259 −0.238384 −0.119192 0.992871i \(-0.538030\pi\)
−0.119192 + 0.992871i \(0.538030\pi\)
\(942\) 0 0
\(943\) 5.74124i 0.186961i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.3846i 1.18234i 0.806547 + 0.591170i \(0.201334\pi\)
−0.806547 + 0.591170i \(0.798666\pi\)
\(948\) 0 0
\(949\) −10.5392 −0.342118
\(950\) 0 0
\(951\) −7.28452 −0.236217
\(952\) 0 0
\(953\) 22.2456i 0.720605i 0.932835 + 0.360303i \(0.117327\pi\)
−0.932835 + 0.360303i \(0.882673\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 7.76526i − 0.251015i
\(958\) 0 0
\(959\) 49.4239 1.59598
\(960\) 0 0
\(961\) 4.05200 0.130710
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 49.4661i 1.59072i 0.606136 + 0.795361i \(0.292719\pi\)
−0.606136 + 0.795361i \(0.707281\pi\)
\(968\) 0 0
\(969\) −2.29462 −0.0737138
\(970\) 0 0
\(971\) 28.9113 0.927809 0.463904 0.885885i \(-0.346448\pi\)
0.463904 + 0.885885i \(0.346448\pi\)
\(972\) 0 0
\(973\) − 58.0071i − 1.85962i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 55.1228i − 1.76354i −0.471684 0.881768i \(-0.656354\pi\)
0.471684 0.881768i \(-0.343646\pi\)
\(978\) 0 0
\(979\) −32.4242 −1.03628
\(980\) 0 0
\(981\) −29.2230 −0.933019
\(982\) 0 0
\(983\) − 26.6824i − 0.851037i −0.904950 0.425518i \(-0.860092\pi\)
0.904950 0.425518i \(-0.139908\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.01737i 0.0960438i
\(988\) 0 0
\(989\) −1.74696 −0.0555502
\(990\) 0 0
\(991\) −25.7063 −0.816588 −0.408294 0.912851i \(-0.633876\pi\)
−0.408294 + 0.912851i \(0.633876\pi\)
\(992\) 0 0
\(993\) 7.87235i 0.249821i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.95372i − 0.0618750i −0.999521 0.0309375i \(-0.990151\pi\)
0.999521 0.0309375i \(-0.00984928\pi\)
\(998\) 0 0
\(999\) −22.2869 −0.705128
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4600.2.e.t.4049.5 8
5.2 odd 4 4600.2.a.bb.1.2 yes 4
5.3 odd 4 4600.2.a.ba.1.3 4
5.4 even 2 inner 4600.2.e.t.4049.4 8
20.3 even 4 9200.2.a.cp.1.2 4
20.7 even 4 9200.2.a.cn.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4600.2.a.ba.1.3 4 5.3 odd 4
4600.2.a.bb.1.2 yes 4 5.2 odd 4
4600.2.e.t.4049.4 8 5.4 even 2 inner
4600.2.e.t.4049.5 8 1.1 even 1 trivial
9200.2.a.cn.1.3 4 20.7 even 4
9200.2.a.cp.1.2 4 20.3 even 4