Properties

Label 4600.2.e.q.4049.4
Level $4600$
Weight $2$
Character 4600.4049
Analytic conductor $36.731$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4600,2,Mod(4049,4600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4600.4049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7311849298\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3356224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4049.4
Root \(1.86081i\) of defining polynomial
Character \(\chi\) \(=\) 4600.4049
Dual form 4600.2.e.q.4049.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.46260i q^{3} -1.53740i q^{7} +0.860806 q^{9} -0.860806 q^{11} +0.139194i q^{13} -5.50761i q^{17} -5.25901 q^{19} +2.24860 q^{21} -1.00000i q^{23} +5.64681i q^{27} -9.76663 q^{29} +6.78600 q^{31} -1.25901i q^{33} +12.0900i q^{37} -0.203585 q^{39} -9.98062 q^{41} +11.4432i q^{43} +2.32340i q^{47} +4.63640 q^{49} +8.05543 q^{51} +0.149606i q^{53} -7.69182i q^{57} +11.0152 q^{59} +4.43281 q^{61} -1.32340i q^{63} +10.4972i q^{67} +1.46260 q^{69} +7.31299 q^{71} +7.11982i q^{73} +1.32340i q^{77} -6.79641 q^{79} -5.67660 q^{81} +10.6468i q^{83} -14.2847i q^{87} +17.2936 q^{89} +0.213997 q^{91} +9.92520i q^{93} -1.93561i q^{97} -0.740987 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{9} + 6 q^{11} - 14 q^{19} - 12 q^{21} + 2 q^{29} + 20 q^{31} - 14 q^{39} - 20 q^{41} - 12 q^{49} + 18 q^{51} - 20 q^{59} - 26 q^{61} + 4 q^{69} + 20 q^{71} - 28 q^{79} - 50 q^{81} + 40 q^{89}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times\).

\(n\) \(1151\) \(1201\) \(2301\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.46260i 0.844432i 0.906495 + 0.422216i \(0.138748\pi\)
−0.906495 + 0.422216i \(0.861252\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.53740i − 0.581083i −0.956862 0.290542i \(-0.906165\pi\)
0.956862 0.290542i \(-0.0938355\pi\)
\(8\) 0 0
\(9\) 0.860806 0.286935
\(10\) 0 0
\(11\) −0.860806 −0.259543 −0.129771 0.991544i \(-0.541424\pi\)
−0.129771 + 0.991544i \(0.541424\pi\)
\(12\) 0 0
\(13\) 0.139194i 0.0386055i 0.999814 + 0.0193028i \(0.00614464\pi\)
−0.999814 + 0.0193028i \(0.993855\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 5.50761i − 1.33579i −0.744254 0.667896i \(-0.767195\pi\)
0.744254 0.667896i \(-0.232805\pi\)
\(18\) 0 0
\(19\) −5.25901 −1.20650 −0.603250 0.797552i \(-0.706128\pi\)
−0.603250 + 0.797552i \(0.706128\pi\)
\(20\) 0 0
\(21\) 2.24860 0.490685
\(22\) 0 0
\(23\) − 1.00000i − 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.64681i 1.08673i
\(28\) 0 0
\(29\) −9.76663 −1.81362 −0.906809 0.421543i \(-0.861489\pi\)
−0.906809 + 0.421543i \(0.861489\pi\)
\(30\) 0 0
\(31\) 6.78600 1.21880 0.609401 0.792862i \(-0.291410\pi\)
0.609401 + 0.792862i \(0.291410\pi\)
\(32\) 0 0
\(33\) − 1.25901i − 0.219166i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 12.0900i 1.98759i 0.111232 + 0.993795i \(0.464520\pi\)
−0.111232 + 0.993795i \(0.535480\pi\)
\(38\) 0 0
\(39\) −0.203585 −0.0325997
\(40\) 0 0
\(41\) −9.98062 −1.55871 −0.779356 0.626582i \(-0.784454\pi\)
−0.779356 + 0.626582i \(0.784454\pi\)
\(42\) 0 0
\(43\) 11.4432i 1.74508i 0.488547 + 0.872538i \(0.337527\pi\)
−0.488547 + 0.872538i \(0.662473\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.32340i 0.338903i 0.985538 + 0.169452i \(0.0541997\pi\)
−0.985538 + 0.169452i \(0.945800\pi\)
\(48\) 0 0
\(49\) 4.63640 0.662342
\(50\) 0 0
\(51\) 8.05543 1.12799
\(52\) 0 0
\(53\) 0.149606i 0.0205500i 0.999947 + 0.0102750i \(0.00327069\pi\)
−0.999947 + 0.0102750i \(0.996729\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 7.69182i − 1.01881i
\(58\) 0 0
\(59\) 11.0152 1.43406 0.717030 0.697042i \(-0.245501\pi\)
0.717030 + 0.697042i \(0.245501\pi\)
\(60\) 0 0
\(61\) 4.43281 0.567563 0.283782 0.958889i \(-0.408411\pi\)
0.283782 + 0.958889i \(0.408411\pi\)
\(62\) 0 0
\(63\) − 1.32340i − 0.166733i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.4972i 1.28244i 0.767358 + 0.641219i \(0.221571\pi\)
−0.767358 + 0.641219i \(0.778429\pi\)
\(68\) 0 0
\(69\) 1.46260 0.176076
\(70\) 0 0
\(71\) 7.31299 0.867892 0.433946 0.900939i \(-0.357121\pi\)
0.433946 + 0.900939i \(0.357121\pi\)
\(72\) 0 0
\(73\) 7.11982i 0.833312i 0.909064 + 0.416656i \(0.136798\pi\)
−0.909064 + 0.416656i \(0.863202\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.32340i 0.150816i
\(78\) 0 0
\(79\) −6.79641 −0.764656 −0.382328 0.924027i \(-0.624878\pi\)
−0.382328 + 0.924027i \(0.624878\pi\)
\(80\) 0 0
\(81\) −5.67660 −0.630733
\(82\) 0 0
\(83\) 10.6468i 1.16864i 0.811524 + 0.584320i \(0.198639\pi\)
−0.811524 + 0.584320i \(0.801361\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 14.2847i − 1.53148i
\(88\) 0 0
\(89\) 17.2936 1.83312 0.916560 0.399897i \(-0.130954\pi\)
0.916560 + 0.399897i \(0.130954\pi\)
\(90\) 0 0
\(91\) 0.213997 0.0224330
\(92\) 0 0
\(93\) 9.92520i 1.02919i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.93561i − 0.196531i −0.995160 0.0982657i \(-0.968671\pi\)
0.995160 0.0982657i \(-0.0313295\pi\)
\(98\) 0 0
\(99\) −0.740987 −0.0744720
\(100\) 0 0
\(101\) −15.4224 −1.53459 −0.767293 0.641297i \(-0.778397\pi\)
−0.767293 + 0.641297i \(0.778397\pi\)
\(102\) 0 0
\(103\) 7.91478i 0.779867i 0.920843 + 0.389933i \(0.127502\pi\)
−0.920843 + 0.389933i \(0.872498\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.27839i 0.413607i 0.978382 + 0.206804i \(0.0663061\pi\)
−0.978382 + 0.206804i \(0.933694\pi\)
\(108\) 0 0
\(109\) 17.7770 1.70273 0.851366 0.524572i \(-0.175775\pi\)
0.851366 + 0.524572i \(0.175775\pi\)
\(110\) 0 0
\(111\) −17.6829 −1.67838
\(112\) 0 0
\(113\) − 3.20359i − 0.301368i −0.988582 0.150684i \(-0.951852\pi\)
0.988582 0.150684i \(-0.0481476\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.119819i 0.0110773i
\(118\) 0 0
\(119\) −8.46742 −0.776207
\(120\) 0 0
\(121\) −10.2590 −0.932638
\(122\) 0 0
\(123\) − 14.5976i − 1.31623i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15.2099i 1.34966i 0.737975 + 0.674828i \(0.235782\pi\)
−0.737975 + 0.674828i \(0.764218\pi\)
\(128\) 0 0
\(129\) −16.7368 −1.47360
\(130\) 0 0
\(131\) 12.6918 1.10889 0.554445 0.832220i \(-0.312931\pi\)
0.554445 + 0.832220i \(0.312931\pi\)
\(132\) 0 0
\(133\) 8.08522i 0.701077i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.0346i 1.19906i 0.800353 + 0.599529i \(0.204645\pi\)
−0.800353 + 0.599529i \(0.795355\pi\)
\(138\) 0 0
\(139\) −14.2638 −1.20984 −0.604921 0.796285i \(-0.706795\pi\)
−0.604921 + 0.796285i \(0.706795\pi\)
\(140\) 0 0
\(141\) −3.39821 −0.286181
\(142\) 0 0
\(143\) − 0.119819i − 0.0100198i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.78119i 0.559303i
\(148\) 0 0
\(149\) 4.46260 0.365590 0.182795 0.983151i \(-0.441485\pi\)
0.182795 + 0.983151i \(0.441485\pi\)
\(150\) 0 0
\(151\) 10.7562 0.875328 0.437664 0.899139i \(-0.355806\pi\)
0.437664 + 0.899139i \(0.355806\pi\)
\(152\) 0 0
\(153\) − 4.74099i − 0.383286i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 14.5180i − 1.15866i −0.815091 0.579332i \(-0.803313\pi\)
0.815091 0.579332i \(-0.196687\pi\)
\(158\) 0 0
\(159\) −0.218814 −0.0173531
\(160\) 0 0
\(161\) −1.53740 −0.121164
\(162\) 0 0
\(163\) − 1.30403i − 0.102139i −0.998695 0.0510697i \(-0.983737\pi\)
0.998695 0.0510697i \(-0.0162631\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3.44322i − 0.266445i −0.991086 0.133222i \(-0.957468\pi\)
0.991086 0.133222i \(-0.0425324\pi\)
\(168\) 0 0
\(169\) 12.9806 0.998510
\(170\) 0 0
\(171\) −4.52699 −0.346188
\(172\) 0 0
\(173\) 9.35801i 0.711476i 0.934586 + 0.355738i \(0.115770\pi\)
−0.934586 + 0.355738i \(0.884230\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 16.1109i 1.21097i
\(178\) 0 0
\(179\) 18.4134 1.37628 0.688142 0.725576i \(-0.258426\pi\)
0.688142 + 0.725576i \(0.258426\pi\)
\(180\) 0 0
\(181\) −1.94457 −0.144539 −0.0722694 0.997385i \(-0.523024\pi\)
−0.0722694 + 0.997385i \(0.523024\pi\)
\(182\) 0 0
\(183\) 6.48342i 0.479268i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.74099i 0.346695i
\(188\) 0 0
\(189\) 8.68141 0.631480
\(190\) 0 0
\(191\) −0.775591 −0.0561198 −0.0280599 0.999606i \(-0.508933\pi\)
−0.0280599 + 0.999606i \(0.508933\pi\)
\(192\) 0 0
\(193\) − 11.7666i − 0.846980i −0.905901 0.423490i \(-0.860805\pi\)
0.905901 0.423490i \(-0.139195\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 9.68141i − 0.689772i −0.938645 0.344886i \(-0.887918\pi\)
0.938645 0.344886i \(-0.112082\pi\)
\(198\) 0 0
\(199\) 3.29362 0.233478 0.116739 0.993163i \(-0.462756\pi\)
0.116739 + 0.993163i \(0.462756\pi\)
\(200\) 0 0
\(201\) −15.3532 −1.08293
\(202\) 0 0
\(203\) 15.0152i 1.05386i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 0.860806i − 0.0598301i
\(208\) 0 0
\(209\) 4.52699 0.313138
\(210\) 0 0
\(211\) −16.2396 −1.11798 −0.558991 0.829173i \(-0.688812\pi\)
−0.558991 + 0.829173i \(0.688812\pi\)
\(212\) 0 0
\(213\) 10.6960i 0.732876i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 10.4328i − 0.708225i
\(218\) 0 0
\(219\) −10.4134 −0.703675
\(220\) 0 0
\(221\) 0.766628 0.0515690
\(222\) 0 0
\(223\) 21.2936i 1.42593i 0.701202 + 0.712963i \(0.252647\pi\)
−0.701202 + 0.712963i \(0.747353\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 29.6620i 1.96874i 0.176117 + 0.984369i \(0.443646\pi\)
−0.176117 + 0.984369i \(0.556354\pi\)
\(228\) 0 0
\(229\) −19.6829 −1.30068 −0.650340 0.759643i \(-0.725374\pi\)
−0.650340 + 0.759643i \(0.725374\pi\)
\(230\) 0 0
\(231\) −1.93561 −0.127354
\(232\) 0 0
\(233\) − 5.52699i − 0.362085i −0.983475 0.181043i \(-0.942053\pi\)
0.983475 0.181043i \(-0.0579472\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 9.94043i − 0.645700i
\(238\) 0 0
\(239\) 17.3982 1.12540 0.562698 0.826662i \(-0.309763\pi\)
0.562698 + 0.826662i \(0.309763\pi\)
\(240\) 0 0
\(241\) −16.0900 −1.03645 −0.518225 0.855244i \(-0.673407\pi\)
−0.518225 + 0.855244i \(0.673407\pi\)
\(242\) 0 0
\(243\) 8.63785i 0.554118i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 0.732024i − 0.0465776i
\(248\) 0 0
\(249\) −15.5720 −0.986836
\(250\) 0 0
\(251\) −29.0498 −1.83361 −0.916805 0.399336i \(-0.869241\pi\)
−0.916805 + 0.399336i \(0.869241\pi\)
\(252\) 0 0
\(253\) 0.860806i 0.0541184i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.56304i 0.409391i 0.978826 + 0.204696i \(0.0656205\pi\)
−0.978826 + 0.204696i \(0.934380\pi\)
\(258\) 0 0
\(259\) 18.5872 1.15495
\(260\) 0 0
\(261\) −8.40717 −0.520391
\(262\) 0 0
\(263\) − 0.561593i − 0.0346293i −0.999850 0.0173147i \(-0.994488\pi\)
0.999850 0.0173147i \(-0.00551170\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 25.2936i 1.54794i
\(268\) 0 0
\(269\) 7.26943 0.443225 0.221612 0.975135i \(-0.428868\pi\)
0.221612 + 0.975135i \(0.428868\pi\)
\(270\) 0 0
\(271\) 0.184210 0.0111900 0.00559498 0.999984i \(-0.498219\pi\)
0.00559498 + 0.999984i \(0.498219\pi\)
\(272\) 0 0
\(273\) 0.312992i 0.0189431i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 25.8954i − 1.55590i −0.628323 0.777952i \(-0.716259\pi\)
0.628323 0.777952i \(-0.283741\pi\)
\(278\) 0 0
\(279\) 5.84143 0.349717
\(280\) 0 0
\(281\) −26.7756 −1.59730 −0.798649 0.601797i \(-0.794452\pi\)
−0.798649 + 0.601797i \(0.794452\pi\)
\(282\) 0 0
\(283\) 5.70079i 0.338877i 0.985541 + 0.169438i \(0.0541954\pi\)
−0.985541 + 0.169438i \(0.945805\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.3442i 0.905741i
\(288\) 0 0
\(289\) −13.3338 −0.784342
\(290\) 0 0
\(291\) 2.83102 0.165957
\(292\) 0 0
\(293\) 1.05398i 0.0615741i 0.999526 + 0.0307871i \(0.00980137\pi\)
−0.999526 + 0.0307871i \(0.990199\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 4.86081i − 0.282053i
\(298\) 0 0
\(299\) 0.139194 0.00804981
\(300\) 0 0
\(301\) 17.5928 1.01403
\(302\) 0 0
\(303\) − 22.5568i − 1.29585i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 17.8760i − 1.02024i −0.860103 0.510120i \(-0.829601\pi\)
0.860103 0.510120i \(-0.170399\pi\)
\(308\) 0 0
\(309\) −11.5762 −0.658544
\(310\) 0 0
\(311\) 16.9315 0.960095 0.480048 0.877242i \(-0.340619\pi\)
0.480048 + 0.877242i \(0.340619\pi\)
\(312\) 0 0
\(313\) − 19.9959i − 1.13023i −0.825011 0.565116i \(-0.808831\pi\)
0.825011 0.565116i \(-0.191169\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 3.29776i − 0.185221i −0.995702 0.0926104i \(-0.970479\pi\)
0.995702 0.0926104i \(-0.0295211\pi\)
\(318\) 0 0
\(319\) 8.40717 0.470711
\(320\) 0 0
\(321\) −6.25756 −0.349263
\(322\) 0 0
\(323\) 28.9646i 1.61163i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 26.0007i 1.43784i
\(328\) 0 0
\(329\) 3.57201 0.196931
\(330\) 0 0
\(331\) −12.8802 −0.707959 −0.353979 0.935253i \(-0.615172\pi\)
−0.353979 + 0.935253i \(0.615172\pi\)
\(332\) 0 0
\(333\) 10.4072i 0.570309i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.22026i 0.502260i 0.967953 + 0.251130i \(0.0808021\pi\)
−0.967953 + 0.251130i \(0.919198\pi\)
\(338\) 0 0
\(339\) 4.68556 0.254485
\(340\) 0 0
\(341\) −5.84143 −0.316331
\(342\) 0 0
\(343\) − 17.8898i − 0.965959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 31.2984i − 1.68019i −0.542441 0.840094i \(-0.682500\pi\)
0.542441 0.840094i \(-0.317500\pi\)
\(348\) 0 0
\(349\) −9.89541 −0.529689 −0.264845 0.964291i \(-0.585321\pi\)
−0.264845 + 0.964291i \(0.585321\pi\)
\(350\) 0 0
\(351\) −0.786003 −0.0419537
\(352\) 0 0
\(353\) 19.4287i 1.03408i 0.855960 + 0.517042i \(0.172967\pi\)
−0.855960 + 0.517042i \(0.827033\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 12.3844i − 0.655453i
\(358\) 0 0
\(359\) 13.1440 0.693714 0.346857 0.937918i \(-0.387249\pi\)
0.346857 + 0.937918i \(0.387249\pi\)
\(360\) 0 0
\(361\) 8.65722 0.455643
\(362\) 0 0
\(363\) − 15.0048i − 0.787549i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 15.7424i 0.821748i 0.911692 + 0.410874i \(0.134776\pi\)
−0.911692 + 0.410874i \(0.865224\pi\)
\(368\) 0 0
\(369\) −8.59138 −0.447249
\(370\) 0 0
\(371\) 0.230005 0.0119413
\(372\) 0 0
\(373\) 27.6620i 1.43229i 0.697954 + 0.716143i \(0.254094\pi\)
−0.697954 + 0.716143i \(0.745906\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1.35946i − 0.0700156i
\(378\) 0 0
\(379\) −28.2140 −1.44926 −0.724628 0.689140i \(-0.757988\pi\)
−0.724628 + 0.689140i \(0.757988\pi\)
\(380\) 0 0
\(381\) −22.2459 −1.13969
\(382\) 0 0
\(383\) − 21.5928i − 1.10334i −0.834062 0.551671i \(-0.813990\pi\)
0.834062 0.551671i \(-0.186010\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.85039i 0.500724i
\(388\) 0 0
\(389\) −17.2501 −0.874612 −0.437306 0.899313i \(-0.644067\pi\)
−0.437306 + 0.899313i \(0.644067\pi\)
\(390\) 0 0
\(391\) −5.50761 −0.278532
\(392\) 0 0
\(393\) 18.5630i 0.936382i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 34.8850i − 1.75083i −0.483374 0.875414i \(-0.660589\pi\)
0.483374 0.875414i \(-0.339411\pi\)
\(398\) 0 0
\(399\) −11.8254 −0.592012
\(400\) 0 0
\(401\) 4.21881 0.210678 0.105339 0.994436i \(-0.466407\pi\)
0.105339 + 0.994436i \(0.466407\pi\)
\(402\) 0 0
\(403\) 0.944572i 0.0470525i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 10.4072i − 0.515864i
\(408\) 0 0
\(409\) −38.8165 −1.91935 −0.959675 0.281111i \(-0.909297\pi\)
−0.959675 + 0.281111i \(0.909297\pi\)
\(410\) 0 0
\(411\) −20.5270 −1.01252
\(412\) 0 0
\(413\) − 16.9348i − 0.833309i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 20.8623i − 1.02163i
\(418\) 0 0
\(419\) −22.0305 −1.07626 −0.538129 0.842862i \(-0.680869\pi\)
−0.538129 + 0.842862i \(0.680869\pi\)
\(420\) 0 0
\(421\) −17.2203 −0.839264 −0.419632 0.907694i \(-0.637841\pi\)
−0.419632 + 0.907694i \(0.637841\pi\)
\(422\) 0 0
\(423\) 2.00000i 0.0972433i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 6.81501i − 0.329801i
\(428\) 0 0
\(429\) 0.175247 0.00846102
\(430\) 0 0
\(431\) −11.8116 −0.568947 −0.284473 0.958684i \(-0.591819\pi\)
−0.284473 + 0.958684i \(0.591819\pi\)
\(432\) 0 0
\(433\) 19.8642i 0.954611i 0.878737 + 0.477306i \(0.158387\pi\)
−0.878737 + 0.477306i \(0.841613\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.25901i 0.251573i
\(438\) 0 0
\(439\) 5.04647 0.240855 0.120427 0.992722i \(-0.461574\pi\)
0.120427 + 0.992722i \(0.461574\pi\)
\(440\) 0 0
\(441\) 3.99104 0.190049
\(442\) 0 0
\(443\) − 14.3193i − 0.680328i −0.940366 0.340164i \(-0.889517\pi\)
0.940366 0.340164i \(-0.110483\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.52699i 0.308716i
\(448\) 0 0
\(449\) 13.3699 0.630963 0.315482 0.948932i \(-0.397834\pi\)
0.315482 + 0.948932i \(0.397834\pi\)
\(450\) 0 0
\(451\) 8.59138 0.404552
\(452\) 0 0
\(453\) 15.7320i 0.739155i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.38924i − 0.111764i −0.998437 0.0558821i \(-0.982203\pi\)
0.998437 0.0558821i \(-0.0177971\pi\)
\(458\) 0 0
\(459\) 31.1004 1.45164
\(460\) 0 0
\(461\) 21.2278 0.988676 0.494338 0.869270i \(-0.335410\pi\)
0.494338 + 0.869270i \(0.335410\pi\)
\(462\) 0 0
\(463\) 35.1261i 1.63245i 0.577736 + 0.816224i \(0.303936\pi\)
−0.577736 + 0.816224i \(0.696064\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 16.7756i − 0.776282i −0.921600 0.388141i \(-0.873117\pi\)
0.921600 0.388141i \(-0.126883\pi\)
\(468\) 0 0
\(469\) 16.1384 0.745203
\(470\) 0 0
\(471\) 21.2340 0.978413
\(472\) 0 0
\(473\) − 9.85039i − 0.452922i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.128782i 0.00589652i
\(478\) 0 0
\(479\) 5.61076 0.256362 0.128181 0.991751i \(-0.459086\pi\)
0.128181 + 0.991751i \(0.459086\pi\)
\(480\) 0 0
\(481\) −1.68286 −0.0767319
\(482\) 0 0
\(483\) − 2.24860i − 0.102315i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 10.2638i − 0.465099i −0.972585 0.232549i \(-0.925293\pi\)
0.972585 0.232549i \(-0.0747067\pi\)
\(488\) 0 0
\(489\) 1.90727 0.0862498
\(490\) 0 0
\(491\) 9.28735 0.419132 0.209566 0.977794i \(-0.432795\pi\)
0.209566 + 0.977794i \(0.432795\pi\)
\(492\) 0 0
\(493\) 53.7908i 2.42262i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 11.2430i − 0.504318i
\(498\) 0 0
\(499\) −13.3082 −0.595756 −0.297878 0.954604i \(-0.596279\pi\)
−0.297878 + 0.954604i \(0.596279\pi\)
\(500\) 0 0
\(501\) 5.03605 0.224994
\(502\) 0 0
\(503\) − 37.7383i − 1.68267i −0.540516 0.841334i \(-0.681771\pi\)
0.540516 0.841334i \(-0.318229\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 18.9854i 0.843173i
\(508\) 0 0
\(509\) 1.11982 0.0496351 0.0248176 0.999692i \(-0.492100\pi\)
0.0248176 + 0.999692i \(0.492100\pi\)
\(510\) 0 0
\(511\) 10.9460 0.484223
\(512\) 0 0
\(513\) − 29.6966i − 1.31114i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 2.00000i − 0.0879599i
\(518\) 0 0
\(519\) −13.6870 −0.600793
\(520\) 0 0
\(521\) −13.9100 −0.609407 −0.304703 0.952447i \(-0.598557\pi\)
−0.304703 + 0.952447i \(0.598557\pi\)
\(522\) 0 0
\(523\) 8.19799i 0.358473i 0.983806 + 0.179237i \(0.0573627\pi\)
−0.983806 + 0.179237i \(0.942637\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 37.3747i − 1.62807i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 9.48197 0.411483
\(532\) 0 0
\(533\) − 1.38924i − 0.0601749i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 26.9315i 1.16218i
\(538\) 0 0
\(539\) −3.99104 −0.171906
\(540\) 0 0
\(541\) 23.5478 1.01240 0.506200 0.862416i \(-0.331050\pi\)
0.506200 + 0.862416i \(0.331050\pi\)
\(542\) 0 0
\(543\) − 2.84413i − 0.122053i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.77077i − 0.0757128i −0.999283 0.0378564i \(-0.987947\pi\)
0.999283 0.0378564i \(-0.0120530\pi\)
\(548\) 0 0
\(549\) 3.81579 0.162854
\(550\) 0 0
\(551\) 51.3628 2.18813
\(552\) 0 0
\(553\) 10.4488i 0.444329i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.5872i 0.957052i 0.878073 + 0.478526i \(0.158829\pi\)
−0.878073 + 0.478526i \(0.841171\pi\)
\(558\) 0 0
\(559\) −1.59283 −0.0673695
\(560\) 0 0
\(561\) −6.93416 −0.292760
\(562\) 0 0
\(563\) 21.8504i 0.920884i 0.887690 + 0.460442i \(0.152309\pi\)
−0.887690 + 0.460442i \(0.847691\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 8.72721i 0.366508i
\(568\) 0 0
\(569\) −11.4737 −0.481002 −0.240501 0.970649i \(-0.577312\pi\)
−0.240501 + 0.970649i \(0.577312\pi\)
\(570\) 0 0
\(571\) 27.7085 1.15956 0.579782 0.814771i \(-0.303138\pi\)
0.579782 + 0.814771i \(0.303138\pi\)
\(572\) 0 0
\(573\) − 1.13438i − 0.0473893i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 20.3442i − 0.846941i −0.905910 0.423471i \(-0.860812\pi\)
0.905910 0.423471i \(-0.139188\pi\)
\(578\) 0 0
\(579\) 17.2099 0.715217
\(580\) 0 0
\(581\) 16.3684 0.679076
\(582\) 0 0
\(583\) − 0.128782i − 0.00533360i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 12.1690i − 0.502268i −0.967952 0.251134i \(-0.919197\pi\)
0.967952 0.251134i \(-0.0808034\pi\)
\(588\) 0 0
\(589\) −35.6877 −1.47049
\(590\) 0 0
\(591\) 14.1600 0.582465
\(592\) 0 0
\(593\) − 40.5180i − 1.66388i −0.554869 0.831938i \(-0.687231\pi\)
0.554869 0.831938i \(-0.312769\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.81724i 0.197156i
\(598\) 0 0
\(599\) 28.8913 1.18047 0.590233 0.807233i \(-0.299036\pi\)
0.590233 + 0.807233i \(0.299036\pi\)
\(600\) 0 0
\(601\) 5.34278 0.217937 0.108968 0.994045i \(-0.465245\pi\)
0.108968 + 0.994045i \(0.465245\pi\)
\(602\) 0 0
\(603\) 9.03605i 0.367977i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 40.4376i 1.64131i 0.571422 + 0.820656i \(0.306392\pi\)
−0.571422 + 0.820656i \(0.693608\pi\)
\(608\) 0 0
\(609\) −21.9612 −0.889915
\(610\) 0 0
\(611\) −0.323404 −0.0130835
\(612\) 0 0
\(613\) − 5.31154i − 0.214531i −0.994230 0.107266i \(-0.965790\pi\)
0.994230 0.107266i \(-0.0342095\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 9.71680i − 0.391183i −0.980685 0.195592i \(-0.937337\pi\)
0.980685 0.195592i \(-0.0626627\pi\)
\(618\) 0 0
\(619\) 23.7562 0.954843 0.477421 0.878674i \(-0.341572\pi\)
0.477421 + 0.878674i \(0.341572\pi\)
\(620\) 0 0
\(621\) 5.64681 0.226599
\(622\) 0 0
\(623\) − 26.5872i − 1.06520i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 6.62117i 0.264424i
\(628\) 0 0
\(629\) 66.5872 2.65501
\(630\) 0 0
\(631\) 1.24234 0.0494566 0.0247283 0.999694i \(-0.492128\pi\)
0.0247283 + 0.999694i \(0.492128\pi\)
\(632\) 0 0
\(633\) − 23.7521i − 0.944060i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.645359i 0.0255701i
\(638\) 0 0
\(639\) 6.29507 0.249029
\(640\) 0 0
\(641\) −34.8864 −1.37793 −0.688966 0.724794i \(-0.741935\pi\)
−0.688966 + 0.724794i \(0.741935\pi\)
\(642\) 0 0
\(643\) 32.1592i 1.26824i 0.773236 + 0.634118i \(0.218637\pi\)
−0.773236 + 0.634118i \(0.781363\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 23.9550i − 0.941768i −0.882195 0.470884i \(-0.843935\pi\)
0.882195 0.470884i \(-0.156065\pi\)
\(648\) 0 0
\(649\) −9.48197 −0.372200
\(650\) 0 0
\(651\) 15.2590 0.598048
\(652\) 0 0
\(653\) 4.31926i 0.169026i 0.996422 + 0.0845128i \(0.0269334\pi\)
−0.996422 + 0.0845128i \(0.973067\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.12878i 0.239107i
\(658\) 0 0
\(659\) 6.14961 0.239555 0.119777 0.992801i \(-0.461782\pi\)
0.119777 + 0.992801i \(0.461782\pi\)
\(660\) 0 0
\(661\) −15.7473 −0.612497 −0.306249 0.951952i \(-0.599074\pi\)
−0.306249 + 0.951952i \(0.599074\pi\)
\(662\) 0 0
\(663\) 1.12127i 0.0435465i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 9.76663i 0.378165i
\(668\) 0 0
\(669\) −31.1440 −1.20410
\(670\) 0 0
\(671\) −3.81579 −0.147307
\(672\) 0 0
\(673\) 43.5783i 1.67982i 0.542727 + 0.839909i \(0.317392\pi\)
−0.542727 + 0.839909i \(0.682608\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 30.1801i − 1.15991i −0.814647 0.579957i \(-0.803069\pi\)
0.814647 0.579957i \(-0.196931\pi\)
\(678\) 0 0
\(679\) −2.97581 −0.114201
\(680\) 0 0
\(681\) −43.3836 −1.66247
\(682\) 0 0
\(683\) 29.2832i 1.12049i 0.828327 + 0.560245i \(0.189293\pi\)
−0.828327 + 0.560245i \(0.810707\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 28.7881i − 1.09834i
\(688\) 0 0
\(689\) −0.0208243 −0.000793344 0
\(690\) 0 0
\(691\) −14.9557 −0.568940 −0.284470 0.958685i \(-0.591818\pi\)
−0.284470 + 0.958685i \(0.591818\pi\)
\(692\) 0 0
\(693\) 1.13919i 0.0432744i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 54.9694i 2.08212i
\(698\) 0 0
\(699\) 8.08377 0.305756
\(700\) 0 0
\(701\) 24.9627 0.942828 0.471414 0.881912i \(-0.343744\pi\)
0.471414 + 0.881912i \(0.343744\pi\)
\(702\) 0 0
\(703\) − 63.5816i − 2.39803i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 23.7104i 0.891722i
\(708\) 0 0
\(709\) 38.9717 1.46361 0.731806 0.681513i \(-0.238678\pi\)
0.731806 + 0.681513i \(0.238678\pi\)
\(710\) 0 0
\(711\) −5.85039 −0.219407
\(712\) 0 0
\(713\) − 6.78600i − 0.254138i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 25.4466i 0.950320i
\(718\) 0 0
\(719\) 25.2978 0.943447 0.471724 0.881746i \(-0.343632\pi\)
0.471724 + 0.881746i \(0.343632\pi\)
\(720\) 0 0
\(721\) 12.1682 0.453168
\(722\) 0 0
\(723\) − 23.5333i − 0.875211i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 12.7417i − 0.472562i −0.971685 0.236281i \(-0.924071\pi\)
0.971685 0.236281i \(-0.0759286\pi\)
\(728\) 0 0
\(729\) −29.6635 −1.09865
\(730\) 0 0
\(731\) 63.0249 2.33106
\(732\) 0 0
\(733\) − 9.83247i − 0.363170i −0.983375 0.181585i \(-0.941877\pi\)
0.983375 0.181585i \(-0.0581228\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 9.03605i − 0.332847i
\(738\) 0 0
\(739\) −22.6918 −0.834732 −0.417366 0.908738i \(-0.637047\pi\)
−0.417366 + 0.908738i \(0.637047\pi\)
\(740\) 0 0
\(741\) 1.07066 0.0393316
\(742\) 0 0
\(743\) 3.08858i 0.113309i 0.998394 + 0.0566546i \(0.0180434\pi\)
−0.998394 + 0.0566546i \(0.981957\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 9.16484i 0.335324i
\(748\) 0 0
\(749\) 6.57760 0.240340
\(750\) 0 0
\(751\) −10.7577 −0.392553 −0.196276 0.980549i \(-0.562885\pi\)
−0.196276 + 0.980549i \(0.562885\pi\)
\(752\) 0 0
\(753\) − 42.4882i − 1.54836i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 19.5333i 0.709948i 0.934876 + 0.354974i \(0.115510\pi\)
−0.934876 + 0.354974i \(0.884490\pi\)
\(758\) 0 0
\(759\) −1.25901 −0.0456993
\(760\) 0 0
\(761\) −15.6933 −0.568881 −0.284440 0.958694i \(-0.591808\pi\)
−0.284440 + 0.958694i \(0.591808\pi\)
\(762\) 0 0
\(763\) − 27.3304i − 0.989429i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.53326i 0.0553626i
\(768\) 0 0
\(769\) −11.4128 −0.411555 −0.205777 0.978599i \(-0.565972\pi\)
−0.205777 + 0.978599i \(0.565972\pi\)
\(770\) 0 0
\(771\) −9.59910 −0.345703
\(772\) 0 0
\(773\) − 22.5872i − 0.812406i −0.913783 0.406203i \(-0.866853\pi\)
0.913783 0.406203i \(-0.133147\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 27.1857i 0.975280i
\(778\) 0 0
\(779\) 52.4882 1.88059
\(780\) 0 0
\(781\) −6.29507 −0.225255
\(782\) 0 0
\(783\) − 55.1503i − 1.97091i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4.42799i 0.157841i 0.996881 + 0.0789205i \(0.0251473\pi\)
−0.996881 + 0.0789205i \(0.974853\pi\)
\(788\) 0 0
\(789\) 0.821385 0.0292421
\(790\) 0 0
\(791\) −4.92520 −0.175120
\(792\) 0 0
\(793\) 0.617021i 0.0219111i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 21.5124i − 0.762009i −0.924573 0.381005i \(-0.875578\pi\)
0.924573 0.381005i \(-0.124422\pi\)
\(798\) 0 0
\(799\) 12.7964 0.452705
\(800\) 0 0
\(801\) 14.8864 0.525987
\(802\) 0 0
\(803\) − 6.12878i − 0.216280i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.6323i 0.374273i
\(808\) 0 0
\(809\) −7.37883 −0.259426 −0.129713 0.991552i \(-0.541406\pi\)
−0.129713 + 0.991552i \(0.541406\pi\)
\(810\) 0 0
\(811\) 29.0423 1.01981 0.509907 0.860230i \(-0.329680\pi\)
0.509907 + 0.860230i \(0.329680\pi\)
\(812\) 0 0
\(813\) 0.269425i 0.00944916i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 60.1801i − 2.10543i
\(818\) 0 0
\(819\) 0.184210 0.00643682
\(820\) 0 0
\(821\) 5.70079 0.198959 0.0994794 0.995040i \(-0.468282\pi\)
0.0994794 + 0.995040i \(0.468282\pi\)
\(822\) 0 0
\(823\) − 16.0034i − 0.557842i −0.960314 0.278921i \(-0.910023\pi\)
0.960314 0.278921i \(-0.0899768\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 39.7937i − 1.38376i −0.722011 0.691882i \(-0.756782\pi\)
0.722011 0.691882i \(-0.243218\pi\)
\(828\) 0 0
\(829\) 23.3353 0.810467 0.405234 0.914213i \(-0.367190\pi\)
0.405234 + 0.914213i \(0.367190\pi\)
\(830\) 0 0
\(831\) 37.8746 1.31385
\(832\) 0 0
\(833\) − 25.5355i − 0.884752i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 38.3193i 1.32451i
\(838\) 0 0
\(839\) −37.1469 −1.28245 −0.641227 0.767351i \(-0.721574\pi\)
−0.641227 + 0.767351i \(0.721574\pi\)
\(840\) 0 0
\(841\) 66.3870 2.28921
\(842\) 0 0
\(843\) − 39.1619i − 1.34881i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 15.7722i 0.541940i
\(848\) 0 0
\(849\) −8.33796 −0.286158
\(850\) 0 0
\(851\) 12.0900 0.414441
\(852\) 0 0
\(853\) − 53.7658i − 1.84091i −0.390851 0.920454i \(-0.627819\pi\)
0.390851 0.920454i \(-0.372181\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.9675i 0.818715i 0.912374 + 0.409357i \(0.134247\pi\)
−0.912374 + 0.409357i \(0.865753\pi\)
\(858\) 0 0
\(859\) −3.70705 −0.126483 −0.0632415 0.997998i \(-0.520144\pi\)
−0.0632415 + 0.997998i \(0.520144\pi\)
\(860\) 0 0
\(861\) −22.4424 −0.764836
\(862\) 0 0
\(863\) 49.6296i 1.68941i 0.535232 + 0.844705i \(0.320224\pi\)
−0.535232 + 0.844705i \(0.679776\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 19.5020i − 0.662323i
\(868\) 0 0
\(869\) 5.85039 0.198461
\(870\) 0 0
\(871\) −1.46115 −0.0495091
\(872\) 0 0
\(873\) − 1.66618i − 0.0563918i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.1004i 0.442371i 0.975232 + 0.221185i \(0.0709926\pi\)
−0.975232 + 0.221185i \(0.929007\pi\)
\(878\) 0 0
\(879\) −1.54155 −0.0519951
\(880\) 0 0
\(881\) 3.88085 0.130749 0.0653746 0.997861i \(-0.479176\pi\)
0.0653746 + 0.997861i \(0.479176\pi\)
\(882\) 0 0
\(883\) − 10.8131i − 0.363890i −0.983309 0.181945i \(-0.941761\pi\)
0.983309 0.181945i \(-0.0582392\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 8.58387i 0.288218i 0.989562 + 0.144109i \(0.0460316\pi\)
−0.989562 + 0.144109i \(0.953968\pi\)
\(888\) 0 0
\(889\) 23.3836 0.784262
\(890\) 0 0
\(891\) 4.88645 0.163702
\(892\) 0 0
\(893\) − 12.2188i − 0.408887i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.203585i 0.00679751i
\(898\) 0 0
\(899\) −66.2764 −2.21044
\(900\) 0 0
\(901\) 0.823974 0.0274505
\(902\) 0 0
\(903\) 25.7312i 0.856282i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 21.2728i 0.706351i 0.935557 + 0.353176i \(0.114898\pi\)
−0.935557 + 0.353176i \(0.885102\pi\)
\(908\) 0 0
\(909\) −13.2757 −0.440327
\(910\) 0 0
\(911\) −27.6441 −0.915890 −0.457945 0.888980i \(-0.651414\pi\)
−0.457945 + 0.888980i \(0.651414\pi\)
\(912\) 0 0
\(913\) − 9.16484i − 0.303312i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 19.5124i − 0.644357i
\(918\) 0 0
\(919\) 0.994404 0.0328024 0.0164012 0.999865i \(-0.494779\pi\)
0.0164012 + 0.999865i \(0.494779\pi\)
\(920\) 0 0
\(921\) 26.1455 0.861522
\(922\) 0 0
\(923\) 1.01793i 0.0335054i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.81309i 0.223771i
\(928\) 0 0
\(929\) 18.3747 0.602854 0.301427 0.953489i \(-0.402537\pi\)
0.301427 + 0.953489i \(0.402537\pi\)
\(930\) 0 0
\(931\) −24.3829 −0.799116
\(932\) 0 0
\(933\) 24.7639i 0.810735i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 24.0942i 0.787122i 0.919298 + 0.393561i \(0.128757\pi\)
−0.919298 + 0.393561i \(0.871243\pi\)
\(938\) 0 0
\(939\) 29.2459 0.954404
\(940\) 0 0
\(941\) 51.9244 1.69269 0.846344 0.532637i \(-0.178799\pi\)
0.846344 + 0.532637i \(0.178799\pi\)
\(942\) 0 0
\(943\) 9.98062i 0.325014i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.72643i 0.153588i 0.997047 + 0.0767941i \(0.0244684\pi\)
−0.997047 + 0.0767941i \(0.975532\pi\)
\(948\) 0 0
\(949\) −0.991037 −0.0321704
\(950\) 0 0
\(951\) 4.82330 0.156406
\(952\) 0 0
\(953\) 3.57682i 0.115865i 0.998321 + 0.0579323i \(0.0184508\pi\)
−0.998321 + 0.0579323i \(0.981549\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 12.2963i 0.397483i
\(958\) 0 0
\(959\) 21.5768 0.696752
\(960\) 0 0
\(961\) 15.0498 0.485478
\(962\) 0 0
\(963\) 3.68286i 0.118679i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 33.9646i − 1.09223i −0.837711 0.546114i \(-0.816106\pi\)
0.837711 0.546114i \(-0.183894\pi\)
\(968\) 0 0
\(969\) −42.3636 −1.36092
\(970\) 0 0
\(971\) −56.0561 −1.79893 −0.899463 0.436997i \(-0.856042\pi\)
−0.899463 + 0.436997i \(0.856042\pi\)
\(972\) 0 0
\(973\) 21.9292i 0.703019i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 53.1219i 1.69952i 0.527169 + 0.849761i \(0.323254\pi\)
−0.527169 + 0.849761i \(0.676746\pi\)
\(978\) 0 0
\(979\) −14.8864 −0.475773
\(980\) 0 0
\(981\) 15.3026 0.488574
\(982\) 0 0
\(983\) 28.7833i 0.918045i 0.888425 + 0.459022i \(0.151800\pi\)
−0.888425 + 0.459022i \(0.848200\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 5.22441i 0.166295i
\(988\) 0 0
\(989\) 11.4432 0.363873
\(990\) 0 0
\(991\) 48.1641 1.52998 0.764991 0.644041i \(-0.222743\pi\)
0.764991 + 0.644041i \(0.222743\pi\)
\(992\) 0 0
\(993\) − 18.8385i − 0.597823i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 43.5153i − 1.37814i −0.724693 0.689072i \(-0.758018\pi\)
0.724693 0.689072i \(-0.241982\pi\)
\(998\) 0 0
\(999\) −68.2701 −2.15997
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4600.2.e.q.4049.4 6
5.2 odd 4 920.2.a.i.1.2 3
5.3 odd 4 4600.2.a.v.1.2 3
5.4 even 2 inner 4600.2.e.q.4049.3 6
15.2 even 4 8280.2.a.bl.1.2 3
20.3 even 4 9200.2.a.ci.1.2 3
20.7 even 4 1840.2.a.q.1.2 3
40.27 even 4 7360.2.a.cf.1.2 3
40.37 odd 4 7360.2.a.bw.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.i.1.2 3 5.2 odd 4
1840.2.a.q.1.2 3 20.7 even 4
4600.2.a.v.1.2 3 5.3 odd 4
4600.2.e.q.4049.3 6 5.4 even 2 inner
4600.2.e.q.4049.4 6 1.1 even 1 trivial
7360.2.a.bw.1.2 3 40.37 odd 4
7360.2.a.cf.1.2 3 40.27 even 4
8280.2.a.bl.1.2 3 15.2 even 4
9200.2.a.ci.1.2 3 20.3 even 4