Properties

Label 4600.2.e.o.4049.4
Level $4600$
Weight $2$
Character 4600.4049
Analytic conductor $36.731$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4600,2,Mod(4049,4600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4600.4049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7311849298\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4049.4
Root \(2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 4600.4049
Dual form 4600.2.e.o.4049.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155i q^{3} -3.56155 q^{9} +5.12311 q^{11} -4.56155i q^{13} -3.12311i q^{17} -5.12311 q^{19} +1.00000i q^{23} -1.43845i q^{27} +0.561553 q^{29} -6.56155 q^{31} +13.1231i q^{33} -8.24621i q^{37} +11.6847 q^{39} +10.8078 q^{41} +8.00000i q^{43} +11.6847i q^{47} +7.00000 q^{49} +8.00000 q^{51} -2.00000i q^{53} -13.1231i q^{57} +6.24621 q^{59} +12.2462 q^{61} -5.12311i q^{67} -2.56155 q^{69} +9.43845 q^{71} +2.31534i q^{73} +5.12311 q^{79} -7.00000 q^{81} +2.24621i q^{83} +1.43845i q^{87} +13.3693 q^{89} -16.8078i q^{93} -13.3693i q^{97} -18.2462 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} + 4 q^{11} - 4 q^{19} - 6 q^{29} - 18 q^{31} + 22 q^{39} + 2 q^{41} + 28 q^{49} + 32 q^{51} - 8 q^{59} + 16 q^{61} - 2 q^{69} + 46 q^{71} + 4 q^{79} - 28 q^{81} + 4 q^{89} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times\).

\(n\) \(1151\) \(1201\) \(2301\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.56155i 1.47891i 0.673204 + 0.739457i \(0.264917\pi\)
−0.673204 + 0.739457i \(0.735083\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) −3.56155 −1.18718
\(10\) 0 0
\(11\) 5.12311 1.54467 0.772337 0.635213i \(-0.219088\pi\)
0.772337 + 0.635213i \(0.219088\pi\)
\(12\) 0 0
\(13\) − 4.56155i − 1.26515i −0.774500 0.632574i \(-0.781999\pi\)
0.774500 0.632574i \(-0.218001\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.12311i − 0.757464i −0.925506 0.378732i \(-0.876360\pi\)
0.925506 0.378732i \(-0.123640\pi\)
\(18\) 0 0
\(19\) −5.12311 −1.17532 −0.587661 0.809108i \(-0.699951\pi\)
−0.587661 + 0.809108i \(0.699951\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.43845i − 0.276829i
\(28\) 0 0
\(29\) 0.561553 0.104278 0.0521389 0.998640i \(-0.483396\pi\)
0.0521389 + 0.998640i \(0.483396\pi\)
\(30\) 0 0
\(31\) −6.56155 −1.17849 −0.589245 0.807955i \(-0.700575\pi\)
−0.589245 + 0.807955i \(0.700575\pi\)
\(32\) 0 0
\(33\) 13.1231i 2.28444i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 8.24621i − 1.35567i −0.735215 0.677834i \(-0.762919\pi\)
0.735215 0.677834i \(-0.237081\pi\)
\(38\) 0 0
\(39\) 11.6847 1.87104
\(40\) 0 0
\(41\) 10.8078 1.68789 0.843945 0.536430i \(-0.180228\pi\)
0.843945 + 0.536430i \(0.180228\pi\)
\(42\) 0 0
\(43\) 8.00000i 1.21999i 0.792406 + 0.609994i \(0.208828\pi\)
−0.792406 + 0.609994i \(0.791172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.6847i 1.70438i 0.523230 + 0.852191i \(0.324727\pi\)
−0.523230 + 0.852191i \(0.675273\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 8.00000 1.12022
\(52\) 0 0
\(53\) − 2.00000i − 0.274721i −0.990521 0.137361i \(-0.956138\pi\)
0.990521 0.137361i \(-0.0438619\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 13.1231i − 1.73820i
\(58\) 0 0
\(59\) 6.24621 0.813187 0.406594 0.913609i \(-0.366716\pi\)
0.406594 + 0.913609i \(0.366716\pi\)
\(60\) 0 0
\(61\) 12.2462 1.56797 0.783983 0.620782i \(-0.213185\pi\)
0.783983 + 0.620782i \(0.213185\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 5.12311i − 0.625887i −0.949772 0.312943i \(-0.898685\pi\)
0.949772 0.312943i \(-0.101315\pi\)
\(68\) 0 0
\(69\) −2.56155 −0.308375
\(70\) 0 0
\(71\) 9.43845 1.12014 0.560069 0.828446i \(-0.310775\pi\)
0.560069 + 0.828446i \(0.310775\pi\)
\(72\) 0 0
\(73\) 2.31534i 0.270990i 0.990778 + 0.135495i \(0.0432625\pi\)
−0.990778 + 0.135495i \(0.956737\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.12311 0.576394 0.288197 0.957571i \(-0.406944\pi\)
0.288197 + 0.957571i \(0.406944\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 2.24621i 0.246554i 0.992372 + 0.123277i \(0.0393403\pi\)
−0.992372 + 0.123277i \(0.960660\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.43845i 0.154218i
\(88\) 0 0
\(89\) 13.3693 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 16.8078i − 1.74288i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 13.3693i − 1.35745i −0.734393 0.678724i \(-0.762533\pi\)
0.734393 0.678724i \(-0.237467\pi\)
\(98\) 0 0
\(99\) −18.2462 −1.83381
\(100\) 0 0
\(101\) −4.24621 −0.422514 −0.211257 0.977431i \(-0.567756\pi\)
−0.211257 + 0.977431i \(0.567756\pi\)
\(102\) 0 0
\(103\) − 2.24621i − 0.221326i −0.993858 0.110663i \(-0.964703\pi\)
0.993858 0.110663i \(-0.0352974\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.87689i 0.278120i 0.990284 + 0.139060i \(0.0444081\pi\)
−0.990284 + 0.139060i \(0.955592\pi\)
\(108\) 0 0
\(109\) −4.87689 −0.467122 −0.233561 0.972342i \(-0.575038\pi\)
−0.233561 + 0.972342i \(0.575038\pi\)
\(110\) 0 0
\(111\) 21.1231 2.00492
\(112\) 0 0
\(113\) 11.1231i 1.04637i 0.852218 + 0.523187i \(0.175257\pi\)
−0.852218 + 0.523187i \(0.824743\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 16.2462i 1.50196i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 15.2462 1.38602
\(122\) 0 0
\(123\) 27.6847i 2.49624i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 11.6847i − 1.03685i −0.855124 0.518423i \(-0.826519\pi\)
0.855124 0.518423i \(-0.173481\pi\)
\(128\) 0 0
\(129\) −20.4924 −1.80426
\(130\) 0 0
\(131\) 15.6847 1.37037 0.685187 0.728367i \(-0.259720\pi\)
0.685187 + 0.728367i \(0.259720\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.1231i 1.29205i 0.763315 + 0.646027i \(0.223571\pi\)
−0.763315 + 0.646027i \(0.776429\pi\)
\(138\) 0 0
\(139\) 15.6847 1.33036 0.665178 0.746685i \(-0.268356\pi\)
0.665178 + 0.746685i \(0.268356\pi\)
\(140\) 0 0
\(141\) −29.9309 −2.52063
\(142\) 0 0
\(143\) − 23.3693i − 1.95424i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 17.9309i 1.47891i
\(148\) 0 0
\(149\) 3.75379 0.307522 0.153761 0.988108i \(-0.450861\pi\)
0.153761 + 0.988108i \(0.450861\pi\)
\(150\) 0 0
\(151\) −14.5616 −1.18500 −0.592501 0.805570i \(-0.701859\pi\)
−0.592501 + 0.805570i \(0.701859\pi\)
\(152\) 0 0
\(153\) 11.1231i 0.899250i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.8769i 1.02769i 0.857884 + 0.513844i \(0.171779\pi\)
−0.857884 + 0.513844i \(0.828221\pi\)
\(158\) 0 0
\(159\) 5.12311 0.406289
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.93087i 0.777846i 0.921270 + 0.388923i \(0.127153\pi\)
−0.921270 + 0.388923i \(0.872847\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 16.0000i − 1.23812i −0.785345 0.619059i \(-0.787514\pi\)
0.785345 0.619059i \(-0.212486\pi\)
\(168\) 0 0
\(169\) −7.80776 −0.600597
\(170\) 0 0
\(171\) 18.2462 1.39532
\(172\) 0 0
\(173\) 10.0000i 0.760286i 0.924928 + 0.380143i \(0.124125\pi\)
−0.924928 + 0.380143i \(0.875875\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 16.0000i 1.20263i
\(178\) 0 0
\(179\) 15.6847 1.17233 0.586163 0.810193i \(-0.300638\pi\)
0.586163 + 0.810193i \(0.300638\pi\)
\(180\) 0 0
\(181\) 20.2462 1.50489 0.752445 0.658656i \(-0.228875\pi\)
0.752445 + 0.658656i \(0.228875\pi\)
\(182\) 0 0
\(183\) 31.3693i 2.31889i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 16.0000i − 1.17004i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.630683 0.0456346 0.0228173 0.999740i \(-0.492736\pi\)
0.0228173 + 0.999740i \(0.492736\pi\)
\(192\) 0 0
\(193\) 4.56155i 0.328348i 0.986431 + 0.164174i \(0.0524958\pi\)
−0.986431 + 0.164174i \(0.947504\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.9309i 0.850039i 0.905184 + 0.425020i \(0.139733\pi\)
−0.905184 + 0.425020i \(0.860267\pi\)
\(198\) 0 0
\(199\) −2.87689 −0.203938 −0.101969 0.994788i \(-0.532514\pi\)
−0.101969 + 0.994788i \(0.532514\pi\)
\(200\) 0 0
\(201\) 13.1231 0.925633
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 3.56155i − 0.247545i
\(208\) 0 0
\(209\) −26.2462 −1.81549
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 24.1771i 1.65659i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −5.93087 −0.400771
\(220\) 0 0
\(221\) −14.2462 −0.958304
\(222\) 0 0
\(223\) − 4.49242i − 0.300835i −0.988623 0.150417i \(-0.951938\pi\)
0.988623 0.150417i \(-0.0480618\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.2462i 0.680065i 0.940414 + 0.340032i \(0.110438\pi\)
−0.940414 + 0.340032i \(0.889562\pi\)
\(228\) 0 0
\(229\) −23.1231 −1.52802 −0.764009 0.645206i \(-0.776772\pi\)
−0.764009 + 0.645206i \(0.776772\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 21.0540i − 1.37929i −0.724147 0.689646i \(-0.757766\pi\)
0.724147 0.689646i \(-0.242234\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 13.1231i 0.852437i
\(238\) 0 0
\(239\) 11.0540 0.715022 0.357511 0.933909i \(-0.383625\pi\)
0.357511 + 0.933909i \(0.383625\pi\)
\(240\) 0 0
\(241\) −26.4924 −1.70653 −0.853263 0.521480i \(-0.825380\pi\)
−0.853263 + 0.521480i \(0.825380\pi\)
\(242\) 0 0
\(243\) − 22.2462i − 1.42710i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 23.3693i 1.48695i
\(248\) 0 0
\(249\) −5.75379 −0.364632
\(250\) 0 0
\(251\) 10.2462 0.646735 0.323368 0.946273i \(-0.395185\pi\)
0.323368 + 0.946273i \(0.395185\pi\)
\(252\) 0 0
\(253\) 5.12311i 0.322087i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 17.6847i − 1.10314i −0.834129 0.551569i \(-0.814029\pi\)
0.834129 0.551569i \(-0.185971\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) 10.8769i 0.670698i 0.942094 + 0.335349i \(0.108854\pi\)
−0.942094 + 0.335349i \(0.891146\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 34.2462i 2.09583i
\(268\) 0 0
\(269\) −25.6847 −1.56602 −0.783011 0.622008i \(-0.786317\pi\)
−0.783011 + 0.622008i \(0.786317\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 2.80776i − 0.168702i −0.996436 0.0843511i \(-0.973118\pi\)
0.996436 0.0843511i \(-0.0268817\pi\)
\(278\) 0 0
\(279\) 23.3693 1.39908
\(280\) 0 0
\(281\) −3.12311 −0.186309 −0.0931544 0.995652i \(-0.529695\pi\)
−0.0931544 + 0.995652i \(0.529695\pi\)
\(282\) 0 0
\(283\) 5.12311i 0.304537i 0.988339 + 0.152269i \(0.0486578\pi\)
−0.988339 + 0.152269i \(0.951342\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.24621 0.426248
\(290\) 0 0
\(291\) 34.2462 2.00755
\(292\) 0 0
\(293\) − 9.36932i − 0.547361i −0.961821 0.273681i \(-0.911759\pi\)
0.961821 0.273681i \(-0.0882411\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 7.36932i − 0.427611i
\(298\) 0 0
\(299\) 4.56155 0.263801
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 10.8769i − 0.624861i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.75379i − 0.100094i −0.998747 0.0500470i \(-0.984063\pi\)
0.998747 0.0500470i \(-0.0159371\pi\)
\(308\) 0 0
\(309\) 5.75379 0.327322
\(310\) 0 0
\(311\) 1.43845 0.0815669 0.0407834 0.999168i \(-0.487015\pi\)
0.0407834 + 0.999168i \(0.487015\pi\)
\(312\) 0 0
\(313\) − 9.36932i − 0.529585i −0.964305 0.264793i \(-0.914697\pi\)
0.964305 0.264793i \(-0.0853035\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 20.2462i − 1.13714i −0.822635 0.568570i \(-0.807497\pi\)
0.822635 0.568570i \(-0.192503\pi\)
\(318\) 0 0
\(319\) 2.87689 0.161075
\(320\) 0 0
\(321\) −7.36932 −0.411315
\(322\) 0 0
\(323\) 16.0000i 0.890264i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 12.4924i − 0.690833i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −30.4233 −1.67222 −0.836108 0.548565i \(-0.815174\pi\)
−0.836108 + 0.548565i \(0.815174\pi\)
\(332\) 0 0
\(333\) 29.3693i 1.60943i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 19.6155i 1.06853i 0.845318 + 0.534263i \(0.179411\pi\)
−0.845318 + 0.534263i \(0.820589\pi\)
\(338\) 0 0
\(339\) −28.4924 −1.54750
\(340\) 0 0
\(341\) −33.6155 −1.82038
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.4924i 0.885360i 0.896680 + 0.442680i \(0.145972\pi\)
−0.896680 + 0.442680i \(0.854028\pi\)
\(348\) 0 0
\(349\) 22.3153 1.19451 0.597256 0.802050i \(-0.296257\pi\)
0.597256 + 0.802050i \(0.296257\pi\)
\(350\) 0 0
\(351\) −6.56155 −0.350230
\(352\) 0 0
\(353\) − 11.4384i − 0.608807i −0.952543 0.304404i \(-0.901543\pi\)
0.952543 0.304404i \(-0.0984571\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −17.6155 −0.929712 −0.464856 0.885386i \(-0.653894\pi\)
−0.464856 + 0.885386i \(0.653894\pi\)
\(360\) 0 0
\(361\) 7.24621 0.381380
\(362\) 0 0
\(363\) 39.0540i 2.04980i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.24621i 0.117251i 0.998280 + 0.0586256i \(0.0186718\pi\)
−0.998280 + 0.0586256i \(0.981328\pi\)
\(368\) 0 0
\(369\) −38.4924 −2.00384
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 22.4924i − 1.16461i −0.812969 0.582307i \(-0.802150\pi\)
0.812969 0.582307i \(-0.197850\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2.56155i − 0.131927i
\(378\) 0 0
\(379\) −20.4924 −1.05263 −0.526313 0.850291i \(-0.676426\pi\)
−0.526313 + 0.850291i \(0.676426\pi\)
\(380\) 0 0
\(381\) 29.9309 1.53340
\(382\) 0 0
\(383\) − 26.2462i − 1.34112i −0.741856 0.670559i \(-0.766054\pi\)
0.741856 0.670559i \(-0.233946\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 28.4924i − 1.44835i
\(388\) 0 0
\(389\) −1.36932 −0.0694271 −0.0347136 0.999397i \(-0.511052\pi\)
−0.0347136 + 0.999397i \(0.511052\pi\)
\(390\) 0 0
\(391\) 3.12311 0.157942
\(392\) 0 0
\(393\) 40.1771i 2.02667i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 20.5616i 1.03195i 0.856602 + 0.515977i \(0.172571\pi\)
−0.856602 + 0.515977i \(0.827429\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.7538 −0.586956 −0.293478 0.955966i \(-0.594813\pi\)
−0.293478 + 0.955966i \(0.594813\pi\)
\(402\) 0 0
\(403\) 29.9309i 1.49096i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 42.2462i − 2.09407i
\(408\) 0 0
\(409\) 27.3002 1.34991 0.674954 0.737860i \(-0.264164\pi\)
0.674954 + 0.737860i \(0.264164\pi\)
\(410\) 0 0
\(411\) −38.7386 −1.91084
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 40.1771i 1.96748i
\(418\) 0 0
\(419\) 12.4924 0.610295 0.305147 0.952305i \(-0.401294\pi\)
0.305147 + 0.952305i \(0.401294\pi\)
\(420\) 0 0
\(421\) −27.1231 −1.32190 −0.660950 0.750430i \(-0.729846\pi\)
−0.660950 + 0.750430i \(0.729846\pi\)
\(422\) 0 0
\(423\) − 41.6155i − 2.02342i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 59.8617 2.89015
\(430\) 0 0
\(431\) −28.4924 −1.37243 −0.686216 0.727398i \(-0.740729\pi\)
−0.686216 + 0.727398i \(0.740729\pi\)
\(432\) 0 0
\(433\) − 24.7386i − 1.18886i −0.804146 0.594431i \(-0.797377\pi\)
0.804146 0.594431i \(-0.202623\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.12311i − 0.245071i
\(438\) 0 0
\(439\) −11.0540 −0.527577 −0.263789 0.964580i \(-0.584972\pi\)
−0.263789 + 0.964580i \(0.584972\pi\)
\(440\) 0 0
\(441\) −24.9309 −1.18718
\(442\) 0 0
\(443\) 6.06913i 0.288353i 0.989552 + 0.144177i \(0.0460533\pi\)
−0.989552 + 0.144177i \(0.953947\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9.61553i 0.454799i
\(448\) 0 0
\(449\) 8.24621 0.389163 0.194581 0.980886i \(-0.437665\pi\)
0.194581 + 0.980886i \(0.437665\pi\)
\(450\) 0 0
\(451\) 55.3693 2.60724
\(452\) 0 0
\(453\) − 37.3002i − 1.75252i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 5.36932i − 0.251166i −0.992083 0.125583i \(-0.959920\pi\)
0.992083 0.125583i \(-0.0400801\pi\)
\(458\) 0 0
\(459\) −4.49242 −0.209688
\(460\) 0 0
\(461\) −10.8078 −0.503368 −0.251684 0.967809i \(-0.580984\pi\)
−0.251684 + 0.967809i \(0.580984\pi\)
\(462\) 0 0
\(463\) − 12.4924i − 0.580572i −0.956940 0.290286i \(-0.906250\pi\)
0.956940 0.290286i \(-0.0937505\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 15.3693i − 0.711207i −0.934637 0.355604i \(-0.884275\pi\)
0.934637 0.355604i \(-0.115725\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −32.9848 −1.51986
\(472\) 0 0
\(473\) 40.9848i 1.88449i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.12311i 0.326145i
\(478\) 0 0
\(479\) −10.2462 −0.468161 −0.234081 0.972217i \(-0.575208\pi\)
−0.234081 + 0.972217i \(0.575208\pi\)
\(480\) 0 0
\(481\) −37.6155 −1.71512
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 12.3153i 0.558061i 0.960282 + 0.279031i \(0.0900131\pi\)
−0.960282 + 0.279031i \(0.909987\pi\)
\(488\) 0 0
\(489\) −25.4384 −1.15037
\(490\) 0 0
\(491\) 12.8078 0.578006 0.289003 0.957328i \(-0.406676\pi\)
0.289003 + 0.957328i \(0.406676\pi\)
\(492\) 0 0
\(493\) − 1.75379i − 0.0789867i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 23.0540 1.03204 0.516019 0.856577i \(-0.327413\pi\)
0.516019 + 0.856577i \(0.327413\pi\)
\(500\) 0 0
\(501\) 40.9848 1.83107
\(502\) 0 0
\(503\) − 7.36932i − 0.328582i −0.986412 0.164291i \(-0.947466\pi\)
0.986412 0.164291i \(-0.0525335\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 20.0000i − 0.888231i
\(508\) 0 0
\(509\) 15.3002 0.678169 0.339084 0.940756i \(-0.389883\pi\)
0.339084 + 0.940756i \(0.389883\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.36932i 0.325363i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 59.8617i 2.63272i
\(518\) 0 0
\(519\) −25.6155 −1.12440
\(520\) 0 0
\(521\) 19.6155 0.859372 0.429686 0.902978i \(-0.358624\pi\)
0.429686 + 0.902978i \(0.358624\pi\)
\(522\) 0 0
\(523\) − 5.75379i − 0.251596i −0.992056 0.125798i \(-0.959851\pi\)
0.992056 0.125798i \(-0.0401491\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.4924i 0.892664i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) −22.2462 −0.965403
\(532\) 0 0
\(533\) − 49.3002i − 2.13543i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 40.1771i 1.73377i
\(538\) 0 0
\(539\) 35.8617 1.54467
\(540\) 0 0
\(541\) 35.9309 1.54479 0.772394 0.635143i \(-0.219059\pi\)
0.772394 + 0.635143i \(0.219059\pi\)
\(542\) 0 0
\(543\) 51.8617i 2.22560i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 43.5464i 1.86191i 0.365135 + 0.930955i \(0.381023\pi\)
−0.365135 + 0.930955i \(0.618977\pi\)
\(548\) 0 0
\(549\) −43.6155 −1.86147
\(550\) 0 0
\(551\) −2.87689 −0.122560
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 0.876894i − 0.0371552i −0.999827 0.0185776i \(-0.994086\pi\)
0.999827 0.0185776i \(-0.00591378\pi\)
\(558\) 0 0
\(559\) 36.4924 1.54347
\(560\) 0 0
\(561\) 40.9848 1.73038
\(562\) 0 0
\(563\) − 5.75379i − 0.242493i −0.992622 0.121247i \(-0.961311\pi\)
0.992622 0.121247i \(-0.0386892\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.24621 0.345699 0.172850 0.984948i \(-0.444703\pi\)
0.172850 + 0.984948i \(0.444703\pi\)
\(570\) 0 0
\(571\) −11.5076 −0.481577 −0.240789 0.970578i \(-0.577406\pi\)
−0.240789 + 0.970578i \(0.577406\pi\)
\(572\) 0 0
\(573\) 1.61553i 0.0674897i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15.9309i 0.663211i 0.943418 + 0.331605i \(0.107590\pi\)
−0.943418 + 0.331605i \(0.892410\pi\)
\(578\) 0 0
\(579\) −11.6847 −0.485598
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 10.2462i − 0.424355i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 23.0540i − 0.951539i −0.879570 0.475770i \(-0.842170\pi\)
0.879570 0.475770i \(-0.157830\pi\)
\(588\) 0 0
\(589\) 33.6155 1.38510
\(590\) 0 0
\(591\) −30.5616 −1.25713
\(592\) 0 0
\(593\) 44.7386i 1.83720i 0.395194 + 0.918598i \(0.370677\pi\)
−0.395194 + 0.918598i \(0.629323\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 7.36932i − 0.301606i
\(598\) 0 0
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) −38.8078 −1.58300 −0.791501 0.611168i \(-0.790700\pi\)
−0.791501 + 0.611168i \(0.790700\pi\)
\(602\) 0 0
\(603\) 18.2462i 0.743043i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 14.7386i − 0.598223i −0.954218 0.299111i \(-0.903310\pi\)
0.954218 0.299111i \(-0.0966902\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 53.3002 2.15629
\(612\) 0 0
\(613\) 28.1080i 1.13527i 0.823281 + 0.567635i \(0.192141\pi\)
−0.823281 + 0.567635i \(0.807859\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.9848i 1.40844i 0.709983 + 0.704218i \(0.248702\pi\)
−0.709983 + 0.704218i \(0.751298\pi\)
\(618\) 0 0
\(619\) −28.4924 −1.14521 −0.572604 0.819832i \(-0.694067\pi\)
−0.572604 + 0.819832i \(0.694067\pi\)
\(620\) 0 0
\(621\) 1.43845 0.0577229
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 67.2311i − 2.68495i
\(628\) 0 0
\(629\) −25.7538 −1.02687
\(630\) 0 0
\(631\) −6.73863 −0.268261 −0.134130 0.990964i \(-0.542824\pi\)
−0.134130 + 0.990964i \(0.542824\pi\)
\(632\) 0 0
\(633\) − 10.2462i − 0.407250i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 31.9309i − 1.26515i
\(638\) 0 0
\(639\) −33.6155 −1.32981
\(640\) 0 0
\(641\) −13.3693 −0.528056 −0.264028 0.964515i \(-0.585051\pi\)
−0.264028 + 0.964515i \(0.585051\pi\)
\(642\) 0 0
\(643\) 23.3693i 0.921596i 0.887505 + 0.460798i \(0.152437\pi\)
−0.887505 + 0.460798i \(0.847563\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 29.3002i − 1.15191i −0.817482 0.575955i \(-0.804630\pi\)
0.817482 0.575955i \(-0.195370\pi\)
\(648\) 0 0
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 25.0540i − 0.980438i −0.871599 0.490219i \(-0.836917\pi\)
0.871599 0.490219i \(-0.163083\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 8.24621i − 0.321715i
\(658\) 0 0
\(659\) −2.24621 −0.0875000 −0.0437500 0.999043i \(-0.513930\pi\)
−0.0437500 + 0.999043i \(0.513930\pi\)
\(660\) 0 0
\(661\) −0.246211 −0.00957651 −0.00478825 0.999989i \(-0.501524\pi\)
−0.00478825 + 0.999989i \(0.501524\pi\)
\(662\) 0 0
\(663\) − 36.4924i − 1.41725i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.561553i 0.0217434i
\(668\) 0 0
\(669\) 11.5076 0.444909
\(670\) 0 0
\(671\) 62.7386 2.42200
\(672\) 0 0
\(673\) 2.94602i 0.113561i 0.998387 + 0.0567805i \(0.0180835\pi\)
−0.998387 + 0.0567805i \(0.981916\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 38.9848i − 1.49831i −0.662395 0.749155i \(-0.730460\pi\)
0.662395 0.749155i \(-0.269540\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −26.2462 −1.00576
\(682\) 0 0
\(683\) − 16.3153i − 0.624289i −0.950035 0.312145i \(-0.898953\pi\)
0.950035 0.312145i \(-0.101047\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 59.2311i − 2.25981i
\(688\) 0 0
\(689\) −9.12311 −0.347563
\(690\) 0 0
\(691\) 20.9848 0.798301 0.399151 0.916885i \(-0.369305\pi\)
0.399151 + 0.916885i \(0.369305\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 33.7538i − 1.27852i
\(698\) 0 0
\(699\) 53.9309 2.03985
\(700\) 0 0
\(701\) 29.8617 1.12786 0.563931 0.825822i \(-0.309288\pi\)
0.563931 + 0.825822i \(0.309288\pi\)
\(702\) 0 0
\(703\) 42.2462i 1.59335i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 37.3693 1.40343 0.701717 0.712456i \(-0.252417\pi\)
0.701717 + 0.712456i \(0.252417\pi\)
\(710\) 0 0
\(711\) −18.2462 −0.684286
\(712\) 0 0
\(713\) − 6.56155i − 0.245732i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 28.3153i 1.05746i
\(718\) 0 0
\(719\) −4.49242 −0.167539 −0.0837695 0.996485i \(-0.526696\pi\)
−0.0837695 + 0.996485i \(0.526696\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 67.8617i − 2.52381i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 39.3693i − 1.46013i −0.683379 0.730064i \(-0.739490\pi\)
0.683379 0.730064i \(-0.260510\pi\)
\(728\) 0 0
\(729\) 35.9848 1.33277
\(730\) 0 0
\(731\) 24.9848 0.924098
\(732\) 0 0
\(733\) − 49.3693i − 1.82350i −0.410749 0.911749i \(-0.634733\pi\)
0.410749 0.911749i \(-0.365267\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 26.2462i − 0.966792i
\(738\) 0 0
\(739\) −0.315342 −0.0116000 −0.00580001 0.999983i \(-0.501846\pi\)
−0.00580001 + 0.999983i \(0.501846\pi\)
\(740\) 0 0
\(741\) −59.8617 −2.19908
\(742\) 0 0
\(743\) − 34.2462i − 1.25637i −0.778063 0.628186i \(-0.783798\pi\)
0.778063 0.628186i \(-0.216202\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 8.00000i − 0.292705i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 40.9848 1.49556 0.747779 0.663948i \(-0.231120\pi\)
0.747779 + 0.663948i \(0.231120\pi\)
\(752\) 0 0
\(753\) 26.2462i 0.956465i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.50758i − 0.0547938i −0.999625 0.0273969i \(-0.991278\pi\)
0.999625 0.0273969i \(-0.00872180\pi\)
\(758\) 0 0
\(759\) −13.1231 −0.476339
\(760\) 0 0
\(761\) −18.3153 −0.663931 −0.331965 0.943292i \(-0.607712\pi\)
−0.331965 + 0.943292i \(0.607712\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 28.4924i − 1.02880i
\(768\) 0 0
\(769\) 6.00000 0.216366 0.108183 0.994131i \(-0.465497\pi\)
0.108183 + 0.994131i \(0.465497\pi\)
\(770\) 0 0
\(771\) 45.3002 1.63145
\(772\) 0 0
\(773\) − 2.63068i − 0.0946191i −0.998880 0.0473095i \(-0.984935\pi\)
0.998880 0.0473095i \(-0.0150647\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −55.3693 −1.98381
\(780\) 0 0
\(781\) 48.3542 1.73025
\(782\) 0 0
\(783\) − 0.807764i − 0.0288671i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 26.2462i − 0.935576i −0.883841 0.467788i \(-0.845051\pi\)
0.883841 0.467788i \(-0.154949\pi\)
\(788\) 0 0
\(789\) −27.8617 −0.991904
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) − 55.8617i − 1.98371i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.2462i 0.433783i 0.976196 + 0.216892i \(0.0695918\pi\)
−0.976196 + 0.216892i \(0.930408\pi\)
\(798\) 0 0
\(799\) 36.4924 1.29101
\(800\) 0 0
\(801\) −47.6155 −1.68241
\(802\) 0 0
\(803\) 11.8617i 0.418592i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 65.7926i − 2.31601i
\(808\) 0 0
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) 33.9309 1.19147 0.595737 0.803180i \(-0.296860\pi\)
0.595737 + 0.803180i \(0.296860\pi\)
\(812\) 0 0
\(813\) 61.4773i 2.15610i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 40.9848i − 1.43388i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.7386 −0.863384 −0.431692 0.902021i \(-0.642083\pi\)
−0.431692 + 0.902021i \(0.642083\pi\)
\(822\) 0 0
\(823\) − 49.4384i − 1.72332i −0.507489 0.861658i \(-0.669426\pi\)
0.507489 0.861658i \(-0.330574\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.49242i 0.156217i 0.996945 + 0.0781084i \(0.0248880\pi\)
−0.996945 + 0.0781084i \(0.975112\pi\)
\(828\) 0 0
\(829\) 20.2462 0.703180 0.351590 0.936154i \(-0.385641\pi\)
0.351590 + 0.936154i \(0.385641\pi\)
\(830\) 0 0
\(831\) 7.19224 0.249496
\(832\) 0 0
\(833\) − 21.8617i − 0.757464i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 9.43845i 0.326240i
\(838\) 0 0
\(839\) −50.2462 −1.73469 −0.867346 0.497706i \(-0.834176\pi\)
−0.867346 + 0.497706i \(0.834176\pi\)
\(840\) 0 0
\(841\) −28.6847 −0.989126
\(842\) 0 0
\(843\) − 8.00000i − 0.275535i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −13.1231 −0.450384
\(850\) 0 0
\(851\) 8.24621 0.282676
\(852\) 0 0
\(853\) 34.9848i 1.19786i 0.800802 + 0.598929i \(0.204407\pi\)
−0.800802 + 0.598929i \(0.795593\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.5616i 0.565732i 0.959159 + 0.282866i \(0.0912852\pi\)
−0.959159 + 0.282866i \(0.908715\pi\)
\(858\) 0 0
\(859\) −16.9460 −0.578191 −0.289095 0.957300i \(-0.593354\pi\)
−0.289095 + 0.957300i \(0.593354\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.17708i 0.278351i 0.990268 + 0.139176i \(0.0444452\pi\)
−0.990268 + 0.139176i \(0.955555\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 18.5616i 0.630383i
\(868\) 0 0
\(869\) 26.2462 0.890342
\(870\) 0 0
\(871\) −23.3693 −0.791839
\(872\) 0 0
\(873\) 47.6155i 1.61154i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30.9848i 1.04628i 0.852246 + 0.523142i \(0.175240\pi\)
−0.852246 + 0.523142i \(0.824760\pi\)
\(878\) 0 0
\(879\) 24.0000 0.809500
\(880\) 0 0
\(881\) 4.87689 0.164307 0.0821534 0.996620i \(-0.473820\pi\)
0.0821534 + 0.996620i \(0.473820\pi\)
\(882\) 0 0
\(883\) − 36.9848i − 1.24464i −0.782763 0.622320i \(-0.786190\pi\)
0.782763 0.622320i \(-0.213810\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19.6847i 0.660946i 0.943815 + 0.330473i \(0.107208\pi\)
−0.943815 + 0.330473i \(0.892792\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −35.8617 −1.20141
\(892\) 0 0
\(893\) − 59.8617i − 2.00320i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 11.6847i 0.390139i
\(898\) 0 0
\(899\) −3.68466 −0.122890
\(900\) 0 0
\(901\) −6.24621 −0.208091
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 42.8769i 1.42370i 0.702330 + 0.711852i \(0.252143\pi\)
−0.702330 + 0.711852i \(0.747857\pi\)
\(908\) 0 0
\(909\) 15.1231 0.501602
\(910\) 0 0
\(911\) −37.1231 −1.22994 −0.614972 0.788549i \(-0.710833\pi\)
−0.614972 + 0.788549i \(0.710833\pi\)
\(912\) 0 0
\(913\) 11.5076i 0.380845i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −37.7538 −1.24538 −0.622691 0.782468i \(-0.713961\pi\)
−0.622691 + 0.782468i \(0.713961\pi\)
\(920\) 0 0
\(921\) 4.49242 0.148030
\(922\) 0 0
\(923\) − 43.0540i − 1.41714i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 8.00000i 0.262754i
\(928\) 0 0
\(929\) −34.8078 −1.14201 −0.571003 0.820948i \(-0.693445\pi\)
−0.571003 + 0.820948i \(0.693445\pi\)
\(930\) 0 0
\(931\) −35.8617 −1.17532
\(932\) 0 0
\(933\) 3.68466i 0.120630i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.7538i 0.514654i 0.966324 + 0.257327i \(0.0828417\pi\)
−0.966324 + 0.257327i \(0.917158\pi\)
\(938\) 0 0
\(939\) 24.0000 0.783210
\(940\) 0 0
\(941\) 39.1231 1.27538 0.637688 0.770294i \(-0.279891\pi\)
0.637688 + 0.770294i \(0.279891\pi\)
\(942\) 0 0
\(943\) 10.8078i 0.351949i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 2.56155i − 0.0832393i −0.999134 0.0416196i \(-0.986748\pi\)
0.999134 0.0416196i \(-0.0132518\pi\)
\(948\) 0 0
\(949\) 10.5616 0.342843
\(950\) 0 0
\(951\) 51.8617 1.68173
\(952\) 0 0
\(953\) − 44.2462i − 1.43328i −0.697446 0.716638i \(-0.745680\pi\)
0.697446 0.716638i \(-0.254320\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 7.36932i 0.238216i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.0540 0.388838
\(962\) 0 0
\(963\) − 10.2462i − 0.330180i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 35.0540i 1.12726i 0.826027 + 0.563630i \(0.190596\pi\)
−0.826027 + 0.563630i \(0.809404\pi\)
\(968\) 0 0
\(969\) −40.9848 −1.31662
\(970\) 0 0
\(971\) 31.3693 1.00669 0.503345 0.864086i \(-0.332103\pi\)
0.503345 + 0.864086i \(0.332103\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 57.2311i − 1.83098i −0.402337 0.915492i \(-0.631802\pi\)
0.402337 0.915492i \(-0.368198\pi\)
\(978\) 0 0
\(979\) 68.4924 2.18903
\(980\) 0 0
\(981\) 17.3693 0.554560
\(982\) 0 0
\(983\) − 22.1080i − 0.705134i −0.935787 0.352567i \(-0.885309\pi\)
0.935787 0.352567i \(-0.114691\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) 8.98485 0.285413 0.142707 0.989765i \(-0.454419\pi\)
0.142707 + 0.989765i \(0.454419\pi\)
\(992\) 0 0
\(993\) − 77.9309i − 2.47306i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 14.0000i 0.443384i 0.975117 + 0.221692i \(0.0711580\pi\)
−0.975117 + 0.221692i \(0.928842\pi\)
\(998\) 0 0
\(999\) −11.8617 −0.375289
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4600.2.e.o.4049.4 4
5.2 odd 4 4600.2.a.s.1.2 2
5.3 odd 4 184.2.a.e.1.1 2
5.4 even 2 inner 4600.2.e.o.4049.1 4
15.8 even 4 1656.2.a.j.1.1 2
20.3 even 4 368.2.a.i.1.2 2
20.7 even 4 9200.2.a.br.1.1 2
35.13 even 4 9016.2.a.w.1.2 2
40.3 even 4 1472.2.a.p.1.1 2
40.13 odd 4 1472.2.a.u.1.2 2
60.23 odd 4 3312.2.a.t.1.2 2
115.68 even 4 4232.2.a.o.1.1 2
460.183 odd 4 8464.2.a.bd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.2.a.e.1.1 2 5.3 odd 4
368.2.a.i.1.2 2 20.3 even 4
1472.2.a.p.1.1 2 40.3 even 4
1472.2.a.u.1.2 2 40.13 odd 4
1656.2.a.j.1.1 2 15.8 even 4
3312.2.a.t.1.2 2 60.23 odd 4
4232.2.a.o.1.1 2 115.68 even 4
4600.2.a.s.1.2 2 5.2 odd 4
4600.2.e.o.4049.1 4 5.4 even 2 inner
4600.2.e.o.4049.4 4 1.1 even 1 trivial
8464.2.a.bd.1.2 2 460.183 odd 4
9016.2.a.w.1.2 2 35.13 even 4
9200.2.a.br.1.1 2 20.7 even 4