Properties

Label 4600.2.e.o
Level $4600$
Weight $2$
Character orbit 4600.e
Analytic conductor $36.731$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(36.7311849298\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Defining polynomial: \(x^{4} + 9 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{3} + ( -2 + \beta_{3} ) q^{9} +O(q^{10})\) \( q + \beta_{1} q^{3} + ( -2 + \beta_{3} ) q^{9} + ( 2 - 2 \beta_{3} ) q^{11} + ( -\beta_{1} + 2 \beta_{2} ) q^{13} + ( -2 \beta_{1} - 2 \beta_{2} ) q^{17} + ( -2 + 2 \beta_{3} ) q^{19} -\beta_{2} q^{23} + ( \beta_{1} + 4 \beta_{2} ) q^{27} + ( -1 - \beta_{3} ) q^{29} + ( -5 + \beta_{3} ) q^{31} + ( 2 \beta_{1} - 8 \beta_{2} ) q^{33} + ( -4 \beta_{1} - 2 \beta_{2} ) q^{37} + ( 7 - 3 \beta_{3} ) q^{39} + ( 3 - 5 \beta_{3} ) q^{41} -8 \beta_{2} q^{43} + ( 3 \beta_{1} - 4 \beta_{2} ) q^{47} + 7 q^{49} + 8 q^{51} + 2 \beta_{2} q^{53} + ( -2 \beta_{1} + 8 \beta_{2} ) q^{57} -4 \beta_{3} q^{59} + ( 6 - 4 \beta_{3} ) q^{61} -2 \beta_{1} q^{67} + ( -1 + \beta_{3} ) q^{69} + ( 11 + \beta_{3} ) q^{71} + ( -3 \beta_{1} - 10 \beta_{2} ) q^{73} + ( 2 - 2 \beta_{3} ) q^{79} -7 q^{81} + ( 4 \beta_{1} + 8 \beta_{2} ) q^{83} + ( -\beta_{1} - 4 \beta_{2} ) q^{87} + ( 4 - 6 \beta_{3} ) q^{89} + ( -5 \beta_{1} + 4 \beta_{2} ) q^{93} + ( -6 \beta_{1} - 2 \beta_{2} ) q^{97} + ( -12 + 4 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 6q^{9} + O(q^{10}) \) \( 4q - 6q^{9} + 4q^{11} - 4q^{19} - 6q^{29} - 18q^{31} + 22q^{39} + 2q^{41} + 28q^{49} + 32q^{51} - 8q^{59} + 16q^{61} - 2q^{69} + 46q^{71} + 4q^{79} - 28q^{81} + 4q^{89} - 40q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 9 x^{2} + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} + 5 \nu \)\()/4\)
\(\beta_{3}\)\(=\)\( \nu^{2} + 5 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} - 5\)
\(\nu^{3}\)\(=\)\(4 \beta_{2} - 5 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times\).

\(n\) \(1151\) \(1201\) \(2301\) \(2577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4049.1
2.56155i
1.56155i
1.56155i
2.56155i
0 2.56155i 0 0 0 0 0 −3.56155 0
4049.2 0 1.56155i 0 0 0 0 0 0.561553 0
4049.3 0 1.56155i 0 0 0 0 0 0.561553 0
4049.4 0 2.56155i 0 0 0 0 0 −3.56155 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4600.2.e.o 4
5.b even 2 1 inner 4600.2.e.o 4
5.c odd 4 1 184.2.a.e 2
5.c odd 4 1 4600.2.a.s 2
15.e even 4 1 1656.2.a.j 2
20.e even 4 1 368.2.a.i 2
20.e even 4 1 9200.2.a.br 2
35.f even 4 1 9016.2.a.w 2
40.i odd 4 1 1472.2.a.u 2
40.k even 4 1 1472.2.a.p 2
60.l odd 4 1 3312.2.a.t 2
115.e even 4 1 4232.2.a.o 2
460.k odd 4 1 8464.2.a.bd 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
184.2.a.e 2 5.c odd 4 1
368.2.a.i 2 20.e even 4 1
1472.2.a.p 2 40.k even 4 1
1472.2.a.u 2 40.i odd 4 1
1656.2.a.j 2 15.e even 4 1
3312.2.a.t 2 60.l odd 4 1
4232.2.a.o 2 115.e even 4 1
4600.2.a.s 2 5.c odd 4 1
4600.2.e.o 4 1.a even 1 1 trivial
4600.2.e.o 4 5.b even 2 1 inner
8464.2.a.bd 2 460.k odd 4 1
9016.2.a.w 2 35.f even 4 1
9200.2.a.br 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4600, [\chi])\):

\( T_{3}^{4} + 9 T_{3}^{2} + 16 \)
\( T_{7} \)
\( T_{11}^{2} - 2 T_{11} - 16 \)
\( T_{13}^{4} + 21 T_{13}^{2} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 16 + 9 T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( T^{4} \)
$11$ \( ( -16 - 2 T + T^{2} )^{2} \)
$13$ \( 4 + 21 T^{2} + T^{4} \)
$17$ \( 256 + 36 T^{2} + T^{4} \)
$19$ \( ( -16 + 2 T + T^{2} )^{2} \)
$23$ \( ( 1 + T^{2} )^{2} \)
$29$ \( ( -2 + 3 T + T^{2} )^{2} \)
$31$ \( ( 16 + 9 T + T^{2} )^{2} \)
$37$ \( ( 68 + T^{2} )^{2} \)
$41$ \( ( -106 - T + T^{2} )^{2} \)
$43$ \( ( 64 + T^{2} )^{2} \)
$47$ \( 64 + 137 T^{2} + T^{4} \)
$53$ \( ( 4 + T^{2} )^{2} \)
$59$ \( ( -64 + 4 T + T^{2} )^{2} \)
$61$ \( ( -52 - 8 T + T^{2} )^{2} \)
$67$ \( 256 + 36 T^{2} + T^{4} \)
$71$ \( ( 128 - 23 T + T^{2} )^{2} \)
$73$ \( 1156 + 221 T^{2} + T^{4} \)
$79$ \( ( -16 - 2 T + T^{2} )^{2} \)
$83$ \( 1024 + 208 T^{2} + T^{4} \)
$89$ \( ( -152 - 2 T + T^{2} )^{2} \)
$97$ \( 23104 + 308 T^{2} + T^{4} \)
show more
show less