# Properties

 Label 4600.2.e.d Level $4600$ Weight $2$ Character orbit 4600.e Analytic conductor $36.731$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4600,2,Mod(4049,4600)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4600, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4600.4049");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4600 = 2^{3} \cdot 5^{2} \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4600.e (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$36.7311849298$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 2 i q^{3} + 3 i q^{7} - q^{9}+O(q^{10})$$ q + 2*i * q^3 + 3*i * q^7 - q^9 $$q + 2 i q^{3} + 3 i q^{7} - q^{9} + 5 q^{11} - 5 i q^{13} + 4 i q^{17} - q^{19} - 6 q^{21} - i q^{23} + 4 i q^{27} - 9 q^{29} - 2 q^{31} + 10 i q^{33} + 2 i q^{37} + 10 q^{39} + 3 q^{41} - 7 i q^{43} + 12 i q^{47} - 2 q^{49} - 8 q^{51} + 12 i q^{53} - 2 i q^{57} + 6 q^{59} - 10 q^{61} - 3 i q^{63} + 8 i q^{67} + 2 q^{69} + 2 q^{71} + i q^{73} + 15 i q^{77} + 11 q^{79} - 11 q^{81} + 9 i q^{83} - 18 i q^{87} + 14 q^{89} + 15 q^{91} - 4 i q^{93} + 16 i q^{97} - 5 q^{99} +O(q^{100})$$ q + 2*i * q^3 + 3*i * q^7 - q^9 + 5 * q^11 - 5*i * q^13 + 4*i * q^17 - q^19 - 6 * q^21 - i * q^23 + 4*i * q^27 - 9 * q^29 - 2 * q^31 + 10*i * q^33 + 2*i * q^37 + 10 * q^39 + 3 * q^41 - 7*i * q^43 + 12*i * q^47 - 2 * q^49 - 8 * q^51 + 12*i * q^53 - 2*i * q^57 + 6 * q^59 - 10 * q^61 - 3*i * q^63 + 8*i * q^67 + 2 * q^69 + 2 * q^71 + i * q^73 + 15*i * q^77 + 11 * q^79 - 11 * q^81 + 9*i * q^83 - 18*i * q^87 + 14 * q^89 + 15 * q^91 - 4*i * q^93 + 16*i * q^97 - 5 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^9 $$2 q - 2 q^{9} + 10 q^{11} - 2 q^{19} - 12 q^{21} - 18 q^{29} - 4 q^{31} + 20 q^{39} + 6 q^{41} - 4 q^{49} - 16 q^{51} + 12 q^{59} - 20 q^{61} + 4 q^{69} + 4 q^{71} + 22 q^{79} - 22 q^{81} + 28 q^{89} + 30 q^{91} - 10 q^{99}+O(q^{100})$$ 2 * q - 2 * q^9 + 10 * q^11 - 2 * q^19 - 12 * q^21 - 18 * q^29 - 4 * q^31 + 20 * q^39 + 6 * q^41 - 4 * q^49 - 16 * q^51 + 12 * q^59 - 20 * q^61 + 4 * q^69 + 4 * q^71 + 22 * q^79 - 22 * q^81 + 28 * q^89 + 30 * q^91 - 10 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4600\mathbb{Z}\right)^\times$$.

 $$n$$ $$1151$$ $$1201$$ $$2301$$ $$2577$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
4049.1
 − 1.00000i 1.00000i
0 2.00000i 0 0 0 3.00000i 0 −1.00000 0
4049.2 0 2.00000i 0 0 0 3.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4600.2.e.d 2
5.b even 2 1 inner 4600.2.e.d 2
5.c odd 4 1 4600.2.a.d 1
5.c odd 4 1 4600.2.a.m yes 1
20.e even 4 1 9200.2.a.j 1
20.e even 4 1 9200.2.a.bc 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4600.2.a.d 1 5.c odd 4 1
4600.2.a.m yes 1 5.c odd 4 1
4600.2.e.d 2 1.a even 1 1 trivial
4600.2.e.d 2 5.b even 2 1 inner
9200.2.a.j 1 20.e even 4 1
9200.2.a.bc 1 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4600, [\chi])$$:

 $$T_{3}^{2} + 4$$ T3^2 + 4 $$T_{7}^{2} + 9$$ T7^2 + 9 $$T_{11} - 5$$ T11 - 5 $$T_{13}^{2} + 25$$ T13^2 + 25

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 4$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 9$$
$11$ $$(T - 5)^{2}$$
$13$ $$T^{2} + 25$$
$17$ $$T^{2} + 16$$
$19$ $$(T + 1)^{2}$$
$23$ $$T^{2} + 1$$
$29$ $$(T + 9)^{2}$$
$31$ $$(T + 2)^{2}$$
$37$ $$T^{2} + 4$$
$41$ $$(T - 3)^{2}$$
$43$ $$T^{2} + 49$$
$47$ $$T^{2} + 144$$
$53$ $$T^{2} + 144$$
$59$ $$(T - 6)^{2}$$
$61$ $$(T + 10)^{2}$$
$67$ $$T^{2} + 64$$
$71$ $$(T - 2)^{2}$$
$73$ $$T^{2} + 1$$
$79$ $$(T - 11)^{2}$$
$83$ $$T^{2} + 81$$
$89$ $$(T - 14)^{2}$$
$97$ $$T^{2} + 256$$