Properties

Label 4600.2.e
Level $4600$
Weight $2$
Character orbit 4600.e
Rep. character $\chi_{4600}(4049,\cdot)$
Character field $\Q$
Dimension $100$
Newform subspaces $23$
Sturm bound $1440$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 23 \)
Sturm bound: \(1440\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4600, [\chi])\).

Total New Old
Modular forms 744 100 644
Cusp forms 696 100 596
Eisenstein series 48 0 48

Trace form

\( 100 q - 104 q^{9} - 16 q^{29} + 8 q^{31} - 48 q^{39} + 20 q^{41} - 84 q^{49} + 84 q^{51} + 24 q^{59} - 20 q^{61} - 8 q^{69} + 40 q^{71} + 8 q^{79} + 116 q^{81} + 12 q^{89} - 24 q^{91} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(4600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4600.2.e.a 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 184.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+2 i q^{7}-6 q^{9}-5 i q^{13}+\cdots\)
4600.2.e.b 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 920.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}-2 i q^{7}-6 q^{9}-i q^{13}+\cdots\)
4600.2.e.c 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 4600.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}+i q^{7}-q^{9}-5 q^{11}-i q^{13}+\cdots\)
4600.2.e.d 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 4600.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}+3 i q^{7}-q^{9}+5 q^{11}+\cdots\)
4600.2.e.e 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 184.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 i q^{7}+2 q^{9}-4 q^{11}+\cdots\)
4600.2.e.f 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 184.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-4 i q^{7}+2 q^{9}-2 q^{11}+\cdots\)
4600.2.e.g 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 920.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 i q^{7}+2 q^{9}+i q^{13}+\cdots\)
4600.2.e.h 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 920.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 q^{9}+2 q^{11}+5 i q^{13}+\cdots\)
4600.2.e.i 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 4600.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-4 i q^{7}+2 q^{9}+3 q^{11}+\cdots\)
4600.2.e.j 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 920.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{7}+3 q^{9}-6 q^{11}+2 i q^{13}+\cdots\)
4600.2.e.k 4600.e 5.b $2$ $36.731$ \(\Q(\sqrt{-1}) \) None 184.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{7}+3 q^{9}+6 q^{11}+2 i q^{13}+\cdots\)
4600.2.e.l 4600.e 5.b $4$ $36.731$ \(\Q(i, \sqrt{5})\) None 4600.2.a.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{3}+(-2\beta _{1}+\beta _{2})q^{7}+\cdots\)
4600.2.e.m 4600.e 5.b $4$ $36.731$ \(\Q(i, \sqrt{17})\) None 920.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}-2\beta _{1}q^{7}+(-2+\beta _{3})q^{9}+\cdots\)
4600.2.e.n 4600.e 5.b $4$ $36.731$ \(\Q(i, \sqrt{17})\) None 920.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(\beta _{1}+\beta _{2})q^{7}+(-2+\beta _{3})q^{9}+\cdots\)
4600.2.e.o 4600.e 5.b $4$ $36.731$ \(\Q(i, \sqrt{17})\) None 184.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-2+\beta _{3})q^{9}+(2-2\beta _{3})q^{11}+\cdots\)
4600.2.e.p 4600.e 5.b $6$ $36.731$ 6.0.431642176.2 None 920.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{2})q^{7}+(-3+\beta _{3}+\cdots)q^{9}+\cdots\)
4600.2.e.q 4600.e 5.b $6$ $36.731$ 6.0.3356224.1 None 920.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{3}-\beta _{5})q^{3}+(-2\beta _{3}-\beta _{5})q^{7}+(-1+\cdots)q^{9}+\cdots\)
4600.2.e.r 4600.e 5.b $6$ $36.731$ 6.0.24681024.1 None 920.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-\beta _{1}+\beta _{2})q^{7}+(-1-\beta _{3}+\cdots)q^{9}+\cdots\)
4600.2.e.s 4600.e 5.b $6$ $36.731$ 6.0.153664.1 None 4600.2.a.w \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{3}+\beta _{5})q^{3}+(-2\beta _{3}-2\beta _{5})q^{7}+\cdots\)
4600.2.e.t 4600.e 5.b $8$ $36.731$ 8.0.\(\cdots\).1 None 4600.2.a.ba \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+(-\beta _{1}+\beta _{7})q^{7}+(-2+2\beta _{2}+\cdots)q^{9}+\cdots\)
4600.2.e.u 4600.e 5.b $10$ $36.731$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 920.2.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-\beta _{6}+\beta _{8})q^{7}+(-2+\beta _{3}+\cdots)q^{9}+\cdots\)
4600.2.e.v 4600.e 5.b $10$ $36.731$ 10.0.\(\cdots\).1 None 4600.2.a.bc \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{2}+\beta _{5})q^{3}+\beta _{8}q^{7}+(-2+\beta _{3}+\cdots)q^{9}+\cdots\)
4600.2.e.w 4600.e 5.b $10$ $36.731$ 10.0.\(\cdots\).1 None 4600.2.a.bd \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-\beta _{4}+\beta _{6})q^{7}+(-1+\beta _{2}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(4600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(460, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(920, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1150, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2300, [\chi])\)\(^{\oplus 2}\)