Properties

Label 4600.2.a.e.1.1
Level $4600$
Weight $2$
Character 4600.1
Self dual yes
Analytic conductor $36.731$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(36.7311849298\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4600.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -4.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -4.00000 q^{7} -2.00000 q^{9} +3.00000 q^{11} +2.00000 q^{13} +1.00000 q^{17} -1.00000 q^{19} +4.00000 q^{21} -1.00000 q^{23} +5.00000 q^{27} +8.00000 q^{31} -3.00000 q^{33} +2.00000 q^{37} -2.00000 q^{39} +1.00000 q^{41} -12.0000 q^{43} -6.00000 q^{47} +9.00000 q^{49} -1.00000 q^{51} +4.00000 q^{53} +1.00000 q^{57} +12.0000 q^{59} +8.00000 q^{63} -13.0000 q^{67} +1.00000 q^{69} +12.0000 q^{71} +17.0000 q^{73} -12.0000 q^{77} -14.0000 q^{79} +1.00000 q^{81} -5.00000 q^{83} +1.00000 q^{89} -8.00000 q^{91} -8.00000 q^{93} +2.00000 q^{97} -6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536 0.121268 0.992620i \(-0.461304\pi\)
0.121268 + 0.992620i \(0.461304\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) −3.00000 −0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 0 0
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.00000 0.132453
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 8.00000 1.00791
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −13.0000 −1.58820 −0.794101 0.607785i \(-0.792058\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) 0 0
\(69\) 1.00000 0.120386
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 17.0000 1.98970 0.994850 0.101361i \(-0.0323196\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.0000 −1.36753
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.00000 −0.548821 −0.274411 0.961613i \(-0.588483\pi\)
−0.274411 + 0.961613i \(0.588483\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.0000 −1.83680 −0.918400 0.395654i \(-0.870518\pi\)
−0.918400 + 0.395654i \(0.870518\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 3.00000 0.282216 0.141108 0.989994i \(-0.454933\pi\)
0.141108 + 0.989994i \(0.454933\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −1.00000 −0.0901670
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.0000 −1.28154 −0.640768 0.767734i \(-0.721384\pi\)
−0.640768 + 0.767734i \(0.721384\pi\)
\(138\) 0 0
\(139\) 1.00000 0.0848189 0.0424094 0.999100i \(-0.486497\pi\)
0.0424094 + 0.999100i \(0.486497\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −9.00000 −0.742307
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) −4.00000 −0.317221
\(160\) 0 0
\(161\) 4.00000 0.315244
\(162\) 0 0
\(163\) 1.00000 0.0783260 0.0391630 0.999233i \(-0.487531\pi\)
0.0391630 + 0.999233i \(0.487531\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 0.464294 0.232147 0.972681i \(-0.425425\pi\)
0.232147 + 0.972681i \(0.425425\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) 4.00000 0.304114 0.152057 0.988372i \(-0.451410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) −15.0000 −1.12115 −0.560576 0.828103i \(-0.689420\pi\)
−0.560576 + 0.828103i \(0.689420\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) 0 0
\(189\) −20.0000 −1.45479
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) −9.00000 −0.647834 −0.323917 0.946085i \(-0.605000\pi\)
−0.323917 + 0.946085i \(0.605000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) 13.0000 0.916949
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −32.0000 −2.17230
\(218\) 0 0
\(219\) −17.0000 −1.14875
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.00000 0.530979 0.265489 0.964114i \(-0.414466\pi\)
0.265489 + 0.964114i \(0.414466\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 12.0000 0.789542
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 14.0000 0.909398
\(238\) 0 0
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −5.00000 −0.322078 −0.161039 0.986948i \(-0.551485\pi\)
−0.161039 + 0.986948i \(0.551485\pi\)
\(242\) 0 0
\(243\) −16.0000 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 5.00000 0.316862
\(250\) 0 0
\(251\) −15.0000 −0.946792 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(252\) 0 0
\(253\) −3.00000 −0.188608
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −30.0000 −1.87135 −0.935674 0.352865i \(-0.885208\pi\)
−0.935674 + 0.352865i \(0.885208\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.00000 −0.0611990
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.0000 0.721010 0.360505 0.932757i \(-0.382604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(278\) 0 0
\(279\) −16.0000 −0.957895
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) −17.0000 −1.01055 −0.505273 0.862960i \(-0.668608\pi\)
−0.505273 + 0.862960i \(0.668608\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.00000 −0.236113
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 0 0
\(291\) −2.00000 −0.117242
\(292\) 0 0
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 15.0000 0.870388
\(298\) 0 0
\(299\) −2.00000 −0.115663
\(300\) 0 0
\(301\) 48.0000 2.76667
\(302\) 0 0
\(303\) 4.00000 0.229794
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 19.0000 1.08439 0.542194 0.840254i \(-0.317594\pi\)
0.542194 + 0.840254i \(0.317594\pi\)
\(308\) 0 0
\(309\) 14.0000 0.796432
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) −26.0000 −1.46961 −0.734803 0.678280i \(-0.762726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.0000 −1.12331 −0.561656 0.827371i \(-0.689836\pi\)
−0.561656 + 0.827371i \(0.689836\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 19.0000 1.06048
\(322\) 0 0
\(323\) −1.00000 −0.0556415
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) −19.0000 −1.04433 −0.522167 0.852843i \(-0.674876\pi\)
−0.522167 + 0.852843i \(0.674876\pi\)
\(332\) 0 0
\(333\) −4.00000 −0.219199
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7.00000 0.381314 0.190657 0.981657i \(-0.438938\pi\)
0.190657 + 0.981657i \(0.438938\pi\)
\(338\) 0 0
\(339\) −3.00000 −0.162938
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.0000 0.590511 0.295255 0.955418i \(-0.404595\pi\)
0.295255 + 0.955418i \(0.404595\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 10.0000 0.533761
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 2.00000 0.104973
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −30.0000 −1.56599 −0.782994 0.622030i \(-0.786308\pi\)
−0.782994 + 0.622030i \(0.786308\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) −16.0000 −0.830679
\(372\) 0 0
\(373\) −12.0000 −0.621336 −0.310668 0.950518i \(-0.600553\pi\)
−0.310668 + 0.950518i \(0.600553\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) −14.0000 −0.715367 −0.357683 0.933843i \(-0.616433\pi\)
−0.357683 + 0.933843i \(0.616433\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 24.0000 1.21999
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) −1.00000 −0.0505722
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4.00000 0.200754 0.100377 0.994949i \(-0.467995\pi\)
0.100377 + 0.994949i \(0.467995\pi\)
\(398\) 0 0
\(399\) −4.00000 −0.200250
\(400\) 0 0
\(401\) −25.0000 −1.24844 −0.624220 0.781248i \(-0.714583\pi\)
−0.624220 + 0.781248i \(0.714583\pi\)
\(402\) 0 0
\(403\) 16.0000 0.797017
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) −19.0000 −0.939490 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(410\) 0 0
\(411\) 15.0000 0.739895
\(412\) 0 0
\(413\) −48.0000 −2.36193
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.00000 −0.0489702
\(418\) 0 0
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) 12.0000 0.583460
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) 36.0000 1.73406 0.867029 0.498257i \(-0.166026\pi\)
0.867029 + 0.498257i \(0.166026\pi\)
\(432\) 0 0
\(433\) 25.0000 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.00000 0.0478365
\(438\) 0 0
\(439\) −22.0000 −1.05000 −0.525001 0.851101i \(-0.675935\pi\)
−0.525001 + 0.851101i \(0.675935\pi\)
\(440\) 0 0
\(441\) −18.0000 −0.857143
\(442\) 0 0
\(443\) −35.0000 −1.66290 −0.831450 0.555599i \(-0.812489\pi\)
−0.831450 + 0.555599i \(0.812489\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) −27.0000 −1.27421 −0.637104 0.770778i \(-0.719868\pi\)
−0.637104 + 0.770778i \(0.719868\pi\)
\(450\) 0 0
\(451\) 3.00000 0.141264
\(452\) 0 0
\(453\) 4.00000 0.187936
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 13.0000 0.608114 0.304057 0.952654i \(-0.401659\pi\)
0.304057 + 0.952654i \(0.401659\pi\)
\(458\) 0 0
\(459\) 5.00000 0.233380
\(460\) 0 0
\(461\) −24.0000 −1.11779 −0.558896 0.829238i \(-0.688775\pi\)
−0.558896 + 0.829238i \(0.688775\pi\)
\(462\) 0 0
\(463\) 2.00000 0.0929479 0.0464739 0.998920i \(-0.485202\pi\)
0.0464739 + 0.998920i \(0.485202\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 52.0000 2.40114
\(470\) 0 0
\(471\) 10.0000 0.460776
\(472\) 0 0
\(473\) −36.0000 −1.65528
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −8.00000 −0.366295
\(478\) 0 0
\(479\) −4.00000 −0.182765 −0.0913823 0.995816i \(-0.529129\pi\)
−0.0913823 + 0.995816i \(0.529129\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) −4.00000 −0.182006
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 0 0
\(489\) −1.00000 −0.0452216
\(490\) 0 0
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −48.0000 −2.15309
\(498\) 0 0
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) −6.00000 −0.268060
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) 0 0
\(509\) 20.0000 0.886484 0.443242 0.896402i \(-0.353828\pi\)
0.443242 + 0.896402i \(0.353828\pi\)
\(510\) 0 0
\(511\) −68.0000 −3.00814
\(512\) 0 0
\(513\) −5.00000 −0.220755
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −18.0000 −0.791639
\(518\) 0 0
\(519\) −4.00000 −0.175581
\(520\) 0 0
\(521\) −37.0000 −1.62100 −0.810500 0.585739i \(-0.800804\pi\)
−0.810500 + 0.585739i \(0.800804\pi\)
\(522\) 0 0
\(523\) 29.0000 1.26808 0.634041 0.773300i \(-0.281395\pi\)
0.634041 + 0.773300i \(0.281395\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −24.0000 −1.04151
\(532\) 0 0
\(533\) 2.00000 0.0866296
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 15.0000 0.647298
\(538\) 0 0
\(539\) 27.0000 1.16297
\(540\) 0 0
\(541\) 32.0000 1.37579 0.687894 0.725811i \(-0.258536\pi\)
0.687894 + 0.725811i \(0.258536\pi\)
\(542\) 0 0
\(543\) −18.0000 −0.772454
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −29.0000 −1.23995 −0.619975 0.784621i \(-0.712857\pi\)
−0.619975 + 0.784621i \(0.712857\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 56.0000 2.38136
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) −3.00000 −0.126660
\(562\) 0 0
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) 19.0000 0.796521 0.398261 0.917272i \(-0.369614\pi\)
0.398261 + 0.917272i \(0.369614\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 4.00000 0.167102
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.00000 0.0416305 0.0208153 0.999783i \(-0.493374\pi\)
0.0208153 + 0.999783i \(0.493374\pi\)
\(578\) 0 0
\(579\) 9.00000 0.374027
\(580\) 0 0
\(581\) 20.0000 0.829740
\(582\) 0 0
\(583\) 12.0000 0.496989
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.0000 0.536567 0.268284 0.963340i \(-0.413544\pi\)
0.268284 + 0.963340i \(0.413544\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 8.00000 0.329076
\(592\) 0 0
\(593\) −11.0000 −0.451716 −0.225858 0.974160i \(-0.572519\pi\)
−0.225858 + 0.974160i \(0.572519\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 14.0000 0.572982
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −9.00000 −0.367118 −0.183559 0.983009i \(-0.558762\pi\)
−0.183559 + 0.983009i \(0.558762\pi\)
\(602\) 0 0
\(603\) 26.0000 1.05880
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −14.0000 −0.568242 −0.284121 0.958788i \(-0.591702\pi\)
−0.284121 + 0.958788i \(0.591702\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) 40.0000 1.61558 0.807792 0.589467i \(-0.200662\pi\)
0.807792 + 0.589467i \(0.200662\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) −5.00000 −0.200643
\(622\) 0 0
\(623\) −4.00000 −0.160257
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3.00000 0.119808
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) 0 0
\(633\) 5.00000 0.198732
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 18.0000 0.713186
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −36.0000 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 32.0000 1.25418
\(652\) 0 0
\(653\) −10.0000 −0.391330 −0.195665 0.980671i \(-0.562687\pi\)
−0.195665 + 0.980671i \(0.562687\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −34.0000 −1.32647
\(658\) 0 0
\(659\) −27.0000 −1.05177 −0.525885 0.850555i \(-0.676266\pi\)
−0.525885 + 0.850555i \(0.676266\pi\)
\(660\) 0 0
\(661\) −8.00000 −0.311164 −0.155582 0.987823i \(-0.549725\pi\)
−0.155582 + 0.987823i \(0.549725\pi\)
\(662\) 0 0
\(663\) −2.00000 −0.0776736
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 34.0000 1.30673 0.653363 0.757045i \(-0.273358\pi\)
0.653363 + 0.757045i \(0.273358\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 0 0
\(681\) −8.00000 −0.306561
\(682\) 0 0
\(683\) −33.0000 −1.26271 −0.631355 0.775494i \(-0.717501\pi\)
−0.631355 + 0.775494i \(0.717501\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) 8.00000 0.304776
\(690\) 0 0
\(691\) 41.0000 1.55971 0.779857 0.625958i \(-0.215292\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 0 0
\(693\) 24.0000 0.911685
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.00000 0.0378777
\(698\) 0 0
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −48.0000 −1.81293 −0.906467 0.422276i \(-0.861231\pi\)
−0.906467 + 0.422276i \(0.861231\pi\)
\(702\) 0 0
\(703\) −2.00000 −0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.0000 0.601742
\(708\) 0 0
\(709\) 16.0000 0.600893 0.300446 0.953799i \(-0.402864\pi\)
0.300446 + 0.953799i \(0.402864\pi\)
\(710\) 0 0
\(711\) 28.0000 1.05008
\(712\) 0 0
\(713\) −8.00000 −0.299602
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.00000 0.224074
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 56.0000 2.08555
\(722\) 0 0
\(723\) 5.00000 0.185952
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4.00000 −0.148352 −0.0741759 0.997245i \(-0.523633\pi\)
−0.0741759 + 0.997245i \(0.523633\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −39.0000 −1.43658
\(738\) 0 0
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 0 0
\(741\) 2.00000 0.0734718
\(742\) 0 0
\(743\) 26.0000 0.953847 0.476924 0.878945i \(-0.341752\pi\)
0.476924 + 0.878945i \(0.341752\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 10.0000 0.365881
\(748\) 0 0
\(749\) 76.0000 2.77698
\(750\) 0 0
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) 0 0
\(753\) 15.0000 0.546630
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) 3.00000 0.108893
\(760\) 0 0
\(761\) −55.0000 −1.99375 −0.996874 0.0790050i \(-0.974826\pi\)
−0.996874 + 0.0790050i \(0.974826\pi\)
\(762\) 0 0
\(763\) 40.0000 1.44810
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) −1.00000 −0.0360609 −0.0180305 0.999837i \(-0.505740\pi\)
−0.0180305 + 0.999837i \(0.505740\pi\)
\(770\) 0 0
\(771\) 30.0000 1.08042
\(772\) 0 0
\(773\) 12.0000 0.431610 0.215805 0.976436i \(-0.430762\pi\)
0.215805 + 0.976436i \(0.430762\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.00000 0.286998
\(778\) 0 0
\(779\) −1.00000 −0.0358287
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 28.0000 0.998092 0.499046 0.866575i \(-0.333684\pi\)
0.499046 + 0.866575i \(0.333684\pi\)
\(788\) 0 0
\(789\) 4.00000 0.142404
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) −6.00000 −0.212265
\(800\) 0 0
\(801\) −2.00000 −0.0706665
\(802\) 0 0
\(803\) 51.0000 1.79975
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10.0000 −0.352017
\(808\) 0 0
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 0 0
\(813\) −2.00000 −0.0701431
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) 16.0000 0.559085
\(820\) 0 0
\(821\) −32.0000 −1.11681 −0.558404 0.829569i \(-0.688586\pi\)
−0.558404 + 0.829569i \(0.688586\pi\)
\(822\) 0 0
\(823\) 30.0000 1.04573 0.522867 0.852414i \(-0.324862\pi\)
0.522867 + 0.852414i \(0.324862\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23.0000 0.799788 0.399894 0.916561i \(-0.369047\pi\)
0.399894 + 0.916561i \(0.369047\pi\)
\(828\) 0 0
\(829\) 32.0000 1.11141 0.555703 0.831381i \(-0.312449\pi\)
0.555703 + 0.831381i \(0.312449\pi\)
\(830\) 0 0
\(831\) −12.0000 −0.416275
\(832\) 0 0
\(833\) 9.00000 0.311832
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 40.0000 1.38260
\(838\) 0 0
\(839\) 42.0000 1.45000 0.725001 0.688748i \(-0.241839\pi\)
0.725001 + 0.688748i \(0.241839\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) −18.0000 −0.619953
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8.00000 0.274883
\(848\) 0 0
\(849\) 17.0000 0.583438
\(850\) 0 0
\(851\) −2.00000 −0.0685591
\(852\) 0 0
\(853\) 28.0000 0.958702 0.479351 0.877623i \(-0.340872\pi\)
0.479351 + 0.877623i \(0.340872\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 43.0000 1.46885 0.734426 0.678689i \(-0.237451\pi\)
0.734426 + 0.678689i \(0.237451\pi\)
\(858\) 0 0
\(859\) −15.0000 −0.511793 −0.255897 0.966704i \(-0.582371\pi\)
−0.255897 + 0.966704i \(0.582371\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) 16.0000 0.544646 0.272323 0.962206i \(-0.412208\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 16.0000 0.543388
\(868\) 0 0
\(869\) −42.0000 −1.42475
\(870\) 0 0
\(871\) −26.0000 −0.880976
\(872\) 0 0
\(873\) −4.00000 −0.135379
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) −16.0000 −0.539667
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) −1.00000 −0.0336527 −0.0168263 0.999858i \(-0.505356\pi\)
−0.0168263 + 0.999858i \(0.505356\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) −32.0000 −1.07325
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) 6.00000 0.200782
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.00000 0.0667781
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 4.00000 0.133259
\(902\) 0 0
\(903\) −48.0000 −1.59734
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) −58.0000 −1.92163 −0.960813 0.277198i \(-0.910594\pi\)
−0.960813 + 0.277198i \(0.910594\pi\)
\(912\) 0 0
\(913\) −15.0000 −0.496428
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 48.0000 1.58510
\(918\) 0 0
\(919\) 52.0000 1.71532 0.857661 0.514216i \(-0.171917\pi\)
0.857661 + 0.514216i \(0.171917\pi\)
\(920\) 0 0
\(921\) −19.0000 −0.626071
\(922\) 0 0
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 28.0000 0.919641
\(928\) 0 0
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) −9.00000 −0.294963
\(932\) 0 0
\(933\) −18.0000 −0.589294
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 51.0000 1.66610 0.833049 0.553200i \(-0.186593\pi\)
0.833049 + 0.553200i \(0.186593\pi\)
\(938\) 0 0
\(939\) 26.0000 0.848478
\(940\) 0 0
\(941\) 60.0000 1.95594 0.977972 0.208736i \(-0.0669349\pi\)
0.977972 + 0.208736i \(0.0669349\pi\)
\(942\) 0 0
\(943\) −1.00000 −0.0325645
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) 0 0
\(949\) 34.0000 1.10369
\(950\) 0 0
\(951\) 20.0000 0.648544
\(952\) 0 0
\(953\) −39.0000 −1.26333 −0.631667 0.775240i \(-0.717629\pi\)
−0.631667 + 0.775240i \(0.717629\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 60.0000 1.93750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 38.0000 1.22453
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 52.0000 1.67221 0.836104 0.548572i \(-0.184828\pi\)
0.836104 + 0.548572i \(0.184828\pi\)
\(968\) 0 0
\(969\) 1.00000 0.0321246
\(970\) 0 0
\(971\) −49.0000 −1.57248 −0.786242 0.617918i \(-0.787976\pi\)
−0.786242 + 0.617918i \(0.787976\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.0000 0.671850 0.335925 0.941889i \(-0.390951\pi\)
0.335925 + 0.941889i \(0.390951\pi\)
\(978\) 0 0
\(979\) 3.00000 0.0958804
\(980\) 0 0
\(981\) 20.0000 0.638551
\(982\) 0 0
\(983\) −30.0000 −0.956851 −0.478426 0.878128i \(-0.658792\pi\)
−0.478426 + 0.878128i \(0.658792\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −24.0000 −0.763928
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 50.0000 1.58830 0.794151 0.607720i \(-0.207916\pi\)
0.794151 + 0.607720i \(0.207916\pi\)
\(992\) 0 0
\(993\) 19.0000 0.602947
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) 0 0
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4600.2.a.e.1.1 1
4.3 odd 2 9200.2.a.bb.1.1 1
5.2 odd 4 4600.2.e.i.4049.2 2
5.3 odd 4 4600.2.e.i.4049.1 2
5.4 even 2 4600.2.a.l.1.1 yes 1
20.19 odd 2 9200.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4600.2.a.e.1.1 1 1.1 even 1 trivial
4600.2.a.l.1.1 yes 1 5.4 even 2
4600.2.e.i.4049.1 2 5.3 odd 4
4600.2.e.i.4049.2 2 5.2 odd 4
9200.2.a.k.1.1 1 20.19 odd 2
9200.2.a.bb.1.1 1 4.3 odd 2