Properties

Label 4600.2.a.c.1.1
Level $4600$
Weight $2$
Character 4600.1
Self dual yes
Analytic conductor $36.731$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(36.7311849298\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4600.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{3} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} +1.00000 q^{7} +1.00000 q^{9} -5.00000 q^{11} +1.00000 q^{13} -4.00000 q^{17} +7.00000 q^{19} -2.00000 q^{21} -1.00000 q^{23} +4.00000 q^{27} +5.00000 q^{29} +2.00000 q^{31} +10.0000 q^{33} -2.00000 q^{37} -2.00000 q^{39} +11.0000 q^{41} +1.00000 q^{43} -8.00000 q^{47} -6.00000 q^{49} +8.00000 q^{51} -14.0000 q^{57} -14.0000 q^{59} +10.0000 q^{61} +1.00000 q^{63} -8.00000 q^{67} +2.00000 q^{69} -10.0000 q^{71} +7.00000 q^{73} -5.00000 q^{77} +7.00000 q^{79} -11.0000 q^{81} -15.0000 q^{83} -10.0000 q^{87} +10.0000 q^{89} +1.00000 q^{91} -4.00000 q^{93} -4.00000 q^{97} -5.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 10.0000 1.74078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 11.0000 1.71791 0.858956 0.512050i \(-0.171114\pi\)
0.858956 + 0.512050i \(0.171114\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 8.00000 1.12022
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −14.0000 −1.85435
\(58\) 0 0
\(59\) −14.0000 −1.82264 −0.911322 0.411693i \(-0.864937\pi\)
−0.911322 + 0.411693i \(0.864937\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.00000 −0.569803
\(78\) 0 0
\(79\) 7.00000 0.787562 0.393781 0.919204i \(-0.371167\pi\)
0.393781 + 0.919204i \(0.371167\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −15.0000 −1.64646 −0.823232 0.567705i \(-0.807831\pi\)
−0.823232 + 0.567705i \(0.807831\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −10.0000 −1.07211
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.00000 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(98\) 0 0
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) 11.0000 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 0 0
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) −22.0000 −1.98367
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −22.0000 −1.95218 −0.976092 0.217357i \(-0.930256\pi\)
−0.976092 + 0.217357i \(0.930256\pi\)
\(128\) 0 0
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) 2.00000 0.174741 0.0873704 0.996176i \(-0.472154\pi\)
0.0873704 + 0.996176i \(0.472154\pi\)
\(132\) 0 0
\(133\) 7.00000 0.606977
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 16.0000 1.34744
\(142\) 0 0
\(143\) −5.00000 −0.418121
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 12.0000 0.989743
\(148\) 0 0
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −22.0000 −1.70241 −0.851206 0.524832i \(-0.824128\pi\)
−0.851206 + 0.524832i \(0.824128\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 7.00000 0.535303
\(172\) 0 0
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 28.0000 2.10461
\(178\) 0 0
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) −12.0000 −0.891953 −0.445976 0.895045i \(-0.647144\pi\)
−0.445976 + 0.895045i \(0.647144\pi\)
\(182\) 0 0
\(183\) −20.0000 −1.47844
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 20.0000 1.46254
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) −27.0000 −1.95365 −0.976826 0.214036i \(-0.931339\pi\)
−0.976826 + 0.214036i \(0.931339\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.0000 −1.49619 −0.748094 0.663593i \(-0.769031\pi\)
−0.748094 + 0.663593i \(0.769031\pi\)
\(198\) 0 0
\(199\) −17.0000 −1.20510 −0.602549 0.798082i \(-0.705848\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 0 0
\(201\) 16.0000 1.12855
\(202\) 0 0
\(203\) 5.00000 0.350931
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) −35.0000 −2.42100
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 0 0
\(213\) 20.0000 1.37038
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 0 0
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −20.0000 −1.33930 −0.669650 0.742677i \(-0.733556\pi\)
−0.669650 + 0.742677i \(0.733556\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) −22.0000 −1.45380 −0.726900 0.686743i \(-0.759040\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 10.0000 0.657952
\(232\) 0 0
\(233\) −15.0000 −0.982683 −0.491341 0.870967i \(-0.663493\pi\)
−0.491341 + 0.870967i \(0.663493\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −14.0000 −0.909398
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −16.0000 −1.03065 −0.515325 0.856995i \(-0.672329\pi\)
−0.515325 + 0.856995i \(0.672329\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.00000 0.445399
\(248\) 0 0
\(249\) 30.0000 1.90117
\(250\) 0 0
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 0 0
\(253\) 5.00000 0.314347
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) 5.00000 0.309492
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −20.0000 −1.22398
\(268\) 0 0
\(269\) 17.0000 1.03651 0.518254 0.855227i \(-0.326582\pi\)
0.518254 + 0.855227i \(0.326582\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.00000 −0.0600842 −0.0300421 0.999549i \(-0.509564\pi\)
−0.0300421 + 0.999549i \(0.509564\pi\)
\(278\) 0 0
\(279\) 2.00000 0.119737
\(280\) 0 0
\(281\) −28.0000 −1.67034 −0.835170 0.549992i \(-0.814631\pi\)
−0.835170 + 0.549992i \(0.814631\pi\)
\(282\) 0 0
\(283\) 28.0000 1.66443 0.832214 0.554455i \(-0.187073\pi\)
0.832214 + 0.554455i \(0.187073\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.0000 0.649309
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 0 0
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −20.0000 −1.16052
\(298\) 0 0
\(299\) −1.00000 −0.0578315
\(300\) 0 0
\(301\) 1.00000 0.0576390
\(302\) 0 0
\(303\) −36.0000 −2.06815
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) −22.0000 −1.25154
\(310\) 0 0
\(311\) 2.00000 0.113410 0.0567048 0.998391i \(-0.481941\pi\)
0.0567048 + 0.998391i \(0.481941\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.00000 −0.280828 −0.140414 0.990093i \(-0.544843\pi\)
−0.140414 + 0.990093i \(0.544843\pi\)
\(318\) 0 0
\(319\) −25.0000 −1.39973
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −28.0000 −1.55796
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −4.00000 −0.221201
\(328\) 0 0
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) −18.0000 −0.989369 −0.494685 0.869072i \(-0.664716\pi\)
−0.494685 + 0.869072i \(0.664716\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −20.0000 −1.08947 −0.544735 0.838608i \(-0.683370\pi\)
−0.544735 + 0.838608i \(0.683370\pi\)
\(338\) 0 0
\(339\) −8.00000 −0.434500
\(340\) 0 0
\(341\) −10.0000 −0.541530
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 0 0
\(349\) 21.0000 1.12410 0.562052 0.827102i \(-0.310012\pi\)
0.562052 + 0.827102i \(0.310012\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) 11.0000 0.585471 0.292735 0.956193i \(-0.405434\pi\)
0.292735 + 0.956193i \(0.405434\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 8.00000 0.423405
\(358\) 0 0
\(359\) −33.0000 −1.74167 −0.870837 0.491572i \(-0.836422\pi\)
−0.870837 + 0.491572i \(0.836422\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 0 0
\(363\) −28.0000 −1.46962
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3.00000 −0.156599 −0.0782994 0.996930i \(-0.524949\pi\)
−0.0782994 + 0.996930i \(0.524949\pi\)
\(368\) 0 0
\(369\) 11.0000 0.572637
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.00000 0.257513
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 44.0000 2.25419
\(382\) 0 0
\(383\) −19.0000 −0.970855 −0.485427 0.874277i \(-0.661336\pi\)
−0.485427 + 0.874277i \(0.661336\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.00000 0.0508329
\(388\) 0 0
\(389\) 16.0000 0.811232 0.405616 0.914044i \(-0.367057\pi\)
0.405616 + 0.914044i \(0.367057\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) −4.00000 −0.201773
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) −14.0000 −0.700877
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.0000 0.495682
\(408\) 0 0
\(409\) −11.0000 −0.543915 −0.271957 0.962309i \(-0.587671\pi\)
−0.271957 + 0.962309i \(0.587671\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) −14.0000 −0.688895
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) −3.00000 −0.146560 −0.0732798 0.997311i \(-0.523347\pi\)
−0.0732798 + 0.997311i \(0.523347\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) −8.00000 −0.388973
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.0000 0.483934
\(428\) 0 0
\(429\) 10.0000 0.482805
\(430\) 0 0
\(431\) −32.0000 −1.54139 −0.770693 0.637207i \(-0.780090\pi\)
−0.770693 + 0.637207i \(0.780090\pi\)
\(432\) 0 0
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.00000 −0.334855
\(438\) 0 0
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 30.0000 1.42534 0.712672 0.701498i \(-0.247485\pi\)
0.712672 + 0.701498i \(0.247485\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.00000 0.189194
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −55.0000 −2.58985
\(452\) 0 0
\(453\) −20.0000 −0.939682
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8.00000 −0.374224 −0.187112 0.982339i \(-0.559913\pi\)
−0.187112 + 0.982339i \(0.559913\pi\)
\(458\) 0 0
\(459\) −16.0000 −0.746816
\(460\) 0 0
\(461\) 21.0000 0.978068 0.489034 0.872265i \(-0.337349\pi\)
0.489034 + 0.872265i \(0.337349\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.0000 1.24941 0.624705 0.780860i \(-0.285219\pi\)
0.624705 + 0.780860i \(0.285219\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 8.00000 0.368621
\(472\) 0 0
\(473\) −5.00000 −0.229900
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −35.0000 −1.59919 −0.799595 0.600539i \(-0.794953\pi\)
−0.799595 + 0.600539i \(0.794953\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 2.00000 0.0910032
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) 0 0
\(493\) −20.0000 −0.900755
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10.0000 −0.448561
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 44.0000 1.96578
\(502\) 0 0
\(503\) 15.0000 0.668817 0.334408 0.942428i \(-0.391463\pi\)
0.334408 + 0.942428i \(0.391463\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 24.0000 1.06588
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) 7.00000 0.309662
\(512\) 0 0
\(513\) 28.0000 1.23623
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 40.0000 1.75920
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −1.00000 −0.0437269 −0.0218635 0.999761i \(-0.506960\pi\)
−0.0218635 + 0.999761i \(0.506960\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.00000 −0.348485
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −14.0000 −0.607548
\(532\) 0 0
\(533\) 11.0000 0.476463
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −32.0000 −1.38090
\(538\) 0 0
\(539\) 30.0000 1.29219
\(540\) 0 0
\(541\) −19.0000 −0.816874 −0.408437 0.912787i \(-0.633926\pi\)
−0.408437 + 0.912787i \(0.633926\pi\)
\(542\) 0 0
\(543\) 24.0000 1.02994
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −32.0000 −1.36822 −0.684111 0.729378i \(-0.739809\pi\)
−0.684111 + 0.729378i \(0.739809\pi\)
\(548\) 0 0
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) 35.0000 1.49105
\(552\) 0 0
\(553\) 7.00000 0.297670
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 42.0000 1.77960 0.889799 0.456354i \(-0.150845\pi\)
0.889799 + 0.456354i \(0.150845\pi\)
\(558\) 0 0
\(559\) 1.00000 0.0422955
\(560\) 0 0
\(561\) −40.0000 −1.68880
\(562\) 0 0
\(563\) 33.0000 1.39078 0.695392 0.718631i \(-0.255231\pi\)
0.695392 + 0.718631i \(0.255231\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −11.0000 −0.461957
\(568\) 0 0
\(569\) 12.0000 0.503066 0.251533 0.967849i \(-0.419065\pi\)
0.251533 + 0.967849i \(0.419065\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 54.0000 2.25588
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −41.0000 −1.70685 −0.853426 0.521214i \(-0.825479\pi\)
−0.853426 + 0.521214i \(0.825479\pi\)
\(578\) 0 0
\(579\) −12.0000 −0.498703
\(580\) 0 0
\(581\) −15.0000 −0.622305
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.00000 0.0825488 0.0412744 0.999148i \(-0.486858\pi\)
0.0412744 + 0.999148i \(0.486858\pi\)
\(588\) 0 0
\(589\) 14.0000 0.576860
\(590\) 0 0
\(591\) 42.0000 1.72765
\(592\) 0 0
\(593\) −23.0000 −0.944497 −0.472248 0.881466i \(-0.656557\pi\)
−0.472248 + 0.881466i \(0.656557\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 34.0000 1.39153
\(598\) 0 0
\(599\) 14.0000 0.572024 0.286012 0.958226i \(-0.407670\pi\)
0.286012 + 0.958226i \(0.407670\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 0 0
\(603\) −8.00000 −0.325785
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 36.0000 1.46119 0.730597 0.682808i \(-0.239242\pi\)
0.730597 + 0.682808i \(0.239242\pi\)
\(608\) 0 0
\(609\) −10.0000 −0.405220
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.00000 0.322068 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(618\) 0 0
\(619\) −8.00000 −0.321547 −0.160774 0.986991i \(-0.551399\pi\)
−0.160774 + 0.986991i \(0.551399\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) 10.0000 0.400642
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 70.0000 2.79553
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) 13.0000 0.517522 0.258761 0.965941i \(-0.416686\pi\)
0.258761 + 0.965941i \(0.416686\pi\)
\(632\) 0 0
\(633\) −4.00000 −0.158986
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) 0 0
\(639\) −10.0000 −0.395594
\(640\) 0 0
\(641\) 24.0000 0.947943 0.473972 0.880540i \(-0.342820\pi\)
0.473972 + 0.880540i \(0.342820\pi\)
\(642\) 0 0
\(643\) 5.00000 0.197181 0.0985904 0.995128i \(-0.468567\pi\)
0.0985904 + 0.995128i \(0.468567\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) 0 0
\(649\) 70.0000 2.74774
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) 0 0
\(653\) 25.0000 0.978326 0.489163 0.872192i \(-0.337302\pi\)
0.489163 + 0.872192i \(0.337302\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7.00000 0.273096
\(658\) 0 0
\(659\) −3.00000 −0.116863 −0.0584317 0.998291i \(-0.518610\pi\)
−0.0584317 + 0.998291i \(0.518610\pi\)
\(660\) 0 0
\(661\) 4.00000 0.155582 0.0777910 0.996970i \(-0.475213\pi\)
0.0777910 + 0.996970i \(0.475213\pi\)
\(662\) 0 0
\(663\) 8.00000 0.310694
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.00000 −0.193601
\(668\) 0 0
\(669\) 40.0000 1.54649
\(670\) 0 0
\(671\) −50.0000 −1.93023
\(672\) 0 0
\(673\) −23.0000 −0.886585 −0.443292 0.896377i \(-0.646190\pi\)
−0.443292 + 0.896377i \(0.646190\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) 6.00000 0.229584 0.114792 0.993390i \(-0.463380\pi\)
0.114792 + 0.993390i \(0.463380\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 44.0000 1.67870
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −8.00000 −0.304334 −0.152167 0.988355i \(-0.548625\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) −5.00000 −0.189934
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −44.0000 −1.66662
\(698\) 0 0
\(699\) 30.0000 1.13470
\(700\) 0 0
\(701\) −48.0000 −1.81293 −0.906467 0.422276i \(-0.861231\pi\)
−0.906467 + 0.422276i \(0.861231\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.0000 0.676960
\(708\) 0 0
\(709\) 26.0000 0.976450 0.488225 0.872718i \(-0.337644\pi\)
0.488225 + 0.872718i \(0.337644\pi\)
\(710\) 0 0
\(711\) 7.00000 0.262521
\(712\) 0 0
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 32.0000 1.19506
\(718\) 0 0
\(719\) 38.0000 1.41716 0.708580 0.705630i \(-0.249336\pi\)
0.708580 + 0.705630i \(0.249336\pi\)
\(720\) 0 0
\(721\) 11.0000 0.409661
\(722\) 0 0
\(723\) 32.0000 1.19009
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −4.00000 −0.147945
\(732\) 0 0
\(733\) −38.0000 −1.40356 −0.701781 0.712393i \(-0.747612\pi\)
−0.701781 + 0.712393i \(0.747612\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 40.0000 1.47342
\(738\) 0 0
\(739\) −22.0000 −0.809283 −0.404642 0.914475i \(-0.632604\pi\)
−0.404642 + 0.914475i \(0.632604\pi\)
\(740\) 0 0
\(741\) −14.0000 −0.514303
\(742\) 0 0
\(743\) −39.0000 −1.43077 −0.715386 0.698730i \(-0.753749\pi\)
−0.715386 + 0.698730i \(0.753749\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −15.0000 −0.548821
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 41.0000 1.49611 0.748056 0.663636i \(-0.230988\pi\)
0.748056 + 0.663636i \(0.230988\pi\)
\(752\) 0 0
\(753\) 8.00000 0.291536
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) −10.0000 −0.362977
\(760\) 0 0
\(761\) −23.0000 −0.833749 −0.416875 0.908964i \(-0.636875\pi\)
−0.416875 + 0.908964i \(0.636875\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −14.0000 −0.505511
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) 77.0000 2.75881
\(780\) 0 0
\(781\) 50.0000 1.78914
\(782\) 0 0
\(783\) 20.0000 0.714742
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 47.0000 1.67537 0.837685 0.546154i \(-0.183909\pi\)
0.837685 + 0.546154i \(0.183909\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.00000 0.142224
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −54.0000 −1.91278 −0.956389 0.292096i \(-0.905647\pi\)
−0.956389 + 0.292096i \(0.905647\pi\)
\(798\) 0 0
\(799\) 32.0000 1.13208
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) 0 0
\(803\) −35.0000 −1.23512
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −34.0000 −1.19686
\(808\) 0 0
\(809\) 17.0000 0.597688 0.298844 0.954302i \(-0.403399\pi\)
0.298844 + 0.954302i \(0.403399\pi\)
\(810\) 0 0
\(811\) −56.0000 −1.96643 −0.983213 0.182462i \(-0.941593\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) 0 0
\(813\) −16.0000 −0.561144
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 7.00000 0.244899
\(818\) 0 0
\(819\) 1.00000 0.0349428
\(820\) 0 0
\(821\) 31.0000 1.08191 0.540954 0.841052i \(-0.318063\pi\)
0.540954 + 0.841052i \(0.318063\pi\)
\(822\) 0 0
\(823\) 36.0000 1.25488 0.627441 0.778664i \(-0.284103\pi\)
0.627441 + 0.778664i \(0.284103\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −41.0000 −1.42571 −0.712855 0.701312i \(-0.752598\pi\)
−0.712855 + 0.701312i \(0.752598\pi\)
\(828\) 0 0
\(829\) −11.0000 −0.382046 −0.191023 0.981586i \(-0.561180\pi\)
−0.191023 + 0.981586i \(0.561180\pi\)
\(830\) 0 0
\(831\) 2.00000 0.0693792
\(832\) 0 0
\(833\) 24.0000 0.831551
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) 21.0000 0.725001 0.362500 0.931984i \(-0.381923\pi\)
0.362500 + 0.931984i \(0.381923\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) 56.0000 1.92874
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 14.0000 0.481046
\(848\) 0 0
\(849\) −56.0000 −1.92192
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) −7.00000 −0.239675 −0.119838 0.992793i \(-0.538237\pi\)
−0.119838 + 0.992793i \(0.538237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −58.0000 −1.98124 −0.990621 0.136637i \(-0.956370\pi\)
−0.990621 + 0.136637i \(0.956370\pi\)
\(858\) 0 0
\(859\) 30.0000 1.02359 0.511793 0.859109i \(-0.328981\pi\)
0.511793 + 0.859109i \(0.328981\pi\)
\(860\) 0 0
\(861\) −22.0000 −0.749758
\(862\) 0 0
\(863\) 16.0000 0.544646 0.272323 0.962206i \(-0.412208\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 2.00000 0.0679236
\(868\) 0 0
\(869\) −35.0000 −1.18729
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) −4.00000 −0.135379
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) 0 0
\(879\) 24.0000 0.809500
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) 32.0000 1.07689 0.538443 0.842662i \(-0.319013\pi\)
0.538443 + 0.842662i \(0.319013\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0000 0.805841 0.402921 0.915235i \(-0.367995\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(888\) 0 0
\(889\) −22.0000 −0.737856
\(890\) 0 0
\(891\) 55.0000 1.84257
\(892\) 0 0
\(893\) −56.0000 −1.87397
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.00000 0.0667781
\(898\) 0 0
\(899\) 10.0000 0.333519
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −2.00000 −0.0665558
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 7.00000 0.232431 0.116216 0.993224i \(-0.462924\pi\)
0.116216 + 0.993224i \(0.462924\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 47.0000 1.55718 0.778590 0.627533i \(-0.215935\pi\)
0.778590 + 0.627533i \(0.215935\pi\)
\(912\) 0 0
\(913\) 75.0000 2.48214
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.00000 0.0660458
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) −32.0000 −1.05444
\(922\) 0 0
\(923\) −10.0000 −0.329154
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 11.0000 0.361287
\(928\) 0 0
\(929\) 27.0000 0.885841 0.442921 0.896561i \(-0.353942\pi\)
0.442921 + 0.896561i \(0.353942\pi\)
\(930\) 0 0
\(931\) −42.0000 −1.37649
\(932\) 0 0
\(933\) −4.00000 −0.130954
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 48.0000 1.56809 0.784046 0.620703i \(-0.213153\pi\)
0.784046 + 0.620703i \(0.213153\pi\)
\(938\) 0 0
\(939\) −44.0000 −1.43589
\(940\) 0 0
\(941\) −20.0000 −0.651981 −0.325991 0.945373i \(-0.605698\pi\)
−0.325991 + 0.945373i \(0.605698\pi\)
\(942\) 0 0
\(943\) −11.0000 −0.358209
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −38.0000 −1.23483 −0.617417 0.786636i \(-0.711821\pi\)
−0.617417 + 0.786636i \(0.711821\pi\)
\(948\) 0 0
\(949\) 7.00000 0.227230
\(950\) 0 0
\(951\) 10.0000 0.324272
\(952\) 0 0
\(953\) 38.0000 1.23094 0.615470 0.788160i \(-0.288966\pi\)
0.615470 + 0.788160i \(0.288966\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 50.0000 1.61627
\(958\) 0 0
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.00000 0.128631 0.0643157 0.997930i \(-0.479514\pi\)
0.0643157 + 0.997930i \(0.479514\pi\)
\(968\) 0 0
\(969\) 56.0000 1.79898
\(970\) 0 0
\(971\) −55.0000 −1.76503 −0.882517 0.470281i \(-0.844153\pi\)
−0.882517 + 0.470281i \(0.844153\pi\)
\(972\) 0 0
\(973\) 4.00000 0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.00000 −0.255943 −0.127971 0.991778i \(-0.540847\pi\)
−0.127971 + 0.991778i \(0.540847\pi\)
\(978\) 0 0
\(979\) −50.0000 −1.59801
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) −21.0000 −0.669796 −0.334898 0.942254i \(-0.608702\pi\)
−0.334898 + 0.942254i \(0.608702\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 16.0000 0.509286
\(988\) 0 0
\(989\) −1.00000 −0.0317982
\(990\) 0 0
\(991\) 28.0000 0.889449 0.444725 0.895667i \(-0.353302\pi\)
0.444725 + 0.895667i \(0.353302\pi\)
\(992\) 0 0
\(993\) 36.0000 1.14243
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 23.0000 0.728417 0.364209 0.931317i \(-0.381339\pi\)
0.364209 + 0.931317i \(0.381339\pi\)
\(998\) 0 0
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4600.2.a.c.1.1 1
4.3 odd 2 9200.2.a.bd.1.1 1
5.2 odd 4 4600.2.e.c.4049.2 2
5.3 odd 4 4600.2.e.c.4049.1 2
5.4 even 2 4600.2.a.n.1.1 yes 1
20.19 odd 2 9200.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4600.2.a.c.1.1 1 1.1 even 1 trivial
4600.2.a.n.1.1 yes 1 5.4 even 2
4600.2.e.c.4049.1 2 5.3 odd 4
4600.2.e.c.4049.2 2 5.2 odd 4
9200.2.a.i.1.1 1 20.19 odd 2
9200.2.a.bd.1.1 1 4.3 odd 2