Properties

Label 4600.2.a.bb.1.3
Level $4600$
Weight $2$
Character 4600.1
Self dual yes
Analytic conductor $36.731$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4600,2,Mod(1,4600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4600 = 2^{3} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.7311849298\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.15529.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.02228\) of defining polynomial
Character \(\chi\) \(=\) 4600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.751385 q^{3} +0.661751 q^{7} -2.43542 q^{9} +5.38282 q^{11} -3.45017 q^{13} -6.04457 q^{17} +1.38282 q^{19} +0.497230 q^{21} -1.00000 q^{23} -4.08409 q^{27} -3.34579 q^{29} +0.863303 q^{31} +4.04457 q^{33} -3.82073 q^{37} -2.59240 q^{39} -1.91037 q^{41} +5.88005 q^{43} +4.11192 q^{47} -6.56209 q^{49} -4.54180 q^{51} -3.00554 q^{53} +1.03903 q^{57} -14.1094 q^{59} -8.26841 q^{61} -1.61164 q^{63} +2.49723 q^{67} -0.751385 q^{69} +6.65372 q^{71} -12.7434 q^{73} +3.56209 q^{77} +8.64568 q^{79} +4.23753 q^{81} -5.06486 q^{83} -2.51397 q^{87} +2.22384 q^{89} -2.28315 q^{91} +0.648673 q^{93} -14.7211 q^{97} -13.1094 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{7} + 6 q^{9} + q^{11} - 3 q^{13} - 2 q^{17} - 15 q^{19} + 8 q^{21} - 4 q^{23} - 27 q^{27} + q^{29} - 12 q^{31} - 6 q^{33} - 18 q^{37} - 3 q^{39} - 9 q^{41} + 9 q^{43} + 4 q^{47} - 3 q^{49} - 2 q^{51}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.751385 0.433812 0.216906 0.976192i \(-0.430403\pi\)
0.216906 + 0.976192i \(0.430403\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.661751 0.250118 0.125059 0.992149i \(-0.460088\pi\)
0.125059 + 0.992149i \(0.460088\pi\)
\(8\) 0 0
\(9\) −2.43542 −0.811807
\(10\) 0 0
\(11\) 5.38282 1.62298 0.811490 0.584366i \(-0.198657\pi\)
0.811490 + 0.584366i \(0.198657\pi\)
\(12\) 0 0
\(13\) −3.45017 −0.956904 −0.478452 0.878114i \(-0.658802\pi\)
−0.478452 + 0.878114i \(0.658802\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.04457 −1.46602 −0.733012 0.680216i \(-0.761886\pi\)
−0.733012 + 0.680216i \(0.761886\pi\)
\(18\) 0 0
\(19\) 1.38282 0.317240 0.158620 0.987340i \(-0.449296\pi\)
0.158620 + 0.987340i \(0.449296\pi\)
\(20\) 0 0
\(21\) 0.497230 0.108504
\(22\) 0 0
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4.08409 −0.785984
\(28\) 0 0
\(29\) −3.34579 −0.621297 −0.310648 0.950525i \(-0.600546\pi\)
−0.310648 + 0.950525i \(0.600546\pi\)
\(30\) 0 0
\(31\) 0.863303 0.155054 0.0775269 0.996990i \(-0.475298\pi\)
0.0775269 + 0.996990i \(0.475298\pi\)
\(32\) 0 0
\(33\) 4.04457 0.704069
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.82073 −0.628124 −0.314062 0.949402i \(-0.601690\pi\)
−0.314062 + 0.949402i \(0.601690\pi\)
\(38\) 0 0
\(39\) −2.59240 −0.415117
\(40\) 0 0
\(41\) −1.91037 −0.298349 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(42\) 0 0
\(43\) 5.88005 0.896699 0.448349 0.893858i \(-0.352012\pi\)
0.448349 + 0.893858i \(0.352012\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.11192 0.599785 0.299892 0.953973i \(-0.403049\pi\)
0.299892 + 0.953973i \(0.403049\pi\)
\(48\) 0 0
\(49\) −6.56209 −0.937441
\(50\) 0 0
\(51\) −4.54180 −0.635979
\(52\) 0 0
\(53\) −3.00554 −0.412843 −0.206421 0.978463i \(-0.566182\pi\)
−0.206421 + 0.978463i \(0.566182\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.03903 0.137623
\(58\) 0 0
\(59\) −14.1094 −1.83689 −0.918445 0.395548i \(-0.870555\pi\)
−0.918445 + 0.395548i \(0.870555\pi\)
\(60\) 0 0
\(61\) −8.26841 −1.05866 −0.529330 0.848416i \(-0.677557\pi\)
−0.529330 + 0.848416i \(0.677557\pi\)
\(62\) 0 0
\(63\) −1.61164 −0.203048
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.49723 0.305085 0.152543 0.988297i \(-0.451254\pi\)
0.152543 + 0.988297i \(0.451254\pi\)
\(68\) 0 0
\(69\) −0.751385 −0.0904561
\(70\) 0 0
\(71\) 6.65372 0.789651 0.394825 0.918756i \(-0.370805\pi\)
0.394825 + 0.918756i \(0.370805\pi\)
\(72\) 0 0
\(73\) −12.7434 −1.49150 −0.745748 0.666228i \(-0.767908\pi\)
−0.745748 + 0.666228i \(0.767908\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.56209 0.405937
\(78\) 0 0
\(79\) 8.64568 0.972715 0.486358 0.873760i \(-0.338325\pi\)
0.486358 + 0.873760i \(0.338325\pi\)
\(80\) 0 0
\(81\) 4.23753 0.470837
\(82\) 0 0
\(83\) −5.06486 −0.555940 −0.277970 0.960590i \(-0.589662\pi\)
−0.277970 + 0.960590i \(0.589662\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.51397 −0.269526
\(88\) 0 0
\(89\) 2.22384 0.235726 0.117863 0.993030i \(-0.462396\pi\)
0.117863 + 0.993030i \(0.462396\pi\)
\(90\) 0 0
\(91\) −2.28315 −0.239339
\(92\) 0 0
\(93\) 0.648673 0.0672643
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −14.7211 −1.49470 −0.747349 0.664432i \(-0.768674\pi\)
−0.747349 + 0.664432i \(0.768674\pi\)
\(98\) 0 0
\(99\) −13.1094 −1.31755
\(100\) 0 0
\(101\) −2.88005 −0.286575 −0.143288 0.989681i \(-0.545767\pi\)
−0.143288 + 0.989681i \(0.545767\pi\)
\(102\) 0 0
\(103\) −6.70632 −0.660793 −0.330397 0.943842i \(-0.607183\pi\)
−0.330397 + 0.943842i \(0.607183\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 13.4126 1.28470 0.642349 0.766412i \(-0.277960\pi\)
0.642349 + 0.766412i \(0.277960\pi\)
\(110\) 0 0
\(111\) −2.87084 −0.272488
\(112\) 0 0
\(113\) 3.03903 0.285888 0.142944 0.989731i \(-0.454343\pi\)
0.142944 + 0.989731i \(0.454343\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 8.40261 0.776821
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) 17.9747 1.63407
\(122\) 0 0
\(123\) −1.43542 −0.129428
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0.863303 0.0766058 0.0383029 0.999266i \(-0.487805\pi\)
0.0383029 + 0.999266i \(0.487805\pi\)
\(128\) 0 0
\(129\) 4.41818 0.388999
\(130\) 0 0
\(131\) −1.83498 −0.160323 −0.0801616 0.996782i \(-0.525544\pi\)
−0.0801616 + 0.996782i \(0.525544\pi\)
\(132\) 0 0
\(133\) 0.915081 0.0793476
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.32350 −0.454817 −0.227409 0.973799i \(-0.573025\pi\)
−0.227409 + 0.973799i \(0.573025\pi\)
\(138\) 0 0
\(139\) −7.88808 −0.669058 −0.334529 0.942385i \(-0.608577\pi\)
−0.334529 + 0.942385i \(0.608577\pi\)
\(140\) 0 0
\(141\) 3.08963 0.260194
\(142\) 0 0
\(143\) −18.5716 −1.55304
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −4.93065 −0.406673
\(148\) 0 0
\(149\) 7.57683 0.620718 0.310359 0.950619i \(-0.399551\pi\)
0.310359 + 0.950619i \(0.399551\pi\)
\(150\) 0 0
\(151\) 9.30072 0.756882 0.378441 0.925625i \(-0.376460\pi\)
0.378441 + 0.925625i \(0.376460\pi\)
\(152\) 0 0
\(153\) 14.7211 1.19013
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.4477 −0.993432 −0.496716 0.867913i \(-0.665461\pi\)
−0.496716 + 0.867913i \(0.665461\pi\)
\(158\) 0 0
\(159\) −2.25832 −0.179096
\(160\) 0 0
\(161\) −0.661751 −0.0521533
\(162\) 0 0
\(163\) −11.2553 −0.881585 −0.440793 0.897609i \(-0.645303\pi\)
−0.440793 + 0.897609i \(0.645303\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.985253 0.0762412 0.0381206 0.999273i \(-0.487863\pi\)
0.0381206 + 0.999273i \(0.487863\pi\)
\(168\) 0 0
\(169\) −1.09635 −0.0843343
\(170\) 0 0
\(171\) −3.36774 −0.257538
\(172\) 0 0
\(173\) −23.8253 −1.81140 −0.905701 0.423917i \(-0.860655\pi\)
−0.905701 + 0.423917i \(0.860655\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −10.6016 −0.796866
\(178\) 0 0
\(179\) −9.82827 −0.734599 −0.367300 0.930103i \(-0.619718\pi\)
−0.367300 + 0.930103i \(0.619718\pi\)
\(180\) 0 0
\(181\) 14.4972 1.07757 0.538785 0.842443i \(-0.318883\pi\)
0.538785 + 0.842443i \(0.318883\pi\)
\(182\) 0 0
\(183\) −6.21276 −0.459260
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −32.5368 −2.37933
\(188\) 0 0
\(189\) −2.70265 −0.196589
\(190\) 0 0
\(191\) 26.0432 1.88442 0.942212 0.335018i \(-0.108743\pi\)
0.942212 + 0.335018i \(0.108743\pi\)
\(192\) 0 0
\(193\) 22.3768 1.61072 0.805358 0.592789i \(-0.201973\pi\)
0.805358 + 0.592789i \(0.201973\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −20.7946 −1.48156 −0.740778 0.671750i \(-0.765543\pi\)
−0.740778 + 0.671750i \(0.765543\pi\)
\(198\) 0 0
\(199\) −17.2927 −1.22585 −0.612923 0.790143i \(-0.710006\pi\)
−0.612923 + 0.790143i \(0.710006\pi\)
\(200\) 0 0
\(201\) 1.87638 0.132350
\(202\) 0 0
\(203\) −2.21408 −0.155398
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.43542 0.169273
\(208\) 0 0
\(209\) 7.44345 0.514875
\(210\) 0 0
\(211\) −23.8289 −1.64045 −0.820226 0.572039i \(-0.806152\pi\)
−0.820226 + 0.572039i \(0.806152\pi\)
\(212\) 0 0
\(213\) 4.99950 0.342560
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.571292 0.0387818
\(218\) 0 0
\(219\) −9.57516 −0.647030
\(220\) 0 0
\(221\) 20.8548 1.40284
\(222\) 0 0
\(223\) 0.656211 0.0439431 0.0219716 0.999759i \(-0.493006\pi\)
0.0219716 + 0.999759i \(0.493006\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.76009 0.382311 0.191155 0.981560i \(-0.438777\pi\)
0.191155 + 0.981560i \(0.438777\pi\)
\(228\) 0 0
\(229\) 11.1848 0.739113 0.369556 0.929208i \(-0.379510\pi\)
0.369556 + 0.929208i \(0.379510\pi\)
\(230\) 0 0
\(231\) 2.67650 0.176101
\(232\) 0 0
\(233\) 7.28597 0.477320 0.238660 0.971103i \(-0.423292\pi\)
0.238660 + 0.971103i \(0.423292\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 6.49624 0.421976
\(238\) 0 0
\(239\) −26.2532 −1.69818 −0.849088 0.528252i \(-0.822848\pi\)
−0.849088 + 0.528252i \(0.822848\pi\)
\(240\) 0 0
\(241\) 14.8708 0.957915 0.478958 0.877838i \(-0.341015\pi\)
0.478958 + 0.877838i \(0.341015\pi\)
\(242\) 0 0
\(243\) 15.4363 0.990239
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.77095 −0.303568
\(248\) 0 0
\(249\) −3.80566 −0.241174
\(250\) 0 0
\(251\) 27.5424 1.73846 0.869229 0.494410i \(-0.164616\pi\)
0.869229 + 0.494410i \(0.164616\pi\)
\(252\) 0 0
\(253\) −5.38282 −0.338415
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −26.0994 −1.62804 −0.814018 0.580840i \(-0.802724\pi\)
−0.814018 + 0.580840i \(0.802724\pi\)
\(258\) 0 0
\(259\) −2.52837 −0.157105
\(260\) 0 0
\(261\) 8.14840 0.504373
\(262\) 0 0
\(263\) 10.9600 0.675821 0.337911 0.941178i \(-0.390280\pi\)
0.337911 + 0.941178i \(0.390280\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.67096 0.102261
\(268\) 0 0
\(269\) −16.6229 −1.01352 −0.506758 0.862088i \(-0.669156\pi\)
−0.506758 + 0.862088i \(0.669156\pi\)
\(270\) 0 0
\(271\) −28.8751 −1.75403 −0.877017 0.480458i \(-0.840470\pi\)
−0.877017 + 0.480458i \(0.840470\pi\)
\(272\) 0 0
\(273\) −1.71553 −0.103828
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −26.4472 −1.58906 −0.794528 0.607227i \(-0.792282\pi\)
−0.794528 + 0.607227i \(0.792282\pi\)
\(278\) 0 0
\(279\) −2.10251 −0.125874
\(280\) 0 0
\(281\) −10.3625 −0.618177 −0.309088 0.951033i \(-0.600024\pi\)
−0.309088 + 0.951033i \(0.600024\pi\)
\(282\) 0 0
\(283\) −0.709986 −0.0422043 −0.0211021 0.999777i \(-0.506718\pi\)
−0.0211021 + 0.999777i \(0.506718\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.26419 −0.0746226
\(288\) 0 0
\(289\) 19.5368 1.14922
\(290\) 0 0
\(291\) −11.0612 −0.648418
\(292\) 0 0
\(293\) 6.49224 0.379281 0.189640 0.981854i \(-0.439268\pi\)
0.189640 + 0.981854i \(0.439268\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −21.9839 −1.27564
\(298\) 0 0
\(299\) 3.45017 0.199528
\(300\) 0 0
\(301\) 3.89113 0.224281
\(302\) 0 0
\(303\) −2.16402 −0.124320
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −5.03903 −0.286660
\(310\) 0 0
\(311\) −14.8673 −0.843047 −0.421524 0.906817i \(-0.638505\pi\)
−0.421524 + 0.906817i \(0.638505\pi\)
\(312\) 0 0
\(313\) −14.2523 −0.805590 −0.402795 0.915290i \(-0.631961\pi\)
−0.402795 + 0.915290i \(0.631961\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.3388 0.805347 0.402674 0.915344i \(-0.368081\pi\)
0.402674 + 0.915344i \(0.368081\pi\)
\(318\) 0 0
\(319\) −18.0098 −1.00835
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.35854 −0.465081
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.0781 0.557318
\(328\) 0 0
\(329\) 2.72107 0.150017
\(330\) 0 0
\(331\) 22.4931 1.23633 0.618165 0.786048i \(-0.287876\pi\)
0.618165 + 0.786048i \(0.287876\pi\)
\(332\) 0 0
\(333\) 9.30509 0.509916
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −10.8152 −0.589141 −0.294571 0.955630i \(-0.595177\pi\)
−0.294571 + 0.955630i \(0.595177\pi\)
\(338\) 0 0
\(339\) 2.28348 0.124022
\(340\) 0 0
\(341\) 4.64700 0.251649
\(342\) 0 0
\(343\) −8.97473 −0.484590
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.5516 0.727486 0.363743 0.931499i \(-0.381499\pi\)
0.363743 + 0.931499i \(0.381499\pi\)
\(348\) 0 0
\(349\) 0.102160 0.00546848 0.00273424 0.999996i \(-0.499130\pi\)
0.00273424 + 0.999996i \(0.499130\pi\)
\(350\) 0 0
\(351\) 14.0908 0.752112
\(352\) 0 0
\(353\) −1.46269 −0.0778513 −0.0389256 0.999242i \(-0.512394\pi\)
−0.0389256 + 0.999242i \(0.512394\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −3.00554 −0.159070
\(358\) 0 0
\(359\) 23.2726 1.22828 0.614141 0.789196i \(-0.289503\pi\)
0.614141 + 0.789196i \(0.289503\pi\)
\(360\) 0 0
\(361\) −17.0878 −0.899359
\(362\) 0 0
\(363\) 13.5059 0.708878
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 33.0153 1.72338 0.861692 0.507431i \(-0.169405\pi\)
0.861692 + 0.507431i \(0.169405\pi\)
\(368\) 0 0
\(369\) 4.65254 0.242202
\(370\) 0 0
\(371\) −1.98892 −0.103260
\(372\) 0 0
\(373\) −9.49778 −0.491777 −0.245888 0.969298i \(-0.579080\pi\)
−0.245888 + 0.969298i \(0.579080\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11.5435 0.594522
\(378\) 0 0
\(379\) −16.3585 −0.840282 −0.420141 0.907459i \(-0.638019\pi\)
−0.420141 + 0.907459i \(0.638019\pi\)
\(380\) 0 0
\(381\) 0.648673 0.0332325
\(382\) 0 0
\(383\) 8.95965 0.457817 0.228908 0.973448i \(-0.426484\pi\)
0.228908 + 0.973448i \(0.426484\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −14.3204 −0.727946
\(388\) 0 0
\(389\) 15.3185 0.776679 0.388340 0.921516i \(-0.373049\pi\)
0.388340 + 0.921516i \(0.373049\pi\)
\(390\) 0 0
\(391\) 6.04457 0.305687
\(392\) 0 0
\(393\) −1.37878 −0.0695502
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 36.8128 1.84758 0.923790 0.382901i \(-0.125075\pi\)
0.923790 + 0.382901i \(0.125075\pi\)
\(398\) 0 0
\(399\) 0.687578 0.0344220
\(400\) 0 0
\(401\) −33.1232 −1.65409 −0.827046 0.562134i \(-0.809981\pi\)
−0.827046 + 0.562134i \(0.809981\pi\)
\(402\) 0 0
\(403\) −2.97854 −0.148372
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.5663 −1.01943
\(408\) 0 0
\(409\) 5.63298 0.278533 0.139266 0.990255i \(-0.455526\pi\)
0.139266 + 0.990255i \(0.455526\pi\)
\(410\) 0 0
\(411\) −4.00000 −0.197305
\(412\) 0 0
\(413\) −9.33693 −0.459440
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −5.92699 −0.290246
\(418\) 0 0
\(419\) 0.695239 0.0339647 0.0169823 0.999856i \(-0.494594\pi\)
0.0169823 + 0.999856i \(0.494594\pi\)
\(420\) 0 0
\(421\) 33.3926 1.62745 0.813727 0.581247i \(-0.197435\pi\)
0.813727 + 0.581247i \(0.197435\pi\)
\(422\) 0 0
\(423\) −10.0143 −0.486910
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5.47163 −0.264791
\(428\) 0 0
\(429\) −13.9544 −0.673727
\(430\) 0 0
\(431\) −10.2684 −0.494612 −0.247306 0.968937i \(-0.579545\pi\)
−0.247306 + 0.968937i \(0.579545\pi\)
\(432\) 0 0
\(433\) −8.79513 −0.422667 −0.211333 0.977414i \(-0.567781\pi\)
−0.211333 + 0.977414i \(0.567781\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.38282 −0.0661491
\(438\) 0 0
\(439\) 10.5226 0.502214 0.251107 0.967959i \(-0.419205\pi\)
0.251107 + 0.967959i \(0.419205\pi\)
\(440\) 0 0
\(441\) 15.9814 0.761021
\(442\) 0 0
\(443\) −31.0424 −1.47487 −0.737435 0.675419i \(-0.763963\pi\)
−0.737435 + 0.675419i \(0.763963\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5.69312 0.269275
\(448\) 0 0
\(449\) 19.5565 0.922930 0.461465 0.887158i \(-0.347324\pi\)
0.461465 + 0.887158i \(0.347324\pi\)
\(450\) 0 0
\(451\) −10.2832 −0.484215
\(452\) 0 0
\(453\) 6.98842 0.328345
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.29001 −0.153900 −0.0769502 0.997035i \(-0.524518\pi\)
−0.0769502 + 0.997035i \(0.524518\pi\)
\(458\) 0 0
\(459\) 24.6866 1.15227
\(460\) 0 0
\(461\) −12.6229 −0.587907 −0.293954 0.955820i \(-0.594971\pi\)
−0.293954 + 0.955820i \(0.594971\pi\)
\(462\) 0 0
\(463\) 35.4008 1.64521 0.822607 0.568610i \(-0.192519\pi\)
0.822607 + 0.568610i \(0.192519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.4624 −0.669241 −0.334620 0.942353i \(-0.608608\pi\)
−0.334620 + 0.942353i \(0.608608\pi\)
\(468\) 0 0
\(469\) 1.65254 0.0763074
\(470\) 0 0
\(471\) −9.35300 −0.430963
\(472\) 0 0
\(473\) 31.6512 1.45532
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.31975 0.335149
\(478\) 0 0
\(479\) 32.0288 1.46343 0.731717 0.681608i \(-0.238719\pi\)
0.731717 + 0.681608i \(0.238719\pi\)
\(480\) 0 0
\(481\) 13.1822 0.601055
\(482\) 0 0
\(483\) −0.497230 −0.0226247
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −9.76446 −0.442470 −0.221235 0.975221i \(-0.571009\pi\)
−0.221235 + 0.975221i \(0.571009\pi\)
\(488\) 0 0
\(489\) −8.45708 −0.382443
\(490\) 0 0
\(491\) 21.9722 0.991593 0.495796 0.868439i \(-0.334876\pi\)
0.495796 + 0.868439i \(0.334876\pi\)
\(492\) 0 0
\(493\) 20.2238 0.910836
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.40310 0.197506
\(498\) 0 0
\(499\) −20.9002 −0.935620 −0.467810 0.883829i \(-0.654957\pi\)
−0.467810 + 0.883829i \(0.654957\pi\)
\(500\) 0 0
\(501\) 0.740305 0.0330744
\(502\) 0 0
\(503\) −44.1300 −1.96766 −0.983831 0.179101i \(-0.942681\pi\)
−0.983831 + 0.179101i \(0.942681\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.823778 −0.0365853
\(508\) 0 0
\(509\) 7.07334 0.313520 0.156760 0.987637i \(-0.449895\pi\)
0.156760 + 0.987637i \(0.449895\pi\)
\(510\) 0 0
\(511\) −8.43293 −0.373051
\(512\) 0 0
\(513\) −5.64756 −0.249346
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 22.1337 0.973439
\(518\) 0 0
\(519\) −17.9020 −0.785809
\(520\) 0 0
\(521\) −41.9344 −1.83718 −0.918589 0.395214i \(-0.870671\pi\)
−0.918589 + 0.395214i \(0.870671\pi\)
\(522\) 0 0
\(523\) −12.5676 −0.549544 −0.274772 0.961509i \(-0.588602\pi\)
−0.274772 + 0.961509i \(0.588602\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5.21830 −0.227313
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 34.3624 1.49120
\(532\) 0 0
\(533\) 6.59108 0.285491
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −7.38482 −0.318678
\(538\) 0 0
\(539\) −35.3225 −1.52145
\(540\) 0 0
\(541\) 11.9804 0.515079 0.257540 0.966268i \(-0.417088\pi\)
0.257540 + 0.966268i \(0.417088\pi\)
\(542\) 0 0
\(543\) 10.8930 0.467463
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10.8045 0.461966 0.230983 0.972958i \(-0.425806\pi\)
0.230983 + 0.972958i \(0.425806\pi\)
\(548\) 0 0
\(549\) 20.1370 0.859428
\(550\) 0 0
\(551\) −4.62661 −0.197100
\(552\) 0 0
\(553\) 5.72129 0.243294
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −43.6053 −1.84762 −0.923809 0.382855i \(-0.874941\pi\)
−0.923809 + 0.382855i \(0.874941\pi\)
\(558\) 0 0
\(559\) −20.2871 −0.858055
\(560\) 0 0
\(561\) −24.4477 −1.03218
\(562\) 0 0
\(563\) −18.3794 −0.774598 −0.387299 0.921954i \(-0.626592\pi\)
−0.387299 + 0.921954i \(0.626592\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.80419 0.117765
\(568\) 0 0
\(569\) 27.7863 1.16486 0.582430 0.812881i \(-0.302102\pi\)
0.582430 + 0.812881i \(0.302102\pi\)
\(570\) 0 0
\(571\) 8.35355 0.349585 0.174793 0.984605i \(-0.444075\pi\)
0.174793 + 0.984605i \(0.444075\pi\)
\(572\) 0 0
\(573\) 19.5685 0.817486
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −4.43610 −0.184677 −0.0923385 0.995728i \(-0.529434\pi\)
−0.0923385 + 0.995728i \(0.529434\pi\)
\(578\) 0 0
\(579\) 16.8136 0.698748
\(580\) 0 0
\(581\) −3.35167 −0.139051
\(582\) 0 0
\(583\) −16.1783 −0.670036
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.4980 1.34133 0.670667 0.741758i \(-0.266008\pi\)
0.670667 + 0.741758i \(0.266008\pi\)
\(588\) 0 0
\(589\) 1.19379 0.0491893
\(590\) 0 0
\(591\) −15.6248 −0.642717
\(592\) 0 0
\(593\) 26.0098 1.06809 0.534046 0.845455i \(-0.320671\pi\)
0.534046 + 0.845455i \(0.320671\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −12.9935 −0.531787
\(598\) 0 0
\(599\) 20.9853 0.857434 0.428717 0.903439i \(-0.358966\pi\)
0.428717 + 0.903439i \(0.358966\pi\)
\(600\) 0 0
\(601\) −4.35000 −0.177440 −0.0887202 0.996057i \(-0.528278\pi\)
−0.0887202 + 0.996057i \(0.528278\pi\)
\(602\) 0 0
\(603\) −6.08180 −0.247670
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −11.8117 −0.479424 −0.239712 0.970844i \(-0.577053\pi\)
−0.239712 + 0.970844i \(0.577053\pi\)
\(608\) 0 0
\(609\) −1.66363 −0.0674135
\(610\) 0 0
\(611\) −14.1868 −0.573937
\(612\) 0 0
\(613\) 20.7767 0.839164 0.419582 0.907718i \(-0.362177\pi\)
0.419582 + 0.907718i \(0.362177\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −24.3059 −0.978518 −0.489259 0.872138i \(-0.662733\pi\)
−0.489259 + 0.872138i \(0.662733\pi\)
\(618\) 0 0
\(619\) 1.83581 0.0737873 0.0368937 0.999319i \(-0.488254\pi\)
0.0368937 + 0.999319i \(0.488254\pi\)
\(620\) 0 0
\(621\) 4.08409 0.163889
\(622\) 0 0
\(623\) 1.47163 0.0589595
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5.59290 0.223359
\(628\) 0 0
\(629\) 23.0947 0.920845
\(630\) 0 0
\(631\) 24.7003 0.983305 0.491652 0.870792i \(-0.336393\pi\)
0.491652 + 0.870792i \(0.336393\pi\)
\(632\) 0 0
\(633\) −17.9047 −0.711648
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 22.6403 0.897041
\(638\) 0 0
\(639\) −16.2046 −0.641044
\(640\) 0 0
\(641\) 6.91141 0.272984 0.136492 0.990641i \(-0.456417\pi\)
0.136492 + 0.990641i \(0.456417\pi\)
\(642\) 0 0
\(643\) 3.88404 0.153172 0.0765858 0.997063i \(-0.475598\pi\)
0.0765858 + 0.997063i \(0.475598\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.4296 −0.685229 −0.342614 0.939476i \(-0.611312\pi\)
−0.342614 + 0.939476i \(0.611312\pi\)
\(648\) 0 0
\(649\) −75.9485 −2.98124
\(650\) 0 0
\(651\) 0.429260 0.0168240
\(652\) 0 0
\(653\) −7.04624 −0.275741 −0.137870 0.990450i \(-0.544026\pi\)
−0.137870 + 0.990450i \(0.544026\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 31.0354 1.21081
\(658\) 0 0
\(659\) 6.69124 0.260654 0.130327 0.991471i \(-0.458397\pi\)
0.130327 + 0.991471i \(0.458397\pi\)
\(660\) 0 0
\(661\) 23.8653 0.928253 0.464126 0.885769i \(-0.346368\pi\)
0.464126 + 0.885769i \(0.346368\pi\)
\(662\) 0 0
\(663\) 15.6700 0.608571
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.34579 0.129549
\(668\) 0 0
\(669\) 0.493067 0.0190631
\(670\) 0 0
\(671\) −44.5073 −1.71819
\(672\) 0 0
\(673\) −15.5318 −0.598706 −0.299353 0.954142i \(-0.596771\pi\)
−0.299353 + 0.954142i \(0.596771\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −34.2339 −1.31572 −0.657858 0.753142i \(-0.728537\pi\)
−0.657858 + 0.753142i \(0.728537\pi\)
\(678\) 0 0
\(679\) −9.74168 −0.373851
\(680\) 0 0
\(681\) 4.32805 0.165851
\(682\) 0 0
\(683\) −16.5788 −0.634371 −0.317186 0.948363i \(-0.602738\pi\)
−0.317186 + 0.948363i \(0.602738\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 8.40410 0.320636
\(688\) 0 0
\(689\) 10.3696 0.395051
\(690\) 0 0
\(691\) −2.36774 −0.0900732 −0.0450366 0.998985i \(-0.514340\pi\)
−0.0450366 + 0.998985i \(0.514340\pi\)
\(692\) 0 0
\(693\) −8.67518 −0.329543
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 11.5473 0.437387
\(698\) 0 0
\(699\) 5.47457 0.207067
\(700\) 0 0
\(701\) 40.8849 1.54420 0.772101 0.635500i \(-0.219206\pi\)
0.772101 + 0.635500i \(0.219206\pi\)
\(702\) 0 0
\(703\) −5.28338 −0.199266
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.90587 −0.0716778
\(708\) 0 0
\(709\) −11.9354 −0.448242 −0.224121 0.974561i \(-0.571951\pi\)
−0.224121 + 0.974561i \(0.571951\pi\)
\(710\) 0 0
\(711\) −21.0559 −0.789657
\(712\) 0 0
\(713\) −0.863303 −0.0323310
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −19.7262 −0.736690
\(718\) 0 0
\(719\) −7.21331 −0.269011 −0.134506 0.990913i \(-0.542945\pi\)
−0.134506 + 0.990913i \(0.542945\pi\)
\(720\) 0 0
\(721\) −4.43791 −0.165277
\(722\) 0 0
\(723\) 11.1737 0.415555
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 49.3326 1.82964 0.914822 0.403856i \(-0.132330\pi\)
0.914822 + 0.403856i \(0.132330\pi\)
\(728\) 0 0
\(729\) −1.11400 −0.0412592
\(730\) 0 0
\(731\) −35.5424 −1.31458
\(732\) 0 0
\(733\) 27.0029 0.997375 0.498687 0.866782i \(-0.333816\pi\)
0.498687 + 0.866782i \(0.333816\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.4421 0.495147
\(738\) 0 0
\(739\) −15.2999 −0.562816 −0.281408 0.959588i \(-0.590801\pi\)
−0.281408 + 0.959588i \(0.590801\pi\)
\(740\) 0 0
\(741\) −3.58482 −0.131692
\(742\) 0 0
\(743\) −11.6767 −0.428377 −0.214189 0.976792i \(-0.568711\pi\)
−0.214189 + 0.976792i \(0.568711\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.3351 0.451316
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −34.3589 −1.25377 −0.626886 0.779111i \(-0.715671\pi\)
−0.626886 + 0.779111i \(0.715671\pi\)
\(752\) 0 0
\(753\) 20.6949 0.754164
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37.6164 1.36719 0.683596 0.729861i \(-0.260415\pi\)
0.683596 + 0.729861i \(0.260415\pi\)
\(758\) 0 0
\(759\) −4.04457 −0.146809
\(760\) 0 0
\(761\) −15.2788 −0.553856 −0.276928 0.960891i \(-0.589316\pi\)
−0.276928 + 0.960891i \(0.589316\pi\)
\(762\) 0 0
\(763\) 8.87583 0.321327
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 48.6799 1.75773
\(768\) 0 0
\(769\) 32.0346 1.15520 0.577598 0.816321i \(-0.303990\pi\)
0.577598 + 0.816321i \(0.303990\pi\)
\(770\) 0 0
\(771\) −19.6107 −0.706262
\(772\) 0 0
\(773\) −32.3425 −1.16328 −0.581639 0.813447i \(-0.697588\pi\)
−0.581639 + 0.813447i \(0.697588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.89978 −0.0681543
\(778\) 0 0
\(779\) −2.64169 −0.0946483
\(780\) 0 0
\(781\) 35.8157 1.28159
\(782\) 0 0
\(783\) 13.6645 0.488330
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 48.7784 1.73876 0.869381 0.494142i \(-0.164518\pi\)
0.869381 + 0.494142i \(0.164518\pi\)
\(788\) 0 0
\(789\) 8.23516 0.293180
\(790\) 0 0
\(791\) 2.01108 0.0715058
\(792\) 0 0
\(793\) 28.5274 1.01304
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 25.9481 0.919129 0.459564 0.888144i \(-0.348006\pi\)
0.459564 + 0.888144i \(0.348006\pi\)
\(798\) 0 0
\(799\) −24.8548 −0.879299
\(800\) 0 0
\(801\) −5.41598 −0.191364
\(802\) 0 0
\(803\) −68.5951 −2.42067
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12.4902 −0.439676
\(808\) 0 0
\(809\) −42.9009 −1.50831 −0.754157 0.656694i \(-0.771954\pi\)
−0.754157 + 0.656694i \(0.771954\pi\)
\(810\) 0 0
\(811\) 24.3947 0.856615 0.428308 0.903633i \(-0.359110\pi\)
0.428308 + 0.903633i \(0.359110\pi\)
\(812\) 0 0
\(813\) −21.6963 −0.760922
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.13103 0.284469
\(818\) 0 0
\(819\) 5.56044 0.194297
\(820\) 0 0
\(821\) 50.3621 1.75765 0.878825 0.477145i \(-0.158328\pi\)
0.878825 + 0.477145i \(0.158328\pi\)
\(822\) 0 0
\(823\) 10.4334 0.363686 0.181843 0.983328i \(-0.441794\pi\)
0.181843 + 0.983328i \(0.441794\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.1756 0.910215 0.455107 0.890437i \(-0.349601\pi\)
0.455107 + 0.890437i \(0.349601\pi\)
\(828\) 0 0
\(829\) 19.3776 0.673012 0.336506 0.941681i \(-0.390755\pi\)
0.336506 + 0.941681i \(0.390755\pi\)
\(830\) 0 0
\(831\) −19.8720 −0.689353
\(832\) 0 0
\(833\) 39.6650 1.37431
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3.52581 −0.121870
\(838\) 0 0
\(839\) 15.5611 0.537229 0.268614 0.963248i \(-0.413434\pi\)
0.268614 + 0.963248i \(0.413434\pi\)
\(840\) 0 0
\(841\) −17.8057 −0.613990
\(842\) 0 0
\(843\) −7.78625 −0.268173
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 11.8948 0.408710
\(848\) 0 0
\(849\) −0.533473 −0.0183087
\(850\) 0 0
\(851\) 3.82073 0.130973
\(852\) 0 0
\(853\) 19.7293 0.675518 0.337759 0.941233i \(-0.390331\pi\)
0.337759 + 0.941233i \(0.390331\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 56.9689 1.94602 0.973010 0.230764i \(-0.0741226\pi\)
0.973010 + 0.230764i \(0.0741226\pi\)
\(858\) 0 0
\(859\) 34.9414 1.19218 0.596092 0.802916i \(-0.296719\pi\)
0.596092 + 0.802916i \(0.296719\pi\)
\(860\) 0 0
\(861\) −0.949891 −0.0323722
\(862\) 0 0
\(863\) 8.83953 0.300901 0.150451 0.988618i \(-0.451928\pi\)
0.150451 + 0.988618i \(0.451928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14.6797 0.498548
\(868\) 0 0
\(869\) 46.5381 1.57870
\(870\) 0 0
\(871\) −8.61586 −0.291937
\(872\) 0 0
\(873\) 35.8520 1.21341
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.1845 0.411441 0.205720 0.978611i \(-0.434046\pi\)
0.205720 + 0.978611i \(0.434046\pi\)
\(878\) 0 0
\(879\) 4.87817 0.164537
\(880\) 0 0
\(881\) −43.8764 −1.47823 −0.739116 0.673578i \(-0.764757\pi\)
−0.739116 + 0.673578i \(0.764757\pi\)
\(882\) 0 0
\(883\) 41.3713 1.39225 0.696127 0.717918i \(-0.254905\pi\)
0.696127 + 0.717918i \(0.254905\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.03886 −0.236342 −0.118171 0.992993i \(-0.537703\pi\)
−0.118171 + 0.992993i \(0.537703\pi\)
\(888\) 0 0
\(889\) 0.571292 0.0191605
\(890\) 0 0
\(891\) 22.8099 0.764160
\(892\) 0 0
\(893\) 5.68603 0.190276
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.59240 0.0865579
\(898\) 0 0
\(899\) −2.88843 −0.0963345
\(900\) 0 0
\(901\) 18.1672 0.605237
\(902\) 0 0
\(903\) 2.92374 0.0972958
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.53105 0.150451 0.0752255 0.997167i \(-0.476032\pi\)
0.0752255 + 0.997167i \(0.476032\pi\)
\(908\) 0 0
\(909\) 7.01413 0.232644
\(910\) 0 0
\(911\) −23.0849 −0.764837 −0.382419 0.923989i \(-0.624909\pi\)
−0.382419 + 0.923989i \(0.624909\pi\)
\(912\) 0 0
\(913\) −27.2632 −0.902280
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.21430 −0.0400998
\(918\) 0 0
\(919\) 11.5758 0.381852 0.190926 0.981604i \(-0.438851\pi\)
0.190926 + 0.981604i \(0.438851\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −22.9564 −0.755620
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 16.3327 0.536437
\(928\) 0 0
\(929\) 30.8660 1.01268 0.506340 0.862334i \(-0.330998\pi\)
0.506340 + 0.862334i \(0.330998\pi\)
\(930\) 0 0
\(931\) −9.07417 −0.297394
\(932\) 0 0
\(933\) −11.1711 −0.365724
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.127614 −0.00416896 −0.00208448 0.999998i \(-0.500664\pi\)
−0.00208448 + 0.999998i \(0.500664\pi\)
\(938\) 0 0
\(939\) −10.7090 −0.349475
\(940\) 0 0
\(941\) −44.5703 −1.45295 −0.726475 0.687193i \(-0.758843\pi\)
−0.726475 + 0.687193i \(0.758843\pi\)
\(942\) 0 0
\(943\) 1.91037 0.0622101
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.5467 1.18761 0.593804 0.804610i \(-0.297625\pi\)
0.593804 + 0.804610i \(0.297625\pi\)
\(948\) 0 0
\(949\) 43.9667 1.42722
\(950\) 0 0
\(951\) 10.7740 0.349370
\(952\) 0 0
\(953\) −14.9439 −0.484081 −0.242040 0.970266i \(-0.577817\pi\)
−0.242040 + 0.970266i \(0.577817\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −13.5323 −0.437436
\(958\) 0 0
\(959\) −3.52283 −0.113758
\(960\) 0 0
\(961\) −30.2547 −0.975958
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 32.3258 1.03953 0.519763 0.854310i \(-0.326020\pi\)
0.519763 + 0.854310i \(0.326020\pi\)
\(968\) 0 0
\(969\) −6.28048 −0.201758
\(970\) 0 0
\(971\) −13.5125 −0.433638 −0.216819 0.976212i \(-0.569568\pi\)
−0.216819 + 0.976212i \(0.569568\pi\)
\(972\) 0 0
\(973\) −5.21995 −0.167344
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −48.4226 −1.54918 −0.774588 0.632466i \(-0.782043\pi\)
−0.774588 + 0.632466i \(0.782043\pi\)
\(978\) 0 0
\(979\) 11.9705 0.382579
\(980\) 0 0
\(981\) −32.6654 −1.04293
\(982\) 0 0
\(983\) 21.7142 0.692576 0.346288 0.938128i \(-0.387442\pi\)
0.346288 + 0.938128i \(0.387442\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.04457 0.0650793
\(988\) 0 0
\(989\) −5.88005 −0.186975
\(990\) 0 0
\(991\) −25.6728 −0.815524 −0.407762 0.913088i \(-0.633691\pi\)
−0.407762 + 0.913088i \(0.633691\pi\)
\(992\) 0 0
\(993\) 16.9010 0.536336
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.4643 1.02815 0.514077 0.857744i \(-0.328134\pi\)
0.514077 + 0.857744i \(0.328134\pi\)
\(998\) 0 0
\(999\) 15.6042 0.493696
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4600.2.a.bb.1.3 yes 4
4.3 odd 2 9200.2.a.cn.1.2 4
5.2 odd 4 4600.2.e.t.4049.3 8
5.3 odd 4 4600.2.e.t.4049.6 8
5.4 even 2 4600.2.a.ba.1.2 4
20.19 odd 2 9200.2.a.cp.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4600.2.a.ba.1.2 4 5.4 even 2
4600.2.a.bb.1.3 yes 4 1.1 even 1 trivial
4600.2.e.t.4049.3 8 5.2 odd 4
4600.2.e.t.4049.6 8 5.3 odd 4
9200.2.a.cn.1.2 4 4.3 odd 2
9200.2.a.cp.1.3 4 20.19 odd 2