Properties

Label 460.4.a.b.1.4
Level $460$
Weight $4$
Character 460.1
Self dual yes
Analytic conductor $27.141$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [460,4,Mod(1,460)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("460.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(460, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 460.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.1408786026\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 80x^{3} + 121x^{2} + 1212x + 1044 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(6.72467\) of defining polynomial
Character \(\chi\) \(=\) 460.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.72467 q^{3} -5.00000 q^{5} -12.6137 q^{7} +5.77185 q^{9} -21.9786 q^{11} +37.2893 q^{13} -28.6233 q^{15} +62.5817 q^{17} -137.633 q^{19} -72.2093 q^{21} -23.0000 q^{23} +25.0000 q^{25} -121.524 q^{27} -71.8975 q^{29} -219.731 q^{31} -125.820 q^{33} +63.0685 q^{35} -296.223 q^{37} +213.469 q^{39} -305.282 q^{41} +140.234 q^{43} -28.8592 q^{45} -185.509 q^{47} -183.895 q^{49} +358.260 q^{51} +312.176 q^{53} +109.893 q^{55} -787.903 q^{57} -161.771 q^{59} +835.780 q^{61} -72.8043 q^{63} -186.447 q^{65} -24.5018 q^{67} -131.667 q^{69} -973.973 q^{71} -343.447 q^{73} +143.117 q^{75} +277.231 q^{77} +1214.62 q^{79} -851.526 q^{81} +749.055 q^{83} -312.908 q^{85} -411.590 q^{87} +811.662 q^{89} -470.356 q^{91} -1257.89 q^{93} +688.165 q^{95} +1026.90 q^{97} -126.857 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{3} - 25 q^{5} + 8 q^{7} + 30 q^{9} + 7 q^{11} + 5 q^{13} + 15 q^{15} - 24 q^{17} - 13 q^{19} - 115 q^{23} + 125 q^{25} - 204 q^{27} - 253 q^{29} - 98 q^{31} - 473 q^{33} - 40 q^{35} - 435 q^{37}+ \cdots + 111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.72467 1.10171 0.550857 0.834600i \(-0.314301\pi\)
0.550857 + 0.834600i \(0.314301\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −12.6137 −0.681076 −0.340538 0.940231i \(-0.610609\pi\)
−0.340538 + 0.940231i \(0.610609\pi\)
\(8\) 0 0
\(9\) 5.77185 0.213772
\(10\) 0 0
\(11\) −21.9786 −0.602435 −0.301217 0.953555i \(-0.597393\pi\)
−0.301217 + 0.953555i \(0.597393\pi\)
\(12\) 0 0
\(13\) 37.2893 0.795554 0.397777 0.917482i \(-0.369782\pi\)
0.397777 + 0.917482i \(0.369782\pi\)
\(14\) 0 0
\(15\) −28.6233 −0.492701
\(16\) 0 0
\(17\) 62.5817 0.892841 0.446420 0.894823i \(-0.352699\pi\)
0.446420 + 0.894823i \(0.352699\pi\)
\(18\) 0 0
\(19\) −137.633 −1.66185 −0.830925 0.556384i \(-0.812188\pi\)
−0.830925 + 0.556384i \(0.812188\pi\)
\(20\) 0 0
\(21\) −72.2093 −0.750350
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −121.524 −0.866198
\(28\) 0 0
\(29\) −71.8975 −0.460380 −0.230190 0.973146i \(-0.573935\pi\)
−0.230190 + 0.973146i \(0.573935\pi\)
\(30\) 0 0
\(31\) −219.731 −1.27306 −0.636531 0.771251i \(-0.719631\pi\)
−0.636531 + 0.771251i \(0.719631\pi\)
\(32\) 0 0
\(33\) −125.820 −0.663710
\(34\) 0 0
\(35\) 63.0685 0.304586
\(36\) 0 0
\(37\) −296.223 −1.31618 −0.658091 0.752939i \(-0.728636\pi\)
−0.658091 + 0.752939i \(0.728636\pi\)
\(38\) 0 0
\(39\) 213.469 0.876473
\(40\) 0 0
\(41\) −305.282 −1.16285 −0.581427 0.813599i \(-0.697505\pi\)
−0.581427 + 0.813599i \(0.697505\pi\)
\(42\) 0 0
\(43\) 140.234 0.497338 0.248669 0.968588i \(-0.420007\pi\)
0.248669 + 0.968588i \(0.420007\pi\)
\(44\) 0 0
\(45\) −28.8592 −0.0956018
\(46\) 0 0
\(47\) −185.509 −0.575730 −0.287865 0.957671i \(-0.592945\pi\)
−0.287865 + 0.957671i \(0.592945\pi\)
\(48\) 0 0
\(49\) −183.895 −0.536136
\(50\) 0 0
\(51\) 358.260 0.983654
\(52\) 0 0
\(53\) 312.176 0.809069 0.404534 0.914523i \(-0.367434\pi\)
0.404534 + 0.914523i \(0.367434\pi\)
\(54\) 0 0
\(55\) 109.893 0.269417
\(56\) 0 0
\(57\) −787.903 −1.83088
\(58\) 0 0
\(59\) −161.771 −0.356964 −0.178482 0.983943i \(-0.557119\pi\)
−0.178482 + 0.983943i \(0.557119\pi\)
\(60\) 0 0
\(61\) 835.780 1.75427 0.877137 0.480240i \(-0.159450\pi\)
0.877137 + 0.480240i \(0.159450\pi\)
\(62\) 0 0
\(63\) −72.8043 −0.145595
\(64\) 0 0
\(65\) −186.447 −0.355783
\(66\) 0 0
\(67\) −24.5018 −0.0446772 −0.0223386 0.999750i \(-0.507111\pi\)
−0.0223386 + 0.999750i \(0.507111\pi\)
\(68\) 0 0
\(69\) −131.667 −0.229723
\(70\) 0 0
\(71\) −973.973 −1.62802 −0.814009 0.580852i \(-0.802719\pi\)
−0.814009 + 0.580852i \(0.802719\pi\)
\(72\) 0 0
\(73\) −343.447 −0.550650 −0.275325 0.961351i \(-0.588786\pi\)
−0.275325 + 0.961351i \(0.588786\pi\)
\(74\) 0 0
\(75\) 143.117 0.220343
\(76\) 0 0
\(77\) 277.231 0.410304
\(78\) 0 0
\(79\) 1214.62 1.72981 0.864905 0.501935i \(-0.167378\pi\)
0.864905 + 0.501935i \(0.167378\pi\)
\(80\) 0 0
\(81\) −851.526 −1.16807
\(82\) 0 0
\(83\) 749.055 0.990597 0.495298 0.868723i \(-0.335059\pi\)
0.495298 + 0.868723i \(0.335059\pi\)
\(84\) 0 0
\(85\) −312.908 −0.399290
\(86\) 0 0
\(87\) −411.590 −0.507207
\(88\) 0 0
\(89\) 811.662 0.966696 0.483348 0.875428i \(-0.339421\pi\)
0.483348 + 0.875428i \(0.339421\pi\)
\(90\) 0 0
\(91\) −470.356 −0.541833
\(92\) 0 0
\(93\) −1257.89 −1.40255
\(94\) 0 0
\(95\) 688.165 0.743202
\(96\) 0 0
\(97\) 1026.90 1.07491 0.537455 0.843293i \(-0.319386\pi\)
0.537455 + 0.843293i \(0.319386\pi\)
\(98\) 0 0
\(99\) −126.857 −0.128784
\(100\) 0 0
\(101\) −788.330 −0.776651 −0.388326 0.921522i \(-0.626946\pi\)
−0.388326 + 0.921522i \(0.626946\pi\)
\(102\) 0 0
\(103\) 471.764 0.451304 0.225652 0.974208i \(-0.427549\pi\)
0.225652 + 0.974208i \(0.427549\pi\)
\(104\) 0 0
\(105\) 361.046 0.335567
\(106\) 0 0
\(107\) −1402.85 −1.26746 −0.633732 0.773553i \(-0.718478\pi\)
−0.633732 + 0.773553i \(0.718478\pi\)
\(108\) 0 0
\(109\) −2151.31 −1.89044 −0.945221 0.326432i \(-0.894154\pi\)
−0.945221 + 0.326432i \(0.894154\pi\)
\(110\) 0 0
\(111\) −1695.78 −1.45005
\(112\) 0 0
\(113\) 754.833 0.628396 0.314198 0.949358i \(-0.398264\pi\)
0.314198 + 0.949358i \(0.398264\pi\)
\(114\) 0 0
\(115\) 115.000 0.0932505
\(116\) 0 0
\(117\) 215.228 0.170067
\(118\) 0 0
\(119\) −789.387 −0.608092
\(120\) 0 0
\(121\) −847.943 −0.637072
\(122\) 0 0
\(123\) −1747.64 −1.28113
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 2161.28 1.51010 0.755050 0.655667i \(-0.227612\pi\)
0.755050 + 0.655667i \(0.227612\pi\)
\(128\) 0 0
\(129\) 802.796 0.547924
\(130\) 0 0
\(131\) 397.736 0.265270 0.132635 0.991165i \(-0.457656\pi\)
0.132635 + 0.991165i \(0.457656\pi\)
\(132\) 0 0
\(133\) 1736.06 1.13185
\(134\) 0 0
\(135\) 607.621 0.387375
\(136\) 0 0
\(137\) −1660.73 −1.03566 −0.517831 0.855483i \(-0.673260\pi\)
−0.517831 + 0.855483i \(0.673260\pi\)
\(138\) 0 0
\(139\) −997.853 −0.608897 −0.304449 0.952529i \(-0.598472\pi\)
−0.304449 + 0.952529i \(0.598472\pi\)
\(140\) 0 0
\(141\) −1061.98 −0.634289
\(142\) 0 0
\(143\) −819.566 −0.479270
\(144\) 0 0
\(145\) 359.488 0.205888
\(146\) 0 0
\(147\) −1052.74 −0.590668
\(148\) 0 0
\(149\) 3014.50 1.65743 0.828715 0.559671i \(-0.189072\pi\)
0.828715 + 0.559671i \(0.189072\pi\)
\(150\) 0 0
\(151\) −684.908 −0.369120 −0.184560 0.982821i \(-0.559086\pi\)
−0.184560 + 0.982821i \(0.559086\pi\)
\(152\) 0 0
\(153\) 361.212 0.190864
\(154\) 0 0
\(155\) 1098.66 0.569330
\(156\) 0 0
\(157\) 727.598 0.369864 0.184932 0.982751i \(-0.440794\pi\)
0.184932 + 0.982751i \(0.440794\pi\)
\(158\) 0 0
\(159\) 1787.10 0.891362
\(160\) 0 0
\(161\) 290.115 0.142014
\(162\) 0 0
\(163\) −768.718 −0.369390 −0.184695 0.982796i \(-0.559130\pi\)
−0.184695 + 0.982796i \(0.559130\pi\)
\(164\) 0 0
\(165\) 629.100 0.296820
\(166\) 0 0
\(167\) −243.397 −0.112782 −0.0563910 0.998409i \(-0.517959\pi\)
−0.0563910 + 0.998409i \(0.517959\pi\)
\(168\) 0 0
\(169\) −806.505 −0.367094
\(170\) 0 0
\(171\) −794.396 −0.355257
\(172\) 0 0
\(173\) −201.538 −0.0885702 −0.0442851 0.999019i \(-0.514101\pi\)
−0.0442851 + 0.999019i \(0.514101\pi\)
\(174\) 0 0
\(175\) −315.342 −0.136215
\(176\) 0 0
\(177\) −926.088 −0.393272
\(178\) 0 0
\(179\) −722.564 −0.301715 −0.150857 0.988556i \(-0.548203\pi\)
−0.150857 + 0.988556i \(0.548203\pi\)
\(180\) 0 0
\(181\) 2117.76 0.869678 0.434839 0.900508i \(-0.356805\pi\)
0.434839 + 0.900508i \(0.356805\pi\)
\(182\) 0 0
\(183\) 4784.57 1.93271
\(184\) 0 0
\(185\) 1481.11 0.588614
\(186\) 0 0
\(187\) −1375.46 −0.537878
\(188\) 0 0
\(189\) 1532.87 0.589946
\(190\) 0 0
\(191\) 82.9624 0.0314290 0.0157145 0.999877i \(-0.494998\pi\)
0.0157145 + 0.999877i \(0.494998\pi\)
\(192\) 0 0
\(193\) 1350.43 0.503657 0.251829 0.967772i \(-0.418968\pi\)
0.251829 + 0.967772i \(0.418968\pi\)
\(194\) 0 0
\(195\) −1067.35 −0.391970
\(196\) 0 0
\(197\) 4317.69 1.56154 0.780769 0.624820i \(-0.214828\pi\)
0.780769 + 0.624820i \(0.214828\pi\)
\(198\) 0 0
\(199\) 3026.27 1.07802 0.539011 0.842299i \(-0.318798\pi\)
0.539011 + 0.842299i \(0.318798\pi\)
\(200\) 0 0
\(201\) −140.265 −0.0492215
\(202\) 0 0
\(203\) 906.893 0.313554
\(204\) 0 0
\(205\) 1526.41 0.520044
\(206\) 0 0
\(207\) −132.752 −0.0445746
\(208\) 0 0
\(209\) 3024.97 1.00116
\(210\) 0 0
\(211\) 2292.01 0.747812 0.373906 0.927467i \(-0.378018\pi\)
0.373906 + 0.927467i \(0.378018\pi\)
\(212\) 0 0
\(213\) −5575.67 −1.79361
\(214\) 0 0
\(215\) −701.172 −0.222417
\(216\) 0 0
\(217\) 2771.62 0.867051
\(218\) 0 0
\(219\) −1966.12 −0.606659
\(220\) 0 0
\(221\) 2333.63 0.710303
\(222\) 0 0
\(223\) −2997.29 −0.900061 −0.450030 0.893013i \(-0.648587\pi\)
−0.450030 + 0.893013i \(0.648587\pi\)
\(224\) 0 0
\(225\) 144.296 0.0427544
\(226\) 0 0
\(227\) −5786.16 −1.69181 −0.845905 0.533333i \(-0.820939\pi\)
−0.845905 + 0.533333i \(0.820939\pi\)
\(228\) 0 0
\(229\) 4516.35 1.30327 0.651635 0.758532i \(-0.274083\pi\)
0.651635 + 0.758532i \(0.274083\pi\)
\(230\) 0 0
\(231\) 1587.05 0.452037
\(232\) 0 0
\(233\) 2990.75 0.840903 0.420452 0.907315i \(-0.361872\pi\)
0.420452 + 0.907315i \(0.361872\pi\)
\(234\) 0 0
\(235\) 927.546 0.257474
\(236\) 0 0
\(237\) 6953.28 1.90575
\(238\) 0 0
\(239\) 4043.74 1.09443 0.547213 0.836994i \(-0.315689\pi\)
0.547213 + 0.836994i \(0.315689\pi\)
\(240\) 0 0
\(241\) 3653.64 0.976564 0.488282 0.872686i \(-0.337624\pi\)
0.488282 + 0.872686i \(0.337624\pi\)
\(242\) 0 0
\(243\) −1593.55 −0.420684
\(244\) 0 0
\(245\) 919.473 0.239767
\(246\) 0 0
\(247\) −5132.24 −1.32209
\(248\) 0 0
\(249\) 4288.09 1.09135
\(250\) 0 0
\(251\) −6799.45 −1.70987 −0.854935 0.518735i \(-0.826403\pi\)
−0.854935 + 0.518735i \(0.826403\pi\)
\(252\) 0 0
\(253\) 505.507 0.125616
\(254\) 0 0
\(255\) −1791.30 −0.439904
\(256\) 0 0
\(257\) 179.925 0.0436710 0.0218355 0.999762i \(-0.493049\pi\)
0.0218355 + 0.999762i \(0.493049\pi\)
\(258\) 0 0
\(259\) 3736.46 0.896419
\(260\) 0 0
\(261\) −414.981 −0.0984165
\(262\) 0 0
\(263\) −1148.48 −0.269271 −0.134635 0.990895i \(-0.542986\pi\)
−0.134635 + 0.990895i \(0.542986\pi\)
\(264\) 0 0
\(265\) −1560.88 −0.361827
\(266\) 0 0
\(267\) 4646.50 1.06502
\(268\) 0 0
\(269\) 2999.90 0.679953 0.339976 0.940434i \(-0.389581\pi\)
0.339976 + 0.940434i \(0.389581\pi\)
\(270\) 0 0
\(271\) 5587.83 1.25253 0.626266 0.779609i \(-0.284582\pi\)
0.626266 + 0.779609i \(0.284582\pi\)
\(272\) 0 0
\(273\) −2692.64 −0.596944
\(274\) 0 0
\(275\) −549.464 −0.120487
\(276\) 0 0
\(277\) 6219.06 1.34898 0.674489 0.738285i \(-0.264364\pi\)
0.674489 + 0.738285i \(0.264364\pi\)
\(278\) 0 0
\(279\) −1268.26 −0.272145
\(280\) 0 0
\(281\) −6770.91 −1.43743 −0.718717 0.695303i \(-0.755270\pi\)
−0.718717 + 0.695303i \(0.755270\pi\)
\(282\) 0 0
\(283\) −7811.42 −1.64078 −0.820390 0.571804i \(-0.806244\pi\)
−0.820390 + 0.571804i \(0.806244\pi\)
\(284\) 0 0
\(285\) 3939.52 0.818796
\(286\) 0 0
\(287\) 3850.73 0.791991
\(288\) 0 0
\(289\) −996.531 −0.202836
\(290\) 0 0
\(291\) 5878.68 1.18424
\(292\) 0 0
\(293\) −8415.02 −1.67785 −0.838926 0.544246i \(-0.816816\pi\)
−0.838926 + 0.544246i \(0.816816\pi\)
\(294\) 0 0
\(295\) 808.857 0.159639
\(296\) 0 0
\(297\) 2670.93 0.521828
\(298\) 0 0
\(299\) −857.655 −0.165884
\(300\) 0 0
\(301\) −1768.87 −0.338725
\(302\) 0 0
\(303\) −4512.93 −0.855647
\(304\) 0 0
\(305\) −4178.90 −0.784535
\(306\) 0 0
\(307\) −9633.23 −1.79087 −0.895435 0.445192i \(-0.853135\pi\)
−0.895435 + 0.445192i \(0.853135\pi\)
\(308\) 0 0
\(309\) 2700.69 0.497207
\(310\) 0 0
\(311\) −7000.64 −1.27643 −0.638216 0.769858i \(-0.720327\pi\)
−0.638216 + 0.769858i \(0.720327\pi\)
\(312\) 0 0
\(313\) −2954.79 −0.533593 −0.266796 0.963753i \(-0.585965\pi\)
−0.266796 + 0.963753i \(0.585965\pi\)
\(314\) 0 0
\(315\) 364.022 0.0651120
\(316\) 0 0
\(317\) −4015.68 −0.711492 −0.355746 0.934583i \(-0.615773\pi\)
−0.355746 + 0.934583i \(0.615773\pi\)
\(318\) 0 0
\(319\) 1580.20 0.277349
\(320\) 0 0
\(321\) −8030.85 −1.39638
\(322\) 0 0
\(323\) −8613.30 −1.48377
\(324\) 0 0
\(325\) 932.234 0.159111
\(326\) 0 0
\(327\) −12315.5 −2.08272
\(328\) 0 0
\(329\) 2339.96 0.392116
\(330\) 0 0
\(331\) 596.567 0.0990644 0.0495322 0.998773i \(-0.484227\pi\)
0.0495322 + 0.998773i \(0.484227\pi\)
\(332\) 0 0
\(333\) −1709.75 −0.281363
\(334\) 0 0
\(335\) 122.509 0.0199802
\(336\) 0 0
\(337\) 2162.05 0.349479 0.174739 0.984615i \(-0.444092\pi\)
0.174739 + 0.984615i \(0.444092\pi\)
\(338\) 0 0
\(339\) 4321.17 0.692312
\(340\) 0 0
\(341\) 4829.38 0.766937
\(342\) 0 0
\(343\) 6646.09 1.04622
\(344\) 0 0
\(345\) 658.337 0.102735
\(346\) 0 0
\(347\) −8014.61 −1.23990 −0.619952 0.784639i \(-0.712848\pi\)
−0.619952 + 0.784639i \(0.712848\pi\)
\(348\) 0 0
\(349\) 3264.77 0.500743 0.250371 0.968150i \(-0.419447\pi\)
0.250371 + 0.968150i \(0.419447\pi\)
\(350\) 0 0
\(351\) −4531.56 −0.689107
\(352\) 0 0
\(353\) −6659.27 −1.00407 −0.502036 0.864847i \(-0.667416\pi\)
−0.502036 + 0.864847i \(0.667416\pi\)
\(354\) 0 0
\(355\) 4869.86 0.728072
\(356\) 0 0
\(357\) −4518.98 −0.669943
\(358\) 0 0
\(359\) 670.397 0.0985577 0.0492789 0.998785i \(-0.484308\pi\)
0.0492789 + 0.998785i \(0.484308\pi\)
\(360\) 0 0
\(361\) 12083.8 1.76175
\(362\) 0 0
\(363\) −4854.19 −0.701871
\(364\) 0 0
\(365\) 1717.24 0.246258
\(366\) 0 0
\(367\) 3528.04 0.501804 0.250902 0.968013i \(-0.419273\pi\)
0.250902 + 0.968013i \(0.419273\pi\)
\(368\) 0 0
\(369\) −1762.04 −0.248586
\(370\) 0 0
\(371\) −3937.69 −0.551037
\(372\) 0 0
\(373\) −2718.66 −0.377391 −0.188695 0.982036i \(-0.560426\pi\)
−0.188695 + 0.982036i \(0.560426\pi\)
\(374\) 0 0
\(375\) −715.584 −0.0985402
\(376\) 0 0
\(377\) −2681.01 −0.366258
\(378\) 0 0
\(379\) 10773.8 1.46019 0.730096 0.683345i \(-0.239475\pi\)
0.730096 + 0.683345i \(0.239475\pi\)
\(380\) 0 0
\(381\) 12372.6 1.66370
\(382\) 0 0
\(383\) −6104.18 −0.814384 −0.407192 0.913343i \(-0.633492\pi\)
−0.407192 + 0.913343i \(0.633492\pi\)
\(384\) 0 0
\(385\) −1386.15 −0.183493
\(386\) 0 0
\(387\) 809.412 0.106317
\(388\) 0 0
\(389\) −5056.94 −0.659118 −0.329559 0.944135i \(-0.606900\pi\)
−0.329559 + 0.944135i \(0.606900\pi\)
\(390\) 0 0
\(391\) −1439.38 −0.186170
\(392\) 0 0
\(393\) 2276.91 0.292251
\(394\) 0 0
\(395\) −6073.08 −0.773595
\(396\) 0 0
\(397\) 8320.52 1.05188 0.525938 0.850523i \(-0.323714\pi\)
0.525938 + 0.850523i \(0.323714\pi\)
\(398\) 0 0
\(399\) 9938.37 1.24697
\(400\) 0 0
\(401\) 1253.78 0.156137 0.0780685 0.996948i \(-0.475125\pi\)
0.0780685 + 0.996948i \(0.475125\pi\)
\(402\) 0 0
\(403\) −8193.64 −1.01279
\(404\) 0 0
\(405\) 4257.63 0.522378
\(406\) 0 0
\(407\) 6510.55 0.792914
\(408\) 0 0
\(409\) −11283.0 −1.36408 −0.682041 0.731314i \(-0.738907\pi\)
−0.682041 + 0.731314i \(0.738907\pi\)
\(410\) 0 0
\(411\) −9507.13 −1.14100
\(412\) 0 0
\(413\) 2040.54 0.243119
\(414\) 0 0
\(415\) −3745.28 −0.443008
\(416\) 0 0
\(417\) −5712.38 −0.670830
\(418\) 0 0
\(419\) 4178.10 0.487144 0.243572 0.969883i \(-0.421681\pi\)
0.243572 + 0.969883i \(0.421681\pi\)
\(420\) 0 0
\(421\) −11693.0 −1.35364 −0.676821 0.736147i \(-0.736643\pi\)
−0.676821 + 0.736147i \(0.736643\pi\)
\(422\) 0 0
\(423\) −1070.73 −0.123075
\(424\) 0 0
\(425\) 1564.54 0.178568
\(426\) 0 0
\(427\) −10542.3 −1.19479
\(428\) 0 0
\(429\) −4691.74 −0.528018
\(430\) 0 0
\(431\) −11158.2 −1.24703 −0.623515 0.781812i \(-0.714296\pi\)
−0.623515 + 0.781812i \(0.714296\pi\)
\(432\) 0 0
\(433\) −13192.6 −1.46419 −0.732096 0.681201i \(-0.761458\pi\)
−0.732096 + 0.681201i \(0.761458\pi\)
\(434\) 0 0
\(435\) 2057.95 0.226830
\(436\) 0 0
\(437\) 3165.56 0.346520
\(438\) 0 0
\(439\) −1659.40 −0.180407 −0.0902037 0.995923i \(-0.528752\pi\)
−0.0902037 + 0.995923i \(0.528752\pi\)
\(440\) 0 0
\(441\) −1061.41 −0.114611
\(442\) 0 0
\(443\) 5144.57 0.551752 0.275876 0.961193i \(-0.411032\pi\)
0.275876 + 0.961193i \(0.411032\pi\)
\(444\) 0 0
\(445\) −4058.31 −0.432320
\(446\) 0 0
\(447\) 17257.0 1.82601
\(448\) 0 0
\(449\) 5469.59 0.574891 0.287446 0.957797i \(-0.407194\pi\)
0.287446 + 0.957797i \(0.407194\pi\)
\(450\) 0 0
\(451\) 6709.65 0.700544
\(452\) 0 0
\(453\) −3920.87 −0.406664
\(454\) 0 0
\(455\) 2351.78 0.242315
\(456\) 0 0
\(457\) 6063.04 0.620606 0.310303 0.950638i \(-0.399569\pi\)
0.310303 + 0.950638i \(0.399569\pi\)
\(458\) 0 0
\(459\) −7605.19 −0.773377
\(460\) 0 0
\(461\) 4025.39 0.406684 0.203342 0.979108i \(-0.434820\pi\)
0.203342 + 0.979108i \(0.434820\pi\)
\(462\) 0 0
\(463\) −4617.49 −0.463483 −0.231742 0.972777i \(-0.574442\pi\)
−0.231742 + 0.972777i \(0.574442\pi\)
\(464\) 0 0
\(465\) 6289.45 0.627239
\(466\) 0 0
\(467\) 4012.00 0.397544 0.198772 0.980046i \(-0.436305\pi\)
0.198772 + 0.980046i \(0.436305\pi\)
\(468\) 0 0
\(469\) 309.058 0.0304285
\(470\) 0 0
\(471\) 4165.26 0.407484
\(472\) 0 0
\(473\) −3082.15 −0.299614
\(474\) 0 0
\(475\) −3440.82 −0.332370
\(476\) 0 0
\(477\) 1801.83 0.172956
\(478\) 0 0
\(479\) −7317.02 −0.697961 −0.348980 0.937130i \(-0.613472\pi\)
−0.348980 + 0.937130i \(0.613472\pi\)
\(480\) 0 0
\(481\) −11046.0 −1.04709
\(482\) 0 0
\(483\) 1660.81 0.156459
\(484\) 0 0
\(485\) −5134.51 −0.480714
\(486\) 0 0
\(487\) −3708.67 −0.345084 −0.172542 0.985002i \(-0.555198\pi\)
−0.172542 + 0.985002i \(0.555198\pi\)
\(488\) 0 0
\(489\) −4400.66 −0.406962
\(490\) 0 0
\(491\) 6689.69 0.614871 0.307435 0.951569i \(-0.400529\pi\)
0.307435 + 0.951569i \(0.400529\pi\)
\(492\) 0 0
\(493\) −4499.47 −0.411046
\(494\) 0 0
\(495\) 634.284 0.0575938
\(496\) 0 0
\(497\) 12285.4 1.10880
\(498\) 0 0
\(499\) 17381.9 1.55936 0.779678 0.626180i \(-0.215383\pi\)
0.779678 + 0.626180i \(0.215383\pi\)
\(500\) 0 0
\(501\) −1393.37 −0.124253
\(502\) 0 0
\(503\) 9771.20 0.866156 0.433078 0.901357i \(-0.357428\pi\)
0.433078 + 0.901357i \(0.357428\pi\)
\(504\) 0 0
\(505\) 3941.65 0.347329
\(506\) 0 0
\(507\) −4616.97 −0.404432
\(508\) 0 0
\(509\) 5820.46 0.506852 0.253426 0.967355i \(-0.418443\pi\)
0.253426 + 0.967355i \(0.418443\pi\)
\(510\) 0 0
\(511\) 4332.14 0.375035
\(512\) 0 0
\(513\) 16725.7 1.43949
\(514\) 0 0
\(515\) −2358.82 −0.201829
\(516\) 0 0
\(517\) 4077.22 0.346840
\(518\) 0 0
\(519\) −1153.74 −0.0975789
\(520\) 0 0
\(521\) −6357.64 −0.534613 −0.267307 0.963612i \(-0.586134\pi\)
−0.267307 + 0.963612i \(0.586134\pi\)
\(522\) 0 0
\(523\) −10556.2 −0.882580 −0.441290 0.897364i \(-0.645479\pi\)
−0.441290 + 0.897364i \(0.645479\pi\)
\(524\) 0 0
\(525\) −1805.23 −0.150070
\(526\) 0 0
\(527\) −13751.2 −1.13664
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −933.720 −0.0763089
\(532\) 0 0
\(533\) −11383.8 −0.925113
\(534\) 0 0
\(535\) 7014.25 0.566827
\(536\) 0 0
\(537\) −4136.44 −0.332403
\(538\) 0 0
\(539\) 4041.74 0.322987
\(540\) 0 0
\(541\) −16883.4 −1.34172 −0.670862 0.741582i \(-0.734076\pi\)
−0.670862 + 0.741582i \(0.734076\pi\)
\(542\) 0 0
\(543\) 12123.5 0.958136
\(544\) 0 0
\(545\) 10756.5 0.845431
\(546\) 0 0
\(547\) −14318.4 −1.11922 −0.559608 0.828757i \(-0.689048\pi\)
−0.559608 + 0.828757i \(0.689048\pi\)
\(548\) 0 0
\(549\) 4824.00 0.375015
\(550\) 0 0
\(551\) 9895.47 0.765084
\(552\) 0 0
\(553\) −15320.8 −1.17813
\(554\) 0 0
\(555\) 8478.89 0.648484
\(556\) 0 0
\(557\) −11764.7 −0.894946 −0.447473 0.894297i \(-0.647676\pi\)
−0.447473 + 0.894297i \(0.647676\pi\)
\(558\) 0 0
\(559\) 5229.25 0.395660
\(560\) 0 0
\(561\) −7874.03 −0.592588
\(562\) 0 0
\(563\) −21201.3 −1.58709 −0.793543 0.608514i \(-0.791766\pi\)
−0.793543 + 0.608514i \(0.791766\pi\)
\(564\) 0 0
\(565\) −3774.17 −0.281027
\(566\) 0 0
\(567\) 10740.9 0.795546
\(568\) 0 0
\(569\) −17206.5 −1.26772 −0.633861 0.773447i \(-0.718531\pi\)
−0.633861 + 0.773447i \(0.718531\pi\)
\(570\) 0 0
\(571\) 12208.3 0.894746 0.447373 0.894348i \(-0.352360\pi\)
0.447373 + 0.894348i \(0.352360\pi\)
\(572\) 0 0
\(573\) 474.932 0.0346258
\(574\) 0 0
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) 12432.0 0.896967 0.448484 0.893791i \(-0.351964\pi\)
0.448484 + 0.893791i \(0.351964\pi\)
\(578\) 0 0
\(579\) 7730.75 0.554886
\(580\) 0 0
\(581\) −9448.36 −0.674671
\(582\) 0 0
\(583\) −6861.17 −0.487411
\(584\) 0 0
\(585\) −1076.14 −0.0760564
\(586\) 0 0
\(587\) −18732.7 −1.31718 −0.658588 0.752504i \(-0.728846\pi\)
−0.658588 + 0.752504i \(0.728846\pi\)
\(588\) 0 0
\(589\) 30242.3 2.11564
\(590\) 0 0
\(591\) 24717.4 1.72037
\(592\) 0 0
\(593\) 16320.1 1.13016 0.565081 0.825036i \(-0.308845\pi\)
0.565081 + 0.825036i \(0.308845\pi\)
\(594\) 0 0
\(595\) 3946.93 0.271947
\(596\) 0 0
\(597\) 17324.4 1.18767
\(598\) 0 0
\(599\) −7015.52 −0.478542 −0.239271 0.970953i \(-0.576908\pi\)
−0.239271 + 0.970953i \(0.576908\pi\)
\(600\) 0 0
\(601\) −4517.10 −0.306583 −0.153292 0.988181i \(-0.548987\pi\)
−0.153292 + 0.988181i \(0.548987\pi\)
\(602\) 0 0
\(603\) −141.421 −0.00955074
\(604\) 0 0
\(605\) 4239.72 0.284907
\(606\) 0 0
\(607\) −9861.96 −0.659448 −0.329724 0.944077i \(-0.606956\pi\)
−0.329724 + 0.944077i \(0.606956\pi\)
\(608\) 0 0
\(609\) 5191.67 0.345447
\(610\) 0 0
\(611\) −6917.52 −0.458024
\(612\) 0 0
\(613\) 20044.7 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(614\) 0 0
\(615\) 8738.19 0.572939
\(616\) 0 0
\(617\) −3604.26 −0.235174 −0.117587 0.993063i \(-0.537516\pi\)
−0.117587 + 0.993063i \(0.537516\pi\)
\(618\) 0 0
\(619\) 14864.7 0.965204 0.482602 0.875840i \(-0.339692\pi\)
0.482602 + 0.875840i \(0.339692\pi\)
\(620\) 0 0
\(621\) 2795.06 0.180615
\(622\) 0 0
\(623\) −10238.1 −0.658393
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 17317.0 1.10299
\(628\) 0 0
\(629\) −18538.1 −1.17514
\(630\) 0 0
\(631\) 12677.7 0.799828 0.399914 0.916553i \(-0.369040\pi\)
0.399914 + 0.916553i \(0.369040\pi\)
\(632\) 0 0
\(633\) 13121.0 0.823875
\(634\) 0 0
\(635\) −10806.4 −0.675337
\(636\) 0 0
\(637\) −6857.31 −0.426525
\(638\) 0 0
\(639\) −5621.62 −0.348025
\(640\) 0 0
\(641\) −19168.5 −1.18114 −0.590571 0.806986i \(-0.701097\pi\)
−0.590571 + 0.806986i \(0.701097\pi\)
\(642\) 0 0
\(643\) 31298.6 1.91959 0.959793 0.280707i \(-0.0905690\pi\)
0.959793 + 0.280707i \(0.0905690\pi\)
\(644\) 0 0
\(645\) −4013.98 −0.245039
\(646\) 0 0
\(647\) −26340.3 −1.60053 −0.800267 0.599643i \(-0.795309\pi\)
−0.800267 + 0.599643i \(0.795309\pi\)
\(648\) 0 0
\(649\) 3555.50 0.215047
\(650\) 0 0
\(651\) 15866.6 0.955242
\(652\) 0 0
\(653\) 27113.8 1.62488 0.812439 0.583046i \(-0.198139\pi\)
0.812439 + 0.583046i \(0.198139\pi\)
\(654\) 0 0
\(655\) −1988.68 −0.118632
\(656\) 0 0
\(657\) −1982.33 −0.117714
\(658\) 0 0
\(659\) −24125.5 −1.42609 −0.713046 0.701117i \(-0.752685\pi\)
−0.713046 + 0.701117i \(0.752685\pi\)
\(660\) 0 0
\(661\) 1776.69 0.104546 0.0522732 0.998633i \(-0.483353\pi\)
0.0522732 + 0.998633i \(0.483353\pi\)
\(662\) 0 0
\(663\) 13359.3 0.782550
\(664\) 0 0
\(665\) −8680.30 −0.506177
\(666\) 0 0
\(667\) 1653.64 0.0959960
\(668\) 0 0
\(669\) −17158.5 −0.991609
\(670\) 0 0
\(671\) −18369.2 −1.05684
\(672\) 0 0
\(673\) −14137.6 −0.809756 −0.404878 0.914371i \(-0.632686\pi\)
−0.404878 + 0.914371i \(0.632686\pi\)
\(674\) 0 0
\(675\) −3038.10 −0.173240
\(676\) 0 0
\(677\) −9057.23 −0.514177 −0.257088 0.966388i \(-0.582763\pi\)
−0.257088 + 0.966388i \(0.582763\pi\)
\(678\) 0 0
\(679\) −12953.0 −0.732094
\(680\) 0 0
\(681\) −33123.9 −1.86389
\(682\) 0 0
\(683\) 23206.6 1.30011 0.650054 0.759888i \(-0.274746\pi\)
0.650054 + 0.759888i \(0.274746\pi\)
\(684\) 0 0
\(685\) 8303.65 0.463162
\(686\) 0 0
\(687\) 25854.6 1.43583
\(688\) 0 0
\(689\) 11640.8 0.643658
\(690\) 0 0
\(691\) 2060.79 0.113453 0.0567265 0.998390i \(-0.481934\pi\)
0.0567265 + 0.998390i \(0.481934\pi\)
\(692\) 0 0
\(693\) 1600.13 0.0877115
\(694\) 0 0
\(695\) 4989.26 0.272307
\(696\) 0 0
\(697\) −19105.0 −1.03824
\(698\) 0 0
\(699\) 17121.1 0.926434
\(700\) 0 0
\(701\) 4057.66 0.218624 0.109312 0.994007i \(-0.465135\pi\)
0.109312 + 0.994007i \(0.465135\pi\)
\(702\) 0 0
\(703\) 40770.0 2.18730
\(704\) 0 0
\(705\) 5309.90 0.283663
\(706\) 0 0
\(707\) 9943.76 0.528958
\(708\) 0 0
\(709\) 18777.0 0.994622 0.497311 0.867572i \(-0.334321\pi\)
0.497311 + 0.867572i \(0.334321\pi\)
\(710\) 0 0
\(711\) 7010.58 0.369785
\(712\) 0 0
\(713\) 5053.82 0.265452
\(714\) 0 0
\(715\) 4097.83 0.214336
\(716\) 0 0
\(717\) 23149.1 1.20574
\(718\) 0 0
\(719\) −2217.63 −0.115026 −0.0575129 0.998345i \(-0.518317\pi\)
−0.0575129 + 0.998345i \(0.518317\pi\)
\(720\) 0 0
\(721\) −5950.69 −0.307372
\(722\) 0 0
\(723\) 20915.9 1.07589
\(724\) 0 0
\(725\) −1797.44 −0.0920761
\(726\) 0 0
\(727\) −23162.5 −1.18164 −0.590818 0.806805i \(-0.701195\pi\)
−0.590818 + 0.806805i \(0.701195\pi\)
\(728\) 0 0
\(729\) 13868.6 0.704600
\(730\) 0 0
\(731\) 8776.11 0.444044
\(732\) 0 0
\(733\) 11686.4 0.588875 0.294438 0.955671i \(-0.404868\pi\)
0.294438 + 0.955671i \(0.404868\pi\)
\(734\) 0 0
\(735\) 5263.68 0.264155
\(736\) 0 0
\(737\) 538.514 0.0269151
\(738\) 0 0
\(739\) −7408.28 −0.368766 −0.184383 0.982854i \(-0.559029\pi\)
−0.184383 + 0.982854i \(0.559029\pi\)
\(740\) 0 0
\(741\) −29380.4 −1.45657
\(742\) 0 0
\(743\) −7008.68 −0.346061 −0.173031 0.984916i \(-0.555356\pi\)
−0.173031 + 0.984916i \(0.555356\pi\)
\(744\) 0 0
\(745\) −15072.5 −0.741225
\(746\) 0 0
\(747\) 4323.43 0.211762
\(748\) 0 0
\(749\) 17695.1 0.863238
\(750\) 0 0
\(751\) 10916.9 0.530443 0.265222 0.964187i \(-0.414555\pi\)
0.265222 + 0.964187i \(0.414555\pi\)
\(752\) 0 0
\(753\) −38924.6 −1.88379
\(754\) 0 0
\(755\) 3424.54 0.165075
\(756\) 0 0
\(757\) 14124.7 0.678165 0.339083 0.940757i \(-0.389883\pi\)
0.339083 + 0.940757i \(0.389883\pi\)
\(758\) 0 0
\(759\) 2893.86 0.138393
\(760\) 0 0
\(761\) 6947.27 0.330931 0.165465 0.986216i \(-0.447087\pi\)
0.165465 + 0.986216i \(0.447087\pi\)
\(762\) 0 0
\(763\) 27136.0 1.28753
\(764\) 0 0
\(765\) −1806.06 −0.0853572
\(766\) 0 0
\(767\) −6032.35 −0.283984
\(768\) 0 0
\(769\) 19409.1 0.910158 0.455079 0.890451i \(-0.349611\pi\)
0.455079 + 0.890451i \(0.349611\pi\)
\(770\) 0 0
\(771\) 1030.01 0.0481129
\(772\) 0 0
\(773\) −32794.2 −1.52591 −0.762954 0.646453i \(-0.776252\pi\)
−0.762954 + 0.646453i \(0.776252\pi\)
\(774\) 0 0
\(775\) −5493.28 −0.254612
\(776\) 0 0
\(777\) 21390.0 0.987597
\(778\) 0 0
\(779\) 42016.8 1.93249
\(780\) 0 0
\(781\) 21406.5 0.980775
\(782\) 0 0
\(783\) 8737.29 0.398781
\(784\) 0 0
\(785\) −3637.99 −0.165408
\(786\) 0 0
\(787\) 1234.92 0.0559341 0.0279670 0.999609i \(-0.491097\pi\)
0.0279670 + 0.999609i \(0.491097\pi\)
\(788\) 0 0
\(789\) −6574.66 −0.296659
\(790\) 0 0
\(791\) −9521.24 −0.427985
\(792\) 0 0
\(793\) 31165.7 1.39562
\(794\) 0 0
\(795\) −8935.52 −0.398629
\(796\) 0 0
\(797\) −19464.3 −0.865070 −0.432535 0.901617i \(-0.642381\pi\)
−0.432535 + 0.901617i \(0.642381\pi\)
\(798\) 0 0
\(799\) −11609.5 −0.514035
\(800\) 0 0
\(801\) 4684.79 0.206653
\(802\) 0 0
\(803\) 7548.48 0.331731
\(804\) 0 0
\(805\) −1450.58 −0.0635106
\(806\) 0 0
\(807\) 17173.4 0.749113
\(808\) 0 0
\(809\) −33587.0 −1.45965 −0.729824 0.683635i \(-0.760398\pi\)
−0.729824 + 0.683635i \(0.760398\pi\)
\(810\) 0 0
\(811\) −2612.03 −0.113096 −0.0565479 0.998400i \(-0.518009\pi\)
−0.0565479 + 0.998400i \(0.518009\pi\)
\(812\) 0 0
\(813\) 31988.5 1.37993
\(814\) 0 0
\(815\) 3843.59 0.165196
\(816\) 0 0
\(817\) −19300.9 −0.826502
\(818\) 0 0
\(819\) −2714.83 −0.115829
\(820\) 0 0
\(821\) −17811.2 −0.757146 −0.378573 0.925572i \(-0.623585\pi\)
−0.378573 + 0.925572i \(0.623585\pi\)
\(822\) 0 0
\(823\) 30535.0 1.29330 0.646649 0.762788i \(-0.276170\pi\)
0.646649 + 0.762788i \(0.276170\pi\)
\(824\) 0 0
\(825\) −3145.50 −0.132742
\(826\) 0 0
\(827\) −3344.05 −0.140609 −0.0703047 0.997526i \(-0.522397\pi\)
−0.0703047 + 0.997526i \(0.522397\pi\)
\(828\) 0 0
\(829\) −24905.6 −1.04344 −0.521718 0.853118i \(-0.674709\pi\)
−0.521718 + 0.853118i \(0.674709\pi\)
\(830\) 0 0
\(831\) 35602.1 1.48619
\(832\) 0 0
\(833\) −11508.4 −0.478684
\(834\) 0 0
\(835\) 1216.98 0.0504377
\(836\) 0 0
\(837\) 26702.7 1.10272
\(838\) 0 0
\(839\) −38233.9 −1.57328 −0.786639 0.617413i \(-0.788181\pi\)
−0.786639 + 0.617413i \(0.788181\pi\)
\(840\) 0 0
\(841\) −19219.7 −0.788050
\(842\) 0 0
\(843\) −38761.2 −1.58364
\(844\) 0 0
\(845\) 4032.52 0.164169
\(846\) 0 0
\(847\) 10695.7 0.433894
\(848\) 0 0
\(849\) −44717.8 −1.80767
\(850\) 0 0
\(851\) 6813.12 0.274443
\(852\) 0 0
\(853\) 21297.4 0.854875 0.427438 0.904045i \(-0.359416\pi\)
0.427438 + 0.904045i \(0.359416\pi\)
\(854\) 0 0
\(855\) 3971.98 0.158876
\(856\) 0 0
\(857\) −2100.08 −0.0837074 −0.0418537 0.999124i \(-0.513326\pi\)
−0.0418537 + 0.999124i \(0.513326\pi\)
\(858\) 0 0
\(859\) −16555.4 −0.657582 −0.328791 0.944403i \(-0.606641\pi\)
−0.328791 + 0.944403i \(0.606641\pi\)
\(860\) 0 0
\(861\) 22044.2 0.872547
\(862\) 0 0
\(863\) −40225.0 −1.58664 −0.793322 0.608802i \(-0.791650\pi\)
−0.793322 + 0.608802i \(0.791650\pi\)
\(864\) 0 0
\(865\) 1007.69 0.0396098
\(866\) 0 0
\(867\) −5704.81 −0.223467
\(868\) 0 0
\(869\) −26695.5 −1.04210
\(870\) 0 0
\(871\) −913.656 −0.0355431
\(872\) 0 0
\(873\) 5927.13 0.229786
\(874\) 0 0
\(875\) 1576.71 0.0609173
\(876\) 0 0
\(877\) 35335.8 1.36055 0.680277 0.732955i \(-0.261859\pi\)
0.680277 + 0.732955i \(0.261859\pi\)
\(878\) 0 0
\(879\) −48173.2 −1.84851
\(880\) 0 0
\(881\) 28460.9 1.08839 0.544196 0.838958i \(-0.316835\pi\)
0.544196 + 0.838958i \(0.316835\pi\)
\(882\) 0 0
\(883\) −35713.3 −1.36110 −0.680548 0.732703i \(-0.738258\pi\)
−0.680548 + 0.732703i \(0.738258\pi\)
\(884\) 0 0
\(885\) 4630.44 0.175876
\(886\) 0 0
\(887\) −354.759 −0.0134292 −0.00671458 0.999977i \(-0.502137\pi\)
−0.00671458 + 0.999977i \(0.502137\pi\)
\(888\) 0 0
\(889\) −27261.8 −1.02849
\(890\) 0 0
\(891\) 18715.3 0.703688
\(892\) 0 0
\(893\) 25532.2 0.956777
\(894\) 0 0
\(895\) 3612.82 0.134931
\(896\) 0 0
\(897\) −4909.79 −0.182757
\(898\) 0 0
\(899\) 15798.1 0.586093
\(900\) 0 0
\(901\) 19536.5 0.722370
\(902\) 0 0
\(903\) −10126.2 −0.373178
\(904\) 0 0
\(905\) −10588.8 −0.388932
\(906\) 0 0
\(907\) −41414.8 −1.51616 −0.758080 0.652162i \(-0.773862\pi\)
−0.758080 + 0.652162i \(0.773862\pi\)
\(908\) 0 0
\(909\) −4550.12 −0.166026
\(910\) 0 0
\(911\) 4521.49 0.164439 0.0822194 0.996614i \(-0.473799\pi\)
0.0822194 + 0.996614i \(0.473799\pi\)
\(912\) 0 0
\(913\) −16463.2 −0.596770
\(914\) 0 0
\(915\) −23922.8 −0.864333
\(916\) 0 0
\(917\) −5016.92 −0.180669
\(918\) 0 0
\(919\) −31097.0 −1.11621 −0.558104 0.829771i \(-0.688471\pi\)
−0.558104 + 0.829771i \(0.688471\pi\)
\(920\) 0 0
\(921\) −55147.0 −1.97303
\(922\) 0 0
\(923\) −36318.8 −1.29518
\(924\) 0 0
\(925\) −7405.57 −0.263236
\(926\) 0 0
\(927\) 2722.95 0.0964761
\(928\) 0 0
\(929\) 11243.2 0.397070 0.198535 0.980094i \(-0.436382\pi\)
0.198535 + 0.980094i \(0.436382\pi\)
\(930\) 0 0
\(931\) 25310.0 0.890978
\(932\) 0 0
\(933\) −40076.4 −1.40626
\(934\) 0 0
\(935\) 6877.28 0.240547
\(936\) 0 0
\(937\) −31275.3 −1.09042 −0.545209 0.838300i \(-0.683550\pi\)
−0.545209 + 0.838300i \(0.683550\pi\)
\(938\) 0 0
\(939\) −16915.2 −0.587866
\(940\) 0 0
\(941\) −19726.6 −0.683387 −0.341694 0.939811i \(-0.611001\pi\)
−0.341694 + 0.939811i \(0.611001\pi\)
\(942\) 0 0
\(943\) 7021.48 0.242472
\(944\) 0 0
\(945\) −7664.35 −0.263832
\(946\) 0 0
\(947\) −9073.85 −0.311363 −0.155681 0.987807i \(-0.549757\pi\)
−0.155681 + 0.987807i \(0.549757\pi\)
\(948\) 0 0
\(949\) −12806.9 −0.438072
\(950\) 0 0
\(951\) −22988.4 −0.783860
\(952\) 0 0
\(953\) 20332.8 0.691125 0.345563 0.938396i \(-0.387688\pi\)
0.345563 + 0.938396i \(0.387688\pi\)
\(954\) 0 0
\(955\) −414.812 −0.0140555
\(956\) 0 0
\(957\) 9046.14 0.305559
\(958\) 0 0
\(959\) 20947.9 0.705364
\(960\) 0 0
\(961\) 18490.8 0.620686
\(962\) 0 0
\(963\) −8097.03 −0.270948
\(964\) 0 0
\(965\) −6752.14 −0.225242
\(966\) 0 0
\(967\) −10303.5 −0.342646 −0.171323 0.985215i \(-0.554804\pi\)
−0.171323 + 0.985215i \(0.554804\pi\)
\(968\) 0 0
\(969\) −49308.3 −1.63469
\(970\) 0 0
\(971\) −937.151 −0.0309728 −0.0154864 0.999880i \(-0.504930\pi\)
−0.0154864 + 0.999880i \(0.504930\pi\)
\(972\) 0 0
\(973\) 12586.6 0.414705
\(974\) 0 0
\(975\) 5336.73 0.175295
\(976\) 0 0
\(977\) −23339.0 −0.764258 −0.382129 0.924109i \(-0.624809\pi\)
−0.382129 + 0.924109i \(0.624809\pi\)
\(978\) 0 0
\(979\) −17839.2 −0.582372
\(980\) 0 0
\(981\) −12417.0 −0.404124
\(982\) 0 0
\(983\) 26638.6 0.864334 0.432167 0.901794i \(-0.357749\pi\)
0.432167 + 0.901794i \(0.357749\pi\)
\(984\) 0 0
\(985\) −21588.5 −0.698341
\(986\) 0 0
\(987\) 13395.5 0.431999
\(988\) 0 0
\(989\) −3225.39 −0.103702
\(990\) 0 0
\(991\) −24631.4 −0.789548 −0.394774 0.918778i \(-0.629177\pi\)
−0.394774 + 0.918778i \(0.629177\pi\)
\(992\) 0 0
\(993\) 3415.15 0.109141
\(994\) 0 0
\(995\) −15131.3 −0.482106
\(996\) 0 0
\(997\) −31438.3 −0.998656 −0.499328 0.866413i \(-0.666420\pi\)
−0.499328 + 0.866413i \(0.666420\pi\)
\(998\) 0 0
\(999\) 35998.2 1.14007
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 460.4.a.b.1.4 5
4.3 odd 2 1840.4.a.o.1.2 5
5.2 odd 4 2300.4.c.d.1749.3 10
5.3 odd 4 2300.4.c.d.1749.8 10
5.4 even 2 2300.4.a.c.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.4.a.b.1.4 5 1.1 even 1 trivial
1840.4.a.o.1.2 5 4.3 odd 2
2300.4.a.c.1.2 5 5.4 even 2
2300.4.c.d.1749.3 10 5.2 odd 4
2300.4.c.d.1749.8 10 5.3 odd 4