Properties

Label 460.4.a.b.1.3
Level $460$
Weight $4$
Character 460.1
Self dual yes
Analytic conductor $27.141$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [460,4,Mod(1,460)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("460.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(460, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 460.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.1408786026\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 80x^{3} + 121x^{2} + 1212x + 1044 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.04116\) of defining polynomial
Character \(\chi\) \(=\) 460.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.04116 q^{3} -5.00000 q^{5} +21.6113 q^{7} -22.8337 q^{9} -30.3495 q^{11} +69.6786 q^{13} +10.2058 q^{15} -43.4506 q^{17} +14.3892 q^{19} -44.1120 q^{21} -23.0000 q^{23} +25.0000 q^{25} +101.718 q^{27} -158.105 q^{29} -46.4782 q^{31} +61.9480 q^{33} -108.056 q^{35} +39.6849 q^{37} -142.225 q^{39} -201.771 q^{41} +17.8927 q^{43} +114.168 q^{45} -0.702668 q^{47} +124.048 q^{49} +88.6894 q^{51} -661.161 q^{53} +151.748 q^{55} -29.3705 q^{57} -732.679 q^{59} -875.997 q^{61} -493.465 q^{63} -348.393 q^{65} +746.803 q^{67} +46.9466 q^{69} -275.246 q^{71} -499.633 q^{73} -51.0289 q^{75} -655.892 q^{77} -797.970 q^{79} +408.887 q^{81} -1150.10 q^{83} +217.253 q^{85} +322.716 q^{87} +1166.89 q^{89} +1505.85 q^{91} +94.8693 q^{93} -71.9458 q^{95} +403.209 q^{97} +692.991 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{3} - 25 q^{5} + 8 q^{7} + 30 q^{9} + 7 q^{11} + 5 q^{13} + 15 q^{15} - 24 q^{17} - 13 q^{19} - 115 q^{23} + 125 q^{25} - 204 q^{27} - 253 q^{29} - 98 q^{31} - 473 q^{33} - 40 q^{35} - 435 q^{37}+ \cdots + 111 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.04116 −0.392821 −0.196410 0.980522i \(-0.562928\pi\)
−0.196410 + 0.980522i \(0.562928\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 21.6113 1.16690 0.583450 0.812149i \(-0.301702\pi\)
0.583450 + 0.812149i \(0.301702\pi\)
\(8\) 0 0
\(9\) −22.8337 −0.845692
\(10\) 0 0
\(11\) −30.3495 −0.831884 −0.415942 0.909391i \(-0.636548\pi\)
−0.415942 + 0.909391i \(0.636548\pi\)
\(12\) 0 0
\(13\) 69.6786 1.48657 0.743284 0.668976i \(-0.233267\pi\)
0.743284 + 0.668976i \(0.233267\pi\)
\(14\) 0 0
\(15\) 10.2058 0.175675
\(16\) 0 0
\(17\) −43.4506 −0.619901 −0.309950 0.950753i \(-0.600312\pi\)
−0.309950 + 0.950753i \(0.600312\pi\)
\(18\) 0 0
\(19\) 14.3892 0.173742 0.0868710 0.996220i \(-0.472313\pi\)
0.0868710 + 0.996220i \(0.472313\pi\)
\(20\) 0 0
\(21\) −44.1120 −0.458382
\(22\) 0 0
\(23\) −23.0000 −0.208514
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 101.718 0.725026
\(28\) 0 0
\(29\) −158.105 −1.01239 −0.506195 0.862419i \(-0.668948\pi\)
−0.506195 + 0.862419i \(0.668948\pi\)
\(30\) 0 0
\(31\) −46.4782 −0.269282 −0.134641 0.990894i \(-0.542988\pi\)
−0.134641 + 0.990894i \(0.542988\pi\)
\(32\) 0 0
\(33\) 61.9480 0.326781
\(34\) 0 0
\(35\) −108.056 −0.521853
\(36\) 0 0
\(37\) 39.6849 0.176328 0.0881642 0.996106i \(-0.471900\pi\)
0.0881642 + 0.996106i \(0.471900\pi\)
\(38\) 0 0
\(39\) −142.225 −0.583954
\(40\) 0 0
\(41\) −201.771 −0.768571 −0.384285 0.923214i \(-0.625552\pi\)
−0.384285 + 0.923214i \(0.625552\pi\)
\(42\) 0 0
\(43\) 17.8927 0.0634562 0.0317281 0.999497i \(-0.489899\pi\)
0.0317281 + 0.999497i \(0.489899\pi\)
\(44\) 0 0
\(45\) 114.168 0.378205
\(46\) 0 0
\(47\) −0.702668 −0.00218074 −0.00109037 0.999999i \(-0.500347\pi\)
−0.00109037 + 0.999999i \(0.500347\pi\)
\(48\) 0 0
\(49\) 124.048 0.361655
\(50\) 0 0
\(51\) 88.6894 0.243510
\(52\) 0 0
\(53\) −661.161 −1.71354 −0.856769 0.515701i \(-0.827532\pi\)
−0.856769 + 0.515701i \(0.827532\pi\)
\(54\) 0 0
\(55\) 151.748 0.372030
\(56\) 0 0
\(57\) −29.3705 −0.0682495
\(58\) 0 0
\(59\) −732.679 −1.61672 −0.808361 0.588686i \(-0.799645\pi\)
−0.808361 + 0.588686i \(0.799645\pi\)
\(60\) 0 0
\(61\) −875.997 −1.83869 −0.919344 0.393454i \(-0.871280\pi\)
−0.919344 + 0.393454i \(0.871280\pi\)
\(62\) 0 0
\(63\) −493.465 −0.986838
\(64\) 0 0
\(65\) −348.393 −0.664813
\(66\) 0 0
\(67\) 746.803 1.36174 0.680870 0.732404i \(-0.261602\pi\)
0.680870 + 0.732404i \(0.261602\pi\)
\(68\) 0 0
\(69\) 46.9466 0.0819087
\(70\) 0 0
\(71\) −275.246 −0.460079 −0.230040 0.973181i \(-0.573886\pi\)
−0.230040 + 0.973181i \(0.573886\pi\)
\(72\) 0 0
\(73\) −499.633 −0.801063 −0.400532 0.916283i \(-0.631175\pi\)
−0.400532 + 0.916283i \(0.631175\pi\)
\(74\) 0 0
\(75\) −51.0289 −0.0785641
\(76\) 0 0
\(77\) −655.892 −0.970725
\(78\) 0 0
\(79\) −797.970 −1.13644 −0.568219 0.822877i \(-0.692367\pi\)
−0.568219 + 0.822877i \(0.692367\pi\)
\(80\) 0 0
\(81\) 408.887 0.560887
\(82\) 0 0
\(83\) −1150.10 −1.52097 −0.760483 0.649358i \(-0.775038\pi\)
−0.760483 + 0.649358i \(0.775038\pi\)
\(84\) 0 0
\(85\) 217.253 0.277228
\(86\) 0 0
\(87\) 322.716 0.397687
\(88\) 0 0
\(89\) 1166.89 1.38978 0.694890 0.719116i \(-0.255453\pi\)
0.694890 + 0.719116i \(0.255453\pi\)
\(90\) 0 0
\(91\) 1505.85 1.73468
\(92\) 0 0
\(93\) 94.8693 0.105779
\(94\) 0 0
\(95\) −71.9458 −0.0776998
\(96\) 0 0
\(97\) 403.209 0.422058 0.211029 0.977480i \(-0.432318\pi\)
0.211029 + 0.977480i \(0.432318\pi\)
\(98\) 0 0
\(99\) 692.991 0.703517
\(100\) 0 0
\(101\) 484.319 0.477144 0.238572 0.971125i \(-0.423321\pi\)
0.238572 + 0.971125i \(0.423321\pi\)
\(102\) 0 0
\(103\) −2064.69 −1.97514 −0.987572 0.157167i \(-0.949764\pi\)
−0.987572 + 0.157167i \(0.949764\pi\)
\(104\) 0 0
\(105\) 220.560 0.204995
\(106\) 0 0
\(107\) −1436.43 −1.29780 −0.648902 0.760872i \(-0.724772\pi\)
−0.648902 + 0.760872i \(0.724772\pi\)
\(108\) 0 0
\(109\) 1870.62 1.64379 0.821895 0.569639i \(-0.192917\pi\)
0.821895 + 0.569639i \(0.192917\pi\)
\(110\) 0 0
\(111\) −81.0030 −0.0692654
\(112\) 0 0
\(113\) 1606.67 1.33755 0.668775 0.743465i \(-0.266819\pi\)
0.668775 + 0.743465i \(0.266819\pi\)
\(114\) 0 0
\(115\) 115.000 0.0932505
\(116\) 0 0
\(117\) −1591.02 −1.25718
\(118\) 0 0
\(119\) −939.023 −0.723362
\(120\) 0 0
\(121\) −409.908 −0.307970
\(122\) 0 0
\(123\) 411.847 0.301910
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −2031.66 −1.41953 −0.709766 0.704438i \(-0.751199\pi\)
−0.709766 + 0.704438i \(0.751199\pi\)
\(128\) 0 0
\(129\) −36.5219 −0.0249269
\(130\) 0 0
\(131\) −434.691 −0.289917 −0.144958 0.989438i \(-0.546305\pi\)
−0.144958 + 0.989438i \(0.546305\pi\)
\(132\) 0 0
\(133\) 310.968 0.202740
\(134\) 0 0
\(135\) −508.591 −0.324241
\(136\) 0 0
\(137\) 939.729 0.586033 0.293016 0.956107i \(-0.405341\pi\)
0.293016 + 0.956107i \(0.405341\pi\)
\(138\) 0 0
\(139\) −124.609 −0.0760376 −0.0380188 0.999277i \(-0.512105\pi\)
−0.0380188 + 0.999277i \(0.512105\pi\)
\(140\) 0 0
\(141\) 1.43426 0.000856639 0
\(142\) 0 0
\(143\) −2114.71 −1.23665
\(144\) 0 0
\(145\) 790.523 0.452754
\(146\) 0 0
\(147\) −253.201 −0.142066
\(148\) 0 0
\(149\) 1375.14 0.756079 0.378039 0.925789i \(-0.376598\pi\)
0.378039 + 0.925789i \(0.376598\pi\)
\(150\) 0 0
\(151\) −1196.51 −0.644838 −0.322419 0.946597i \(-0.604496\pi\)
−0.322419 + 0.946597i \(0.604496\pi\)
\(152\) 0 0
\(153\) 992.137 0.524245
\(154\) 0 0
\(155\) 232.391 0.120426
\(156\) 0 0
\(157\) −212.340 −0.107940 −0.0539699 0.998543i \(-0.517188\pi\)
−0.0539699 + 0.998543i \(0.517188\pi\)
\(158\) 0 0
\(159\) 1349.53 0.673113
\(160\) 0 0
\(161\) −497.060 −0.243315
\(162\) 0 0
\(163\) 1390.16 0.668013 0.334006 0.942571i \(-0.391599\pi\)
0.334006 + 0.942571i \(0.391599\pi\)
\(164\) 0 0
\(165\) −309.740 −0.146141
\(166\) 0 0
\(167\) 362.349 0.167901 0.0839503 0.996470i \(-0.473246\pi\)
0.0839503 + 0.996470i \(0.473246\pi\)
\(168\) 0 0
\(169\) 2658.11 1.20988
\(170\) 0 0
\(171\) −328.557 −0.146932
\(172\) 0 0
\(173\) 986.596 0.433581 0.216790 0.976218i \(-0.430441\pi\)
0.216790 + 0.976218i \(0.430441\pi\)
\(174\) 0 0
\(175\) 540.282 0.233380
\(176\) 0 0
\(177\) 1495.51 0.635082
\(178\) 0 0
\(179\) 3977.44 1.66083 0.830413 0.557149i \(-0.188105\pi\)
0.830413 + 0.557149i \(0.188105\pi\)
\(180\) 0 0
\(181\) 2512.70 1.03186 0.515932 0.856630i \(-0.327446\pi\)
0.515932 + 0.856630i \(0.327446\pi\)
\(182\) 0 0
\(183\) 1788.05 0.722275
\(184\) 0 0
\(185\) −198.424 −0.0788565
\(186\) 0 0
\(187\) 1318.70 0.515685
\(188\) 0 0
\(189\) 2198.26 0.846032
\(190\) 0 0
\(191\) 1977.49 0.749142 0.374571 0.927198i \(-0.377790\pi\)
0.374571 + 0.927198i \(0.377790\pi\)
\(192\) 0 0
\(193\) −1241.30 −0.462957 −0.231478 0.972840i \(-0.574356\pi\)
−0.231478 + 0.972840i \(0.574356\pi\)
\(194\) 0 0
\(195\) 711.125 0.261152
\(196\) 0 0
\(197\) 1969.91 0.712436 0.356218 0.934403i \(-0.384066\pi\)
0.356218 + 0.934403i \(0.384066\pi\)
\(198\) 0 0
\(199\) −4053.09 −1.44380 −0.721899 0.691998i \(-0.756731\pi\)
−0.721899 + 0.691998i \(0.756731\pi\)
\(200\) 0 0
\(201\) −1524.34 −0.534919
\(202\) 0 0
\(203\) −3416.85 −1.18136
\(204\) 0 0
\(205\) 1008.86 0.343715
\(206\) 0 0
\(207\) 525.175 0.176339
\(208\) 0 0
\(209\) −436.704 −0.144533
\(210\) 0 0
\(211\) 374.110 0.122061 0.0610303 0.998136i \(-0.480561\pi\)
0.0610303 + 0.998136i \(0.480561\pi\)
\(212\) 0 0
\(213\) 561.819 0.180729
\(214\) 0 0
\(215\) −89.4637 −0.0283785
\(216\) 0 0
\(217\) −1004.45 −0.314225
\(218\) 0 0
\(219\) 1019.83 0.314674
\(220\) 0 0
\(221\) −3027.58 −0.921524
\(222\) 0 0
\(223\) 3226.90 0.969010 0.484505 0.874788i \(-0.339000\pi\)
0.484505 + 0.874788i \(0.339000\pi\)
\(224\) 0 0
\(225\) −570.842 −0.169138
\(226\) 0 0
\(227\) 3020.61 0.883194 0.441597 0.897213i \(-0.354412\pi\)
0.441597 + 0.897213i \(0.354412\pi\)
\(228\) 0 0
\(229\) 934.761 0.269741 0.134871 0.990863i \(-0.456938\pi\)
0.134871 + 0.990863i \(0.456938\pi\)
\(230\) 0 0
\(231\) 1338.78 0.381321
\(232\) 0 0
\(233\) −3916.88 −1.10130 −0.550651 0.834736i \(-0.685620\pi\)
−0.550651 + 0.834736i \(0.685620\pi\)
\(234\) 0 0
\(235\) 3.51334 0.000975256 0
\(236\) 0 0
\(237\) 1628.78 0.446416
\(238\) 0 0
\(239\) 3200.06 0.866086 0.433043 0.901373i \(-0.357440\pi\)
0.433043 + 0.901373i \(0.357440\pi\)
\(240\) 0 0
\(241\) −3774.24 −1.00880 −0.504399 0.863471i \(-0.668286\pi\)
−0.504399 + 0.863471i \(0.668286\pi\)
\(242\) 0 0
\(243\) −3581.00 −0.945354
\(244\) 0 0
\(245\) −620.238 −0.161737
\(246\) 0 0
\(247\) 1002.62 0.258279
\(248\) 0 0
\(249\) 2347.54 0.597467
\(250\) 0 0
\(251\) 3342.01 0.840420 0.420210 0.907427i \(-0.361956\pi\)
0.420210 + 0.907427i \(0.361956\pi\)
\(252\) 0 0
\(253\) 698.039 0.173460
\(254\) 0 0
\(255\) −443.447 −0.108901
\(256\) 0 0
\(257\) −2899.20 −0.703685 −0.351842 0.936059i \(-0.614445\pi\)
−0.351842 + 0.936059i \(0.614445\pi\)
\(258\) 0 0
\(259\) 857.641 0.205758
\(260\) 0 0
\(261\) 3610.11 0.856170
\(262\) 0 0
\(263\) −6001.83 −1.40718 −0.703591 0.710605i \(-0.748421\pi\)
−0.703591 + 0.710605i \(0.748421\pi\)
\(264\) 0 0
\(265\) 3305.81 0.766317
\(266\) 0 0
\(267\) −2381.81 −0.545934
\(268\) 0 0
\(269\) 8308.29 1.88314 0.941571 0.336813i \(-0.109349\pi\)
0.941571 + 0.336813i \(0.109349\pi\)
\(270\) 0 0
\(271\) −2395.28 −0.536911 −0.268456 0.963292i \(-0.586513\pi\)
−0.268456 + 0.963292i \(0.586513\pi\)
\(272\) 0 0
\(273\) −3073.66 −0.681416
\(274\) 0 0
\(275\) −758.738 −0.166377
\(276\) 0 0
\(277\) 7466.49 1.61956 0.809780 0.586733i \(-0.199586\pi\)
0.809780 + 0.586733i \(0.199586\pi\)
\(278\) 0 0
\(279\) 1061.27 0.227729
\(280\) 0 0
\(281\) −5570.87 −1.18267 −0.591335 0.806426i \(-0.701399\pi\)
−0.591335 + 0.806426i \(0.701399\pi\)
\(282\) 0 0
\(283\) −5273.48 −1.10769 −0.553845 0.832620i \(-0.686840\pi\)
−0.553845 + 0.832620i \(0.686840\pi\)
\(284\) 0 0
\(285\) 146.853 0.0305221
\(286\) 0 0
\(287\) −4360.54 −0.896845
\(288\) 0 0
\(289\) −3025.05 −0.615723
\(290\) 0 0
\(291\) −823.012 −0.165793
\(292\) 0 0
\(293\) −511.514 −0.101990 −0.0509948 0.998699i \(-0.516239\pi\)
−0.0509948 + 0.998699i \(0.516239\pi\)
\(294\) 0 0
\(295\) 3663.39 0.723020
\(296\) 0 0
\(297\) −3087.10 −0.603137
\(298\) 0 0
\(299\) −1602.61 −0.309971
\(300\) 0 0
\(301\) 386.685 0.0740471
\(302\) 0 0
\(303\) −988.570 −0.187432
\(304\) 0 0
\(305\) 4379.99 0.822286
\(306\) 0 0
\(307\) 4157.46 0.772894 0.386447 0.922312i \(-0.373702\pi\)
0.386447 + 0.922312i \(0.373702\pi\)
\(308\) 0 0
\(309\) 4214.35 0.775877
\(310\) 0 0
\(311\) −3408.45 −0.621465 −0.310733 0.950497i \(-0.600574\pi\)
−0.310733 + 0.950497i \(0.600574\pi\)
\(312\) 0 0
\(313\) 4516.35 0.815589 0.407794 0.913074i \(-0.366298\pi\)
0.407794 + 0.913074i \(0.366298\pi\)
\(314\) 0 0
\(315\) 2467.33 0.441327
\(316\) 0 0
\(317\) 2693.62 0.477251 0.238626 0.971112i \(-0.423303\pi\)
0.238626 + 0.971112i \(0.423303\pi\)
\(318\) 0 0
\(319\) 4798.40 0.842190
\(320\) 0 0
\(321\) 2931.98 0.509804
\(322\) 0 0
\(323\) −625.217 −0.107703
\(324\) 0 0
\(325\) 1741.97 0.297314
\(326\) 0 0
\(327\) −3818.23 −0.645715
\(328\) 0 0
\(329\) −15.1856 −0.00254470
\(330\) 0 0
\(331\) −11024.4 −1.83068 −0.915338 0.402687i \(-0.868076\pi\)
−0.915338 + 0.402687i \(0.868076\pi\)
\(332\) 0 0
\(333\) −906.152 −0.149120
\(334\) 0 0
\(335\) −3734.02 −0.608989
\(336\) 0 0
\(337\) 5218.80 0.843579 0.421790 0.906694i \(-0.361402\pi\)
0.421790 + 0.906694i \(0.361402\pi\)
\(338\) 0 0
\(339\) −3279.47 −0.525417
\(340\) 0 0
\(341\) 1410.59 0.224011
\(342\) 0 0
\(343\) −4731.84 −0.744885
\(344\) 0 0
\(345\) −234.733 −0.0366307
\(346\) 0 0
\(347\) 93.8512 0.0145193 0.00725965 0.999974i \(-0.497689\pi\)
0.00725965 + 0.999974i \(0.497689\pi\)
\(348\) 0 0
\(349\) 4540.27 0.696376 0.348188 0.937425i \(-0.386797\pi\)
0.348188 + 0.937425i \(0.386797\pi\)
\(350\) 0 0
\(351\) 7087.59 1.07780
\(352\) 0 0
\(353\) 4287.12 0.646403 0.323202 0.946330i \(-0.395241\pi\)
0.323202 + 0.946330i \(0.395241\pi\)
\(354\) 0 0
\(355\) 1376.23 0.205754
\(356\) 0 0
\(357\) 1916.69 0.284151
\(358\) 0 0
\(359\) −176.418 −0.0259359 −0.0129680 0.999916i \(-0.504128\pi\)
−0.0129680 + 0.999916i \(0.504128\pi\)
\(360\) 0 0
\(361\) −6651.95 −0.969814
\(362\) 0 0
\(363\) 836.686 0.120977
\(364\) 0 0
\(365\) 2498.17 0.358246
\(366\) 0 0
\(367\) −7745.87 −1.10172 −0.550860 0.834598i \(-0.685700\pi\)
−0.550860 + 0.834598i \(0.685700\pi\)
\(368\) 0 0
\(369\) 4607.18 0.649974
\(370\) 0 0
\(371\) −14288.5 −1.99953
\(372\) 0 0
\(373\) −8268.02 −1.14773 −0.573863 0.818951i \(-0.694556\pi\)
−0.573863 + 0.818951i \(0.694556\pi\)
\(374\) 0 0
\(375\) 255.144 0.0351349
\(376\) 0 0
\(377\) −11016.5 −1.50499
\(378\) 0 0
\(379\) 7229.18 0.979783 0.489892 0.871783i \(-0.337036\pi\)
0.489892 + 0.871783i \(0.337036\pi\)
\(380\) 0 0
\(381\) 4146.93 0.557621
\(382\) 0 0
\(383\) −519.390 −0.0692940 −0.0346470 0.999400i \(-0.511031\pi\)
−0.0346470 + 0.999400i \(0.511031\pi\)
\(384\) 0 0
\(385\) 3279.46 0.434121
\(386\) 0 0
\(387\) −408.557 −0.0536644
\(388\) 0 0
\(389\) −10746.4 −1.40068 −0.700341 0.713809i \(-0.746969\pi\)
−0.700341 + 0.713809i \(0.746969\pi\)
\(390\) 0 0
\(391\) 999.363 0.129258
\(392\) 0 0
\(393\) 887.271 0.113885
\(394\) 0 0
\(395\) 3989.85 0.508231
\(396\) 0 0
\(397\) −11738.8 −1.48401 −0.742004 0.670395i \(-0.766125\pi\)
−0.742004 + 0.670395i \(0.766125\pi\)
\(398\) 0 0
\(399\) −634.734 −0.0796403
\(400\) 0 0
\(401\) −94.4786 −0.0117657 −0.00588284 0.999983i \(-0.501873\pi\)
−0.00588284 + 0.999983i \(0.501873\pi\)
\(402\) 0 0
\(403\) −3238.54 −0.400306
\(404\) 0 0
\(405\) −2044.43 −0.250836
\(406\) 0 0
\(407\) −1204.42 −0.146685
\(408\) 0 0
\(409\) −13712.5 −1.65780 −0.828901 0.559396i \(-0.811033\pi\)
−0.828901 + 0.559396i \(0.811033\pi\)
\(410\) 0 0
\(411\) −1918.13 −0.230206
\(412\) 0 0
\(413\) −15834.1 −1.88655
\(414\) 0 0
\(415\) 5750.51 0.680197
\(416\) 0 0
\(417\) 254.347 0.0298691
\(418\) 0 0
\(419\) 4392.60 0.512154 0.256077 0.966656i \(-0.417570\pi\)
0.256077 + 0.966656i \(0.417570\pi\)
\(420\) 0 0
\(421\) 112.287 0.0129989 0.00649943 0.999979i \(-0.497931\pi\)
0.00649943 + 0.999979i \(0.497931\pi\)
\(422\) 0 0
\(423\) 16.0445 0.00184423
\(424\) 0 0
\(425\) −1086.26 −0.123980
\(426\) 0 0
\(427\) −18931.4 −2.14556
\(428\) 0 0
\(429\) 4316.46 0.485782
\(430\) 0 0
\(431\) −7035.30 −0.786261 −0.393131 0.919483i \(-0.628608\pi\)
−0.393131 + 0.919483i \(0.628608\pi\)
\(432\) 0 0
\(433\) 12046.0 1.33693 0.668467 0.743742i \(-0.266951\pi\)
0.668467 + 0.743742i \(0.266951\pi\)
\(434\) 0 0
\(435\) −1613.58 −0.177851
\(436\) 0 0
\(437\) −330.951 −0.0362277
\(438\) 0 0
\(439\) −2089.02 −0.227115 −0.113557 0.993531i \(-0.536225\pi\)
−0.113557 + 0.993531i \(0.536225\pi\)
\(440\) 0 0
\(441\) −2832.47 −0.305849
\(442\) 0 0
\(443\) −7436.42 −0.797551 −0.398776 0.917049i \(-0.630565\pi\)
−0.398776 + 0.917049i \(0.630565\pi\)
\(444\) 0 0
\(445\) −5834.46 −0.621528
\(446\) 0 0
\(447\) −2806.87 −0.297003
\(448\) 0 0
\(449\) 1796.33 0.188806 0.0944032 0.995534i \(-0.469906\pi\)
0.0944032 + 0.995534i \(0.469906\pi\)
\(450\) 0 0
\(451\) 6123.66 0.639361
\(452\) 0 0
\(453\) 2442.26 0.253306
\(454\) 0 0
\(455\) −7529.23 −0.775770
\(456\) 0 0
\(457\) −3232.73 −0.330899 −0.165450 0.986218i \(-0.552907\pi\)
−0.165450 + 0.986218i \(0.552907\pi\)
\(458\) 0 0
\(459\) −4419.72 −0.449444
\(460\) 0 0
\(461\) −10750.2 −1.08609 −0.543044 0.839704i \(-0.682728\pi\)
−0.543044 + 0.839704i \(0.682728\pi\)
\(462\) 0 0
\(463\) 6598.81 0.662360 0.331180 0.943568i \(-0.392553\pi\)
0.331180 + 0.943568i \(0.392553\pi\)
\(464\) 0 0
\(465\) −474.346 −0.0473060
\(466\) 0 0
\(467\) 8153.38 0.807909 0.403954 0.914779i \(-0.367635\pi\)
0.403954 + 0.914779i \(0.367635\pi\)
\(468\) 0 0
\(469\) 16139.4 1.58901
\(470\) 0 0
\(471\) 433.418 0.0424010
\(472\) 0 0
\(473\) −543.036 −0.0527882
\(474\) 0 0
\(475\) 359.729 0.0347484
\(476\) 0 0
\(477\) 15096.8 1.44913
\(478\) 0 0
\(479\) 15056.7 1.43624 0.718120 0.695919i \(-0.245003\pi\)
0.718120 + 0.695919i \(0.245003\pi\)
\(480\) 0 0
\(481\) 2765.19 0.262124
\(482\) 0 0
\(483\) 1014.58 0.0955793
\(484\) 0 0
\(485\) −2016.04 −0.188750
\(486\) 0 0
\(487\) 2098.90 0.195298 0.0976491 0.995221i \(-0.468868\pi\)
0.0976491 + 0.995221i \(0.468868\pi\)
\(488\) 0 0
\(489\) −2837.54 −0.262409
\(490\) 0 0
\(491\) −2245.71 −0.206410 −0.103205 0.994660i \(-0.532910\pi\)
−0.103205 + 0.994660i \(0.532910\pi\)
\(492\) 0 0
\(493\) 6869.74 0.627581
\(494\) 0 0
\(495\) −3464.95 −0.314622
\(496\) 0 0
\(497\) −5948.41 −0.536866
\(498\) 0 0
\(499\) 3216.32 0.288542 0.144271 0.989538i \(-0.453916\pi\)
0.144271 + 0.989538i \(0.453916\pi\)
\(500\) 0 0
\(501\) −739.611 −0.0659548
\(502\) 0 0
\(503\) −15459.5 −1.37039 −0.685193 0.728361i \(-0.740282\pi\)
−0.685193 + 0.728361i \(0.740282\pi\)
\(504\) 0 0
\(505\) −2421.59 −0.213385
\(506\) 0 0
\(507\) −5425.62 −0.475267
\(508\) 0 0
\(509\) 12581.8 1.09564 0.547818 0.836597i \(-0.315459\pi\)
0.547818 + 0.836597i \(0.315459\pi\)
\(510\) 0 0
\(511\) −10797.7 −0.934761
\(512\) 0 0
\(513\) 1463.64 0.125967
\(514\) 0 0
\(515\) 10323.4 0.883311
\(516\) 0 0
\(517\) 21.3256 0.00181412
\(518\) 0 0
\(519\) −2013.80 −0.170320
\(520\) 0 0
\(521\) 2681.76 0.225509 0.112754 0.993623i \(-0.464033\pi\)
0.112754 + 0.993623i \(0.464033\pi\)
\(522\) 0 0
\(523\) −9009.09 −0.753232 −0.376616 0.926370i \(-0.622912\pi\)
−0.376616 + 0.926370i \(0.622912\pi\)
\(524\) 0 0
\(525\) −1102.80 −0.0916764
\(526\) 0 0
\(527\) 2019.50 0.166928
\(528\) 0 0
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 16729.8 1.36725
\(532\) 0 0
\(533\) −14059.2 −1.14253
\(534\) 0 0
\(535\) 7182.16 0.580396
\(536\) 0 0
\(537\) −8118.57 −0.652406
\(538\) 0 0
\(539\) −3764.78 −0.300855
\(540\) 0 0
\(541\) 22789.6 1.81109 0.905546 0.424249i \(-0.139462\pi\)
0.905546 + 0.424249i \(0.139462\pi\)
\(542\) 0 0
\(543\) −5128.80 −0.405337
\(544\) 0 0
\(545\) −9353.11 −0.735125
\(546\) 0 0
\(547\) 20709.0 1.61874 0.809371 0.587297i \(-0.199808\pi\)
0.809371 + 0.587297i \(0.199808\pi\)
\(548\) 0 0
\(549\) 20002.3 1.55496
\(550\) 0 0
\(551\) −2274.99 −0.175895
\(552\) 0 0
\(553\) −17245.2 −1.32611
\(554\) 0 0
\(555\) 405.015 0.0309764
\(556\) 0 0
\(557\) 586.443 0.0446111 0.0223055 0.999751i \(-0.492899\pi\)
0.0223055 + 0.999751i \(0.492899\pi\)
\(558\) 0 0
\(559\) 1246.74 0.0943320
\(560\) 0 0
\(561\) −2691.68 −0.202572
\(562\) 0 0
\(563\) −4988.10 −0.373399 −0.186699 0.982417i \(-0.559779\pi\)
−0.186699 + 0.982417i \(0.559779\pi\)
\(564\) 0 0
\(565\) −8033.37 −0.598170
\(566\) 0 0
\(567\) 8836.57 0.654499
\(568\) 0 0
\(569\) 5548.19 0.408773 0.204387 0.978890i \(-0.434480\pi\)
0.204387 + 0.978890i \(0.434480\pi\)
\(570\) 0 0
\(571\) −2684.93 −0.196779 −0.0983893 0.995148i \(-0.531369\pi\)
−0.0983893 + 0.995148i \(0.531369\pi\)
\(572\) 0 0
\(573\) −4036.36 −0.294278
\(574\) 0 0
\(575\) −575.000 −0.0417029
\(576\) 0 0
\(577\) 1462.86 0.105546 0.0527728 0.998607i \(-0.483194\pi\)
0.0527728 + 0.998607i \(0.483194\pi\)
\(578\) 0 0
\(579\) 2533.68 0.181859
\(580\) 0 0
\(581\) −24855.2 −1.77481
\(582\) 0 0
\(583\) 20065.9 1.42546
\(584\) 0 0
\(585\) 7955.10 0.562227
\(586\) 0 0
\(587\) −11020.7 −0.774912 −0.387456 0.921888i \(-0.626646\pi\)
−0.387456 + 0.921888i \(0.626646\pi\)
\(588\) 0 0
\(589\) −668.782 −0.0467856
\(590\) 0 0
\(591\) −4020.88 −0.279860
\(592\) 0 0
\(593\) 7341.16 0.508373 0.254186 0.967155i \(-0.418192\pi\)
0.254186 + 0.967155i \(0.418192\pi\)
\(594\) 0 0
\(595\) 4695.11 0.323497
\(596\) 0 0
\(597\) 8272.98 0.567154
\(598\) 0 0
\(599\) −12642.5 −0.862366 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(600\) 0 0
\(601\) 7426.60 0.504056 0.252028 0.967720i \(-0.418903\pi\)
0.252028 + 0.967720i \(0.418903\pi\)
\(602\) 0 0
\(603\) −17052.3 −1.15161
\(604\) 0 0
\(605\) 2049.54 0.137728
\(606\) 0 0
\(607\) −7506.30 −0.501929 −0.250965 0.967996i \(-0.580748\pi\)
−0.250965 + 0.967996i \(0.580748\pi\)
\(608\) 0 0
\(609\) 6974.31 0.464061
\(610\) 0 0
\(611\) −48.9610 −0.00324182
\(612\) 0 0
\(613\) 23467.7 1.54625 0.773124 0.634254i \(-0.218693\pi\)
0.773124 + 0.634254i \(0.218693\pi\)
\(614\) 0 0
\(615\) −2059.23 −0.135018
\(616\) 0 0
\(617\) 1436.56 0.0937337 0.0468669 0.998901i \(-0.485076\pi\)
0.0468669 + 0.998901i \(0.485076\pi\)
\(618\) 0 0
\(619\) 12664.4 0.822332 0.411166 0.911561i \(-0.365122\pi\)
0.411166 + 0.911561i \(0.365122\pi\)
\(620\) 0 0
\(621\) −2339.52 −0.151178
\(622\) 0 0
\(623\) 25218.1 1.62173
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 891.380 0.0567756
\(628\) 0 0
\(629\) −1724.33 −0.109306
\(630\) 0 0
\(631\) 5383.68 0.339653 0.169826 0.985474i \(-0.445679\pi\)
0.169826 + 0.985474i \(0.445679\pi\)
\(632\) 0 0
\(633\) −763.616 −0.0479479
\(634\) 0 0
\(635\) 10158.3 0.634834
\(636\) 0 0
\(637\) 8643.47 0.537625
\(638\) 0 0
\(639\) 6284.87 0.389085
\(640\) 0 0
\(641\) 31245.1 1.92529 0.962643 0.270775i \(-0.0872799\pi\)
0.962643 + 0.270775i \(0.0872799\pi\)
\(642\) 0 0
\(643\) 22381.8 1.37271 0.686354 0.727268i \(-0.259210\pi\)
0.686354 + 0.727268i \(0.259210\pi\)
\(644\) 0 0
\(645\) 182.609 0.0111477
\(646\) 0 0
\(647\) 13062.8 0.793741 0.396870 0.917875i \(-0.370096\pi\)
0.396870 + 0.917875i \(0.370096\pi\)
\(648\) 0 0
\(649\) 22236.4 1.34493
\(650\) 0 0
\(651\) 2050.25 0.123434
\(652\) 0 0
\(653\) −17486.1 −1.04791 −0.523955 0.851746i \(-0.675544\pi\)
−0.523955 + 0.851746i \(0.675544\pi\)
\(654\) 0 0
\(655\) 2173.45 0.129655
\(656\) 0 0
\(657\) 11408.5 0.677453
\(658\) 0 0
\(659\) −29707.1 −1.75603 −0.878016 0.478631i \(-0.841133\pi\)
−0.878016 + 0.478631i \(0.841133\pi\)
\(660\) 0 0
\(661\) −9905.74 −0.582888 −0.291444 0.956588i \(-0.594136\pi\)
−0.291444 + 0.956588i \(0.594136\pi\)
\(662\) 0 0
\(663\) 6179.76 0.361994
\(664\) 0 0
\(665\) −1554.84 −0.0906679
\(666\) 0 0
\(667\) 3636.41 0.211098
\(668\) 0 0
\(669\) −6586.61 −0.380647
\(670\) 0 0
\(671\) 26586.1 1.52957
\(672\) 0 0
\(673\) −7803.48 −0.446957 −0.223478 0.974709i \(-0.571741\pi\)
−0.223478 + 0.974709i \(0.571741\pi\)
\(674\) 0 0
\(675\) 2542.96 0.145005
\(676\) 0 0
\(677\) 29359.1 1.66671 0.833354 0.552740i \(-0.186418\pi\)
0.833354 + 0.552740i \(0.186418\pi\)
\(678\) 0 0
\(679\) 8713.86 0.492500
\(680\) 0 0
\(681\) −6165.54 −0.346937
\(682\) 0 0
\(683\) −26055.8 −1.45973 −0.729866 0.683591i \(-0.760417\pi\)
−0.729866 + 0.683591i \(0.760417\pi\)
\(684\) 0 0
\(685\) −4698.65 −0.262082
\(686\) 0 0
\(687\) −1907.99 −0.105960
\(688\) 0 0
\(689\) −46068.8 −2.54729
\(690\) 0 0
\(691\) 15166.4 0.834959 0.417480 0.908686i \(-0.362914\pi\)
0.417480 + 0.908686i \(0.362914\pi\)
\(692\) 0 0
\(693\) 14976.4 0.820934
\(694\) 0 0
\(695\) 623.047 0.0340051
\(696\) 0 0
\(697\) 8767.08 0.476437
\(698\) 0 0
\(699\) 7994.95 0.432614
\(700\) 0 0
\(701\) −26527.8 −1.42930 −0.714650 0.699482i \(-0.753414\pi\)
−0.714650 + 0.699482i \(0.753414\pi\)
\(702\) 0 0
\(703\) 571.032 0.0306357
\(704\) 0 0
\(705\) −7.17128 −0.000383101 0
\(706\) 0 0
\(707\) 10466.7 0.556779
\(708\) 0 0
\(709\) 21268.1 1.12657 0.563287 0.826261i \(-0.309536\pi\)
0.563287 + 0.826261i \(0.309536\pi\)
\(710\) 0 0
\(711\) 18220.6 0.961077
\(712\) 0 0
\(713\) 1069.00 0.0561491
\(714\) 0 0
\(715\) 10573.6 0.553047
\(716\) 0 0
\(717\) −6531.82 −0.340216
\(718\) 0 0
\(719\) −27640.4 −1.43368 −0.716838 0.697240i \(-0.754411\pi\)
−0.716838 + 0.697240i \(0.754411\pi\)
\(720\) 0 0
\(721\) −44620.6 −2.30480
\(722\) 0 0
\(723\) 7703.81 0.396276
\(724\) 0 0
\(725\) −3952.62 −0.202478
\(726\) 0 0
\(727\) −10860.2 −0.554036 −0.277018 0.960865i \(-0.589346\pi\)
−0.277018 + 0.960865i \(0.589346\pi\)
\(728\) 0 0
\(729\) −3730.57 −0.189533
\(730\) 0 0
\(731\) −777.450 −0.0393366
\(732\) 0 0
\(733\) −2575.74 −0.129791 −0.0648956 0.997892i \(-0.520671\pi\)
−0.0648956 + 0.997892i \(0.520671\pi\)
\(734\) 0 0
\(735\) 1266.00 0.0635336
\(736\) 0 0
\(737\) −22665.1 −1.13281
\(738\) 0 0
\(739\) −25649.2 −1.27675 −0.638377 0.769724i \(-0.720394\pi\)
−0.638377 + 0.769724i \(0.720394\pi\)
\(740\) 0 0
\(741\) −2046.50 −0.101457
\(742\) 0 0
\(743\) 3767.84 0.186041 0.0930207 0.995664i \(-0.470348\pi\)
0.0930207 + 0.995664i \(0.470348\pi\)
\(744\) 0 0
\(745\) −6875.69 −0.338129
\(746\) 0 0
\(747\) 26261.1 1.28627
\(748\) 0 0
\(749\) −31043.1 −1.51441
\(750\) 0 0
\(751\) 16030.6 0.778913 0.389456 0.921045i \(-0.372663\pi\)
0.389456 + 0.921045i \(0.372663\pi\)
\(752\) 0 0
\(753\) −6821.55 −0.330134
\(754\) 0 0
\(755\) 5982.55 0.288380
\(756\) 0 0
\(757\) −3408.80 −0.163666 −0.0818329 0.996646i \(-0.526077\pi\)
−0.0818329 + 0.996646i \(0.526077\pi\)
\(758\) 0 0
\(759\) −1424.81 −0.0681385
\(760\) 0 0
\(761\) 28208.1 1.34368 0.671841 0.740696i \(-0.265504\pi\)
0.671841 + 0.740696i \(0.265504\pi\)
\(762\) 0 0
\(763\) 40426.6 1.91814
\(764\) 0 0
\(765\) −4960.68 −0.234450
\(766\) 0 0
\(767\) −51052.1 −2.40337
\(768\) 0 0
\(769\) 26349.3 1.23560 0.617802 0.786334i \(-0.288023\pi\)
0.617802 + 0.786334i \(0.288023\pi\)
\(770\) 0 0
\(771\) 5917.71 0.276422
\(772\) 0 0
\(773\) 29491.9 1.37225 0.686126 0.727482i \(-0.259310\pi\)
0.686126 + 0.727482i \(0.259310\pi\)
\(774\) 0 0
\(775\) −1161.96 −0.0538563
\(776\) 0 0
\(777\) −1750.58 −0.0808258
\(778\) 0 0
\(779\) −2903.32 −0.133533
\(780\) 0 0
\(781\) 8353.56 0.382732
\(782\) 0 0
\(783\) −16082.1 −0.734009
\(784\) 0 0
\(785\) 1061.70 0.0482722
\(786\) 0 0
\(787\) 18485.5 0.837276 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(788\) 0 0
\(789\) 12250.7 0.552770
\(790\) 0 0
\(791\) 34722.3 1.56079
\(792\) 0 0
\(793\) −61038.3 −2.73333
\(794\) 0 0
\(795\) −6747.67 −0.301025
\(796\) 0 0
\(797\) 36684.3 1.63039 0.815197 0.579184i \(-0.196629\pi\)
0.815197 + 0.579184i \(0.196629\pi\)
\(798\) 0 0
\(799\) 30.5313 0.00135184
\(800\) 0 0
\(801\) −26644.5 −1.17533
\(802\) 0 0
\(803\) 15163.6 0.666391
\(804\) 0 0
\(805\) 2485.30 0.108814
\(806\) 0 0
\(807\) −16958.5 −0.739737
\(808\) 0 0
\(809\) 216.567 0.00941173 0.00470586 0.999989i \(-0.498502\pi\)
0.00470586 + 0.999989i \(0.498502\pi\)
\(810\) 0 0
\(811\) 25897.5 1.12131 0.560657 0.828048i \(-0.310549\pi\)
0.560657 + 0.828048i \(0.310549\pi\)
\(812\) 0 0
\(813\) 4889.14 0.210910
\(814\) 0 0
\(815\) −6950.82 −0.298744
\(816\) 0 0
\(817\) 257.462 0.0110250
\(818\) 0 0
\(819\) −34384.0 −1.46700
\(820\) 0 0
\(821\) 12735.6 0.541384 0.270692 0.962666i \(-0.412748\pi\)
0.270692 + 0.962666i \(0.412748\pi\)
\(822\) 0 0
\(823\) 25798.2 1.09267 0.546336 0.837566i \(-0.316022\pi\)
0.546336 + 0.837566i \(0.316022\pi\)
\(824\) 0 0
\(825\) 1548.70 0.0653562
\(826\) 0 0
\(827\) 21295.2 0.895413 0.447706 0.894181i \(-0.352241\pi\)
0.447706 + 0.894181i \(0.352241\pi\)
\(828\) 0 0
\(829\) −43456.4 −1.82063 −0.910315 0.413915i \(-0.864161\pi\)
−0.910315 + 0.413915i \(0.864161\pi\)
\(830\) 0 0
\(831\) −15240.3 −0.636197
\(832\) 0 0
\(833\) −5389.94 −0.224190
\(834\) 0 0
\(835\) −1811.75 −0.0750875
\(836\) 0 0
\(837\) −4727.68 −0.195236
\(838\) 0 0
\(839\) 14245.5 0.586184 0.293092 0.956084i \(-0.405316\pi\)
0.293092 + 0.956084i \(0.405316\pi\)
\(840\) 0 0
\(841\) 608.090 0.0249330
\(842\) 0 0
\(843\) 11371.0 0.464577
\(844\) 0 0
\(845\) −13290.6 −0.541076
\(846\) 0 0
\(847\) −8858.64 −0.359370
\(848\) 0 0
\(849\) 10764.0 0.435123
\(850\) 0 0
\(851\) −912.752 −0.0367670
\(852\) 0 0
\(853\) 1967.69 0.0789830 0.0394915 0.999220i \(-0.487426\pi\)
0.0394915 + 0.999220i \(0.487426\pi\)
\(854\) 0 0
\(855\) 1642.79 0.0657101
\(856\) 0 0
\(857\) −32176.3 −1.28252 −0.641262 0.767322i \(-0.721589\pi\)
−0.641262 + 0.767322i \(0.721589\pi\)
\(858\) 0 0
\(859\) −1273.26 −0.0505741 −0.0252871 0.999680i \(-0.508050\pi\)
−0.0252871 + 0.999680i \(0.508050\pi\)
\(860\) 0 0
\(861\) 8900.54 0.352299
\(862\) 0 0
\(863\) 69.6881 0.00274880 0.00137440 0.999999i \(-0.499563\pi\)
0.00137440 + 0.999999i \(0.499563\pi\)
\(864\) 0 0
\(865\) −4932.98 −0.193903
\(866\) 0 0
\(867\) 6174.59 0.241869
\(868\) 0 0
\(869\) 24218.0 0.945384
\(870\) 0 0
\(871\) 52036.3 2.02432
\(872\) 0 0
\(873\) −9206.75 −0.356931
\(874\) 0 0
\(875\) −2701.41 −0.104371
\(876\) 0 0
\(877\) −20284.8 −0.781038 −0.390519 0.920595i \(-0.627704\pi\)
−0.390519 + 0.920595i \(0.627704\pi\)
\(878\) 0 0
\(879\) 1044.08 0.0400636
\(880\) 0 0
\(881\) −29637.5 −1.13339 −0.566693 0.823929i \(-0.691778\pi\)
−0.566693 + 0.823929i \(0.691778\pi\)
\(882\) 0 0
\(883\) −16749.3 −0.638344 −0.319172 0.947697i \(-0.603405\pi\)
−0.319172 + 0.947697i \(0.603405\pi\)
\(884\) 0 0
\(885\) −7477.56 −0.284017
\(886\) 0 0
\(887\) −22904.8 −0.867042 −0.433521 0.901143i \(-0.642729\pi\)
−0.433521 + 0.901143i \(0.642729\pi\)
\(888\) 0 0
\(889\) −43906.7 −1.65645
\(890\) 0 0
\(891\) −12409.5 −0.466593
\(892\) 0 0
\(893\) −10.1108 −0.000378886 0
\(894\) 0 0
\(895\) −19887.2 −0.742744
\(896\) 0 0
\(897\) 3271.17 0.121763
\(898\) 0 0
\(899\) 7348.42 0.272618
\(900\) 0 0
\(901\) 28727.8 1.06222
\(902\) 0 0
\(903\) −789.285 −0.0290872
\(904\) 0 0
\(905\) −12563.5 −0.461463
\(906\) 0 0
\(907\) −20869.7 −0.764020 −0.382010 0.924158i \(-0.624768\pi\)
−0.382010 + 0.924158i \(0.624768\pi\)
\(908\) 0 0
\(909\) −11058.8 −0.403517
\(910\) 0 0
\(911\) −42361.0 −1.54060 −0.770298 0.637684i \(-0.779892\pi\)
−0.770298 + 0.637684i \(0.779892\pi\)
\(912\) 0 0
\(913\) 34905.0 1.26527
\(914\) 0 0
\(915\) −8940.24 −0.323011
\(916\) 0 0
\(917\) −9394.22 −0.338304
\(918\) 0 0
\(919\) 14136.3 0.507413 0.253707 0.967281i \(-0.418350\pi\)
0.253707 + 0.967281i \(0.418350\pi\)
\(920\) 0 0
\(921\) −8486.01 −0.303609
\(922\) 0 0
\(923\) −19178.7 −0.683939
\(924\) 0 0
\(925\) 992.122 0.0352657
\(926\) 0 0
\(927\) 47144.5 1.67036
\(928\) 0 0
\(929\) −7897.49 −0.278911 −0.139455 0.990228i \(-0.544535\pi\)
−0.139455 + 0.990228i \(0.544535\pi\)
\(930\) 0 0
\(931\) 1784.94 0.0628347
\(932\) 0 0
\(933\) 6957.19 0.244124
\(934\) 0 0
\(935\) −6593.52 −0.230621
\(936\) 0 0
\(937\) 21499.1 0.749567 0.374783 0.927112i \(-0.377717\pi\)
0.374783 + 0.927112i \(0.377717\pi\)
\(938\) 0 0
\(939\) −9218.58 −0.320380
\(940\) 0 0
\(941\) 30258.7 1.04825 0.524125 0.851641i \(-0.324392\pi\)
0.524125 + 0.851641i \(0.324392\pi\)
\(942\) 0 0
\(943\) 4640.74 0.160258
\(944\) 0 0
\(945\) −10991.3 −0.378357
\(946\) 0 0
\(947\) −12769.1 −0.438163 −0.219082 0.975707i \(-0.570306\pi\)
−0.219082 + 0.975707i \(0.570306\pi\)
\(948\) 0 0
\(949\) −34813.8 −1.19083
\(950\) 0 0
\(951\) −5498.09 −0.187474
\(952\) 0 0
\(953\) 28174.8 0.957683 0.478841 0.877901i \(-0.341057\pi\)
0.478841 + 0.877901i \(0.341057\pi\)
\(954\) 0 0
\(955\) −9887.45 −0.335027
\(956\) 0 0
\(957\) −9794.28 −0.330830
\(958\) 0 0
\(959\) 20308.8 0.683841
\(960\) 0 0
\(961\) −27630.8 −0.927487
\(962\) 0 0
\(963\) 32799.0 1.09754
\(964\) 0 0
\(965\) 6206.50 0.207041
\(966\) 0 0
\(967\) −2696.72 −0.0896800 −0.0448400 0.998994i \(-0.514278\pi\)
−0.0448400 + 0.998994i \(0.514278\pi\)
\(968\) 0 0
\(969\) 1276.17 0.0423079
\(970\) 0 0
\(971\) −29192.7 −0.964817 −0.482408 0.875946i \(-0.660238\pi\)
−0.482408 + 0.875946i \(0.660238\pi\)
\(972\) 0 0
\(973\) −2692.97 −0.0887283
\(974\) 0 0
\(975\) −3555.62 −0.116791
\(976\) 0 0
\(977\) −1150.88 −0.0376867 −0.0188433 0.999822i \(-0.505998\pi\)
−0.0188433 + 0.999822i \(0.505998\pi\)
\(978\) 0 0
\(979\) −35414.6 −1.15613
\(980\) 0 0
\(981\) −42713.2 −1.39014
\(982\) 0 0
\(983\) −9924.92 −0.322030 −0.161015 0.986952i \(-0.551477\pi\)
−0.161015 + 0.986952i \(0.551477\pi\)
\(984\) 0 0
\(985\) −9849.53 −0.318611
\(986\) 0 0
\(987\) 30.9961 0.000999612 0
\(988\) 0 0
\(989\) −411.533 −0.0132315
\(990\) 0 0
\(991\) 32446.8 1.04007 0.520034 0.854146i \(-0.325919\pi\)
0.520034 + 0.854146i \(0.325919\pi\)
\(992\) 0 0
\(993\) 22502.4 0.719127
\(994\) 0 0
\(995\) 20265.4 0.645686
\(996\) 0 0
\(997\) 49280.6 1.56543 0.782715 0.622381i \(-0.213834\pi\)
0.782715 + 0.622381i \(0.213834\pi\)
\(998\) 0 0
\(999\) 4036.68 0.127843
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 460.4.a.b.1.3 5
4.3 odd 2 1840.4.a.o.1.3 5
5.2 odd 4 2300.4.c.d.1749.6 10
5.3 odd 4 2300.4.c.d.1749.5 10
5.4 even 2 2300.4.a.c.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
460.4.a.b.1.3 5 1.1 even 1 trivial
1840.4.a.o.1.3 5 4.3 odd 2
2300.4.a.c.1.3 5 5.4 even 2
2300.4.c.d.1749.5 10 5.3 odd 4
2300.4.c.d.1749.6 10 5.2 odd 4