Defining parameters
| Level: | \( N \) | \(=\) | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 460.f (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(216\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(460, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 150 | 16 | 134 |
| Cusp forms | 138 | 16 | 122 |
| Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(460, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 460.3.f.a | $16$ | $12.534$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{3}+\beta _{4}q^{5}-\beta _{7}q^{7}+(4+\beta _{2}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(460, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(460, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)