Defining parameters
Level: | \( N \) | \(=\) | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 460.x (of order \(44\) and degree \(20\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(\zeta_{44})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(460, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1560 | 240 | 1320 |
Cusp forms | 1320 | 240 | 1080 |
Eisenstein series | 240 | 0 | 240 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(460, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
460.2.x.a | $240$ | $3.673$ | None | \(0\) | \(4\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(460, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(460, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)