Properties

Label 460.2.x
Level $460$
Weight $2$
Character orbit 460.x
Rep. character $\chi_{460}(17,\cdot)$
Character field $\Q(\zeta_{44})$
Dimension $240$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.x (of order \(44\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(\zeta_{44})\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(460, [\chi])\).

Total New Old
Modular forms 1560 240 1320
Cusp forms 1320 240 1080
Eisenstein series 240 0 240

Trace form

\( 240 q + 4 q^{3} - 8 q^{13} + 46 q^{23} - 24 q^{25} - 20 q^{27} + 12 q^{31} + 22 q^{33} + 4 q^{35} - 88 q^{37} + 12 q^{41} - 92 q^{47} - 36 q^{55} - 88 q^{57} + 88 q^{61} + 168 q^{71} + 20 q^{73} + 12 q^{75}+ \cdots - 66 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(460, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
460.2.x.a 460.x 115.l $240$ $3.673$ None 460.2.x.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{44}]$

Decomposition of \(S_{2}^{\mathrm{old}}(460, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(460, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)