Defining parameters
Level: | \( N \) | \(=\) | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 460.o (of order \(22\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 460 \) |
Character field: | \(\Q(\zeta_{22})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(460, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 760 | 760 | 0 |
Cusp forms | 680 | 680 | 0 |
Eisenstein series | 80 | 80 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(460, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
460.2.o.a | $40$ | $3.673$ | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | ||
460.2.o.b | $640$ | $3.673$ | None | \(0\) | \(0\) | \(-22\) | \(0\) |