Properties

Label 460.2.m.a.81.3
Level $460$
Weight $2$
Character 460.81
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 81.3
Character \(\chi\) \(=\) 460.81
Dual form 460.2.m.a.301.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.241946 - 1.68277i) q^{3} +(-0.959493 + 0.281733i) q^{5} +(2.58157 + 2.97929i) q^{7} +(0.105306 + 0.0309206i) q^{9} +O(q^{10})\) \(q+(0.241946 - 1.68277i) q^{3} +(-0.959493 + 0.281733i) q^{5} +(2.58157 + 2.97929i) q^{7} +(0.105306 + 0.0309206i) q^{9} +(1.84361 + 1.18481i) q^{11} +(2.08288 - 2.40377i) q^{13} +(0.241946 + 1.68277i) q^{15} +(0.820281 + 1.79617i) q^{17} +(0.904027 - 1.97954i) q^{19} +(5.63805 - 3.62336i) q^{21} +(-3.74040 - 3.00157i) q^{23} +(0.841254 - 0.540641i) q^{25} +(2.19622 - 4.80905i) q^{27} +(0.693399 + 1.51833i) q^{29} +(0.122568 + 0.852481i) q^{31} +(2.43982 - 2.81570i) q^{33} +(-3.31636 - 2.13129i) q^{35} +(1.64535 + 0.483119i) q^{37} +(-3.54104 - 4.08658i) q^{39} +(-1.93728 + 0.568838i) q^{41} +(1.39884 - 9.72914i) q^{43} -0.109752 q^{45} -6.47457 q^{47} +(-1.21546 + 8.45371i) q^{49} +(3.22099 - 0.945769i) q^{51} +(6.84462 + 7.89911i) q^{53} +(-2.10273 - 0.617417i) q^{55} +(-3.11239 - 2.00021i) q^{57} +(-8.37319 + 9.66318i) q^{59} +(1.26755 + 8.81598i) q^{61} +(0.179733 + 0.393561i) q^{63} +(-1.32129 + 2.89321i) q^{65} +(11.5834 - 7.44419i) q^{67} +(-5.95592 + 5.56801i) q^{69} +(2.28434 - 1.46806i) q^{71} +(0.192036 - 0.420501i) q^{73} +(-0.706236 - 1.54644i) q^{75} +(1.22949 + 8.55131i) q^{77} +(-6.61761 + 7.63713i) q^{79} +(-7.28416 - 4.68125i) q^{81} +(-7.69481 - 2.25940i) q^{83} +(-1.29309 - 1.49231i) q^{85} +(2.72277 - 0.799477i) q^{87} +(-0.0222007 + 0.154409i) q^{89} +12.5386 q^{91} +1.46418 q^{93} +(-0.309706 + 2.15405i) q^{95} +(-11.4900 + 3.37375i) q^{97} +(0.157508 + 0.181774i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{10}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.241946 1.68277i 0.139687 0.971547i −0.792578 0.609771i \(-0.791261\pi\)
0.932265 0.361776i \(-0.117829\pi\)
\(4\) 0 0
\(5\) −0.959493 + 0.281733i −0.429098 + 0.125995i
\(6\) 0 0
\(7\) 2.58157 + 2.97929i 0.975741 + 1.12606i 0.992005 + 0.126197i \(0.0402772\pi\)
−0.0162644 + 0.999868i \(0.505177\pi\)
\(8\) 0 0
\(9\) 0.105306 + 0.0309206i 0.0351020 + 0.0103069i
\(10\) 0 0
\(11\) 1.84361 + 1.18481i 0.555868 + 0.357235i 0.788217 0.615398i \(-0.211005\pi\)
−0.232348 + 0.972633i \(0.574641\pi\)
\(12\) 0 0
\(13\) 2.08288 2.40377i 0.577686 0.666685i −0.389420 0.921060i \(-0.627324\pi\)
0.967106 + 0.254376i \(0.0818699\pi\)
\(14\) 0 0
\(15\) 0.241946 + 1.68277i 0.0624701 + 0.434489i
\(16\) 0 0
\(17\) 0.820281 + 1.79617i 0.198947 + 0.435634i 0.982642 0.185512i \(-0.0593945\pi\)
−0.783695 + 0.621146i \(0.786667\pi\)
\(18\) 0 0
\(19\) 0.904027 1.97954i 0.207398 0.454138i −0.777136 0.629333i \(-0.783328\pi\)
0.984534 + 0.175195i \(0.0560555\pi\)
\(20\) 0 0
\(21\) 5.63805 3.62336i 1.23032 0.790681i
\(22\) 0 0
\(23\) −3.74040 3.00157i −0.779927 0.625871i
\(24\) 0 0
\(25\) 0.841254 0.540641i 0.168251 0.108128i
\(26\) 0 0
\(27\) 2.19622 4.80905i 0.422662 0.925502i
\(28\) 0 0
\(29\) 0.693399 + 1.51833i 0.128761 + 0.281947i 0.963022 0.269422i \(-0.0868327\pi\)
−0.834261 + 0.551370i \(0.814105\pi\)
\(30\) 0 0
\(31\) 0.122568 + 0.852481i 0.0220139 + 0.153110i 0.997863 0.0653335i \(-0.0208111\pi\)
−0.975850 + 0.218444i \(0.929902\pi\)
\(32\) 0 0
\(33\) 2.43982 2.81570i 0.424718 0.490151i
\(34\) 0 0
\(35\) −3.31636 2.13129i −0.560567 0.360254i
\(36\) 0 0
\(37\) 1.64535 + 0.483119i 0.270494 + 0.0794243i 0.414167 0.910201i \(-0.364073\pi\)
−0.143673 + 0.989625i \(0.545891\pi\)
\(38\) 0 0
\(39\) −3.54104 4.08658i −0.567020 0.654376i
\(40\) 0 0
\(41\) −1.93728 + 0.568838i −0.302553 + 0.0888376i −0.429485 0.903074i \(-0.641305\pi\)
0.126932 + 0.991911i \(0.459487\pi\)
\(42\) 0 0
\(43\) 1.39884 9.72914i 0.213321 1.48368i −0.548640 0.836058i \(-0.684854\pi\)
0.761962 0.647622i \(-0.224236\pi\)
\(44\) 0 0
\(45\) −0.109752 −0.0163608
\(46\) 0 0
\(47\) −6.47457 −0.944413 −0.472206 0.881488i \(-0.656542\pi\)
−0.472206 + 0.881488i \(0.656542\pi\)
\(48\) 0 0
\(49\) −1.21546 + 8.45371i −0.173637 + 1.20767i
\(50\) 0 0
\(51\) 3.22099 0.945769i 0.451029 0.132434i
\(52\) 0 0
\(53\) 6.84462 + 7.89911i 0.940181 + 1.08503i 0.996243 + 0.0865993i \(0.0276000\pi\)
−0.0560624 + 0.998427i \(0.517855\pi\)
\(54\) 0 0
\(55\) −2.10273 0.617417i −0.283532 0.0832525i
\(56\) 0 0
\(57\) −3.11239 2.00021i −0.412246 0.264934i
\(58\) 0 0
\(59\) −8.37319 + 9.66318i −1.09010 + 1.25804i −0.126130 + 0.992014i \(0.540256\pi\)
−0.963966 + 0.266025i \(0.914290\pi\)
\(60\) 0 0
\(61\) 1.26755 + 8.81598i 0.162293 + 1.12877i 0.894298 + 0.447472i \(0.147675\pi\)
−0.732005 + 0.681299i \(0.761415\pi\)
\(62\) 0 0
\(63\) 0.179733 + 0.393561i 0.0226442 + 0.0495840i
\(64\) 0 0
\(65\) −1.32129 + 2.89321i −0.163885 + 0.358859i
\(66\) 0 0
\(67\) 11.5834 7.44419i 1.41514 0.909453i 0.415137 0.909759i \(-0.363734\pi\)
1.00000 0.000305859i \(9.73578e-5\pi\)
\(68\) 0 0
\(69\) −5.95592 + 5.56801i −0.717009 + 0.670309i
\(70\) 0 0
\(71\) 2.28434 1.46806i 0.271101 0.174226i −0.398026 0.917374i \(-0.630305\pi\)
0.669127 + 0.743148i \(0.266668\pi\)
\(72\) 0 0
\(73\) 0.192036 0.420501i 0.0224761 0.0492159i −0.898061 0.439871i \(-0.855024\pi\)
0.920537 + 0.390655i \(0.127751\pi\)
\(74\) 0 0
\(75\) −0.706236 1.54644i −0.0815491 0.178568i
\(76\) 0 0
\(77\) 1.22949 + 8.55131i 0.140114 + 0.974513i
\(78\) 0 0
\(79\) −6.61761 + 7.63713i −0.744540 + 0.859245i −0.994027 0.109133i \(-0.965192\pi\)
0.249487 + 0.968378i \(0.419738\pi\)
\(80\) 0 0
\(81\) −7.28416 4.68125i −0.809351 0.520138i
\(82\) 0 0
\(83\) −7.69481 2.25940i −0.844616 0.248001i −0.169331 0.985559i \(-0.554161\pi\)
−0.675284 + 0.737558i \(0.735979\pi\)
\(84\) 0 0
\(85\) −1.29309 1.49231i −0.140256 0.161864i
\(86\) 0 0
\(87\) 2.72277 0.799477i 0.291911 0.0857129i
\(88\) 0 0
\(89\) −0.0222007 + 0.154409i −0.00235327 + 0.0163673i −0.990964 0.134126i \(-0.957177\pi\)
0.988611 + 0.150494i \(0.0480863\pi\)
\(90\) 0 0
\(91\) 12.5386 1.31440
\(92\) 0 0
\(93\) 1.46418 0.151829
\(94\) 0 0
\(95\) −0.309706 + 2.15405i −0.0317751 + 0.221001i
\(96\) 0 0
\(97\) −11.4900 + 3.37375i −1.16663 + 0.342553i −0.807005 0.590545i \(-0.798913\pi\)
−0.359623 + 0.933098i \(0.617095\pi\)
\(98\) 0 0
\(99\) 0.157508 + 0.181774i 0.0158301 + 0.0182689i
\(100\) 0 0
\(101\) −7.01280 2.05914i −0.697800 0.204893i −0.0864538 0.996256i \(-0.527554\pi\)
−0.611346 + 0.791363i \(0.709372\pi\)
\(102\) 0 0
\(103\) 0.320351 + 0.205877i 0.0315652 + 0.0202857i 0.556328 0.830963i \(-0.312210\pi\)
−0.524763 + 0.851248i \(0.675846\pi\)
\(104\) 0 0
\(105\) −4.38885 + 5.06501i −0.428308 + 0.494294i
\(106\) 0 0
\(107\) −1.71641 11.9379i −0.165932 1.15408i −0.887187 0.461410i \(-0.847344\pi\)
0.721255 0.692669i \(-0.243565\pi\)
\(108\) 0 0
\(109\) 5.14715 + 11.2707i 0.493008 + 1.07954i 0.978679 + 0.205395i \(0.0658478\pi\)
−0.485672 + 0.874141i \(0.661425\pi\)
\(110\) 0 0
\(111\) 1.21106 2.65186i 0.114949 0.251703i
\(112\) 0 0
\(113\) 4.84902 3.11628i 0.456158 0.293155i −0.292313 0.956323i \(-0.594425\pi\)
0.748471 + 0.663168i \(0.230789\pi\)
\(114\) 0 0
\(115\) 4.43453 + 1.82619i 0.413522 + 0.170293i
\(116\) 0 0
\(117\) 0.293665 0.188727i 0.0271494 0.0174478i
\(118\) 0 0
\(119\) −3.23368 + 7.08077i −0.296431 + 0.649094i
\(120\) 0 0
\(121\) −2.57446 5.63729i −0.234042 0.512481i
\(122\) 0 0
\(123\) 0.488505 + 3.39763i 0.0440470 + 0.306354i
\(124\) 0 0
\(125\) −0.654861 + 0.755750i −0.0585725 + 0.0675963i
\(126\) 0 0
\(127\) −8.09131 5.19997i −0.717988 0.461423i 0.129949 0.991521i \(-0.458519\pi\)
−0.847936 + 0.530098i \(0.822155\pi\)
\(128\) 0 0
\(129\) −16.0335 4.70785i −1.41167 0.414503i
\(130\) 0 0
\(131\) −7.25086 8.36794i −0.633511 0.731110i 0.344703 0.938712i \(-0.387980\pi\)
−0.978213 + 0.207602i \(0.933434\pi\)
\(132\) 0 0
\(133\) 8.23143 2.41697i 0.713756 0.209578i
\(134\) 0 0
\(135\) −0.752391 + 5.23299i −0.0647555 + 0.450384i
\(136\) 0 0
\(137\) −14.4697 −1.23623 −0.618114 0.786088i \(-0.712103\pi\)
−0.618114 + 0.786088i \(0.712103\pi\)
\(138\) 0 0
\(139\) −17.1539 −1.45498 −0.727489 0.686119i \(-0.759313\pi\)
−0.727489 + 0.686119i \(0.759313\pi\)
\(140\) 0 0
\(141\) −1.56649 + 10.8952i −0.131923 + 0.917542i
\(142\) 0 0
\(143\) 6.68802 1.96378i 0.559280 0.164220i
\(144\) 0 0
\(145\) −1.09308 1.26148i −0.0907750 0.104760i
\(146\) 0 0
\(147\) 13.9316 + 4.09068i 1.14906 + 0.337393i
\(148\) 0 0
\(149\) −8.68795 5.58341i −0.711745 0.457411i 0.134012 0.990980i \(-0.457214\pi\)
−0.845756 + 0.533569i \(0.820850\pi\)
\(150\) 0 0
\(151\) −10.0556 + 11.6047i −0.818310 + 0.944380i −0.999235 0.0391173i \(-0.987545\pi\)
0.180925 + 0.983497i \(0.442091\pi\)
\(152\) 0 0
\(153\) 0.0308420 + 0.214511i 0.00249343 + 0.0173422i
\(154\) 0 0
\(155\) −0.357775 0.783419i −0.0287372 0.0629257i
\(156\) 0 0
\(157\) −7.26939 + 15.9177i −0.580160 + 1.27037i 0.361048 + 0.932547i \(0.382419\pi\)
−0.941208 + 0.337827i \(0.890308\pi\)
\(158\) 0 0
\(159\) 14.9484 9.60676i 1.18549 0.761865i
\(160\) 0 0
\(161\) −0.713551 18.8925i −0.0562357 1.48894i
\(162\) 0 0
\(163\) 16.6127 10.6764i 1.30121 0.836237i 0.307867 0.951429i \(-0.400385\pi\)
0.993343 + 0.115193i \(0.0367485\pi\)
\(164\) 0 0
\(165\) −1.54772 + 3.38903i −0.120490 + 0.263835i
\(166\) 0 0
\(167\) −1.97673 4.32843i −0.152964 0.334944i 0.817600 0.575786i \(-0.195304\pi\)
−0.970564 + 0.240842i \(0.922577\pi\)
\(168\) 0 0
\(169\) 0.410370 + 2.85419i 0.0315669 + 0.219553i
\(170\) 0 0
\(171\) 0.156408 0.180505i 0.0119608 0.0138035i
\(172\) 0 0
\(173\) −0.520223 0.334327i −0.0395518 0.0254184i 0.520716 0.853730i \(-0.325665\pi\)
−0.560267 + 0.828312i \(0.689302\pi\)
\(174\) 0 0
\(175\) 3.78248 + 1.11064i 0.285928 + 0.0839562i
\(176\) 0 0
\(177\) 14.2350 + 16.4281i 1.06997 + 1.23481i
\(178\) 0 0
\(179\) −16.2201 + 4.76264i −1.21234 + 0.355976i −0.824560 0.565774i \(-0.808577\pi\)
−0.387784 + 0.921750i \(0.626759\pi\)
\(180\) 0 0
\(181\) 2.95827 20.5752i 0.219886 1.52934i −0.518566 0.855038i \(-0.673534\pi\)
0.738452 0.674306i \(-0.235557\pi\)
\(182\) 0 0
\(183\) 15.1419 1.11932
\(184\) 0 0
\(185\) −1.71481 −0.126076
\(186\) 0 0
\(187\) −0.615846 + 4.28330i −0.0450351 + 0.313226i
\(188\) 0 0
\(189\) 19.9972 5.87171i 1.45458 0.427104i
\(190\) 0 0
\(191\) 8.29242 + 9.56996i 0.600019 + 0.692458i 0.971785 0.235868i \(-0.0757933\pi\)
−0.371767 + 0.928326i \(0.621248\pi\)
\(192\) 0 0
\(193\) 9.03665 + 2.65340i 0.650472 + 0.190996i 0.590290 0.807191i \(-0.299013\pi\)
0.0601827 + 0.998187i \(0.480832\pi\)
\(194\) 0 0
\(195\) 4.54893 + 2.92342i 0.325755 + 0.209350i
\(196\) 0 0
\(197\) 9.60682 11.0869i 0.684458 0.789906i −0.302107 0.953274i \(-0.597690\pi\)
0.986565 + 0.163367i \(0.0522356\pi\)
\(198\) 0 0
\(199\) −3.39975 23.6458i −0.241002 1.67621i −0.647122 0.762386i \(-0.724028\pi\)
0.406120 0.913820i \(-0.366881\pi\)
\(200\) 0 0
\(201\) −9.72431 21.2933i −0.685900 1.50191i
\(202\) 0 0
\(203\) −2.73349 + 5.98551i −0.191854 + 0.420101i
\(204\) 0 0
\(205\) 1.69855 1.09159i 0.118632 0.0762401i
\(206\) 0 0
\(207\) −0.301076 0.431739i −0.0209262 0.0300079i
\(208\) 0 0
\(209\) 4.01206 2.57840i 0.277520 0.178351i
\(210\) 0 0
\(211\) −2.26444 + 4.95842i −0.155890 + 0.341352i −0.971421 0.237361i \(-0.923718\pi\)
0.815531 + 0.578713i \(0.196445\pi\)
\(212\) 0 0
\(213\) −1.91771 4.19920i −0.131400 0.287725i
\(214\) 0 0
\(215\) 1.39884 + 9.72914i 0.0954001 + 0.663522i
\(216\) 0 0
\(217\) −2.22337 + 2.56590i −0.150932 + 0.174185i
\(218\) 0 0
\(219\) −0.661143 0.424891i −0.0446759 0.0287115i
\(220\) 0 0
\(221\) 6.02610 + 1.76942i 0.405360 + 0.119024i
\(222\) 0 0
\(223\) 3.60267 + 4.15771i 0.241253 + 0.278421i 0.863444 0.504445i \(-0.168303\pi\)
−0.622191 + 0.782865i \(0.713757\pi\)
\(224\) 0 0
\(225\) 0.105306 0.0309206i 0.00702040 0.00206138i
\(226\) 0 0
\(227\) 3.29987 22.9511i 0.219020 1.52332i −0.522646 0.852550i \(-0.675055\pi\)
0.741666 0.670769i \(-0.234036\pi\)
\(228\) 0 0
\(229\) 14.2193 0.939635 0.469818 0.882764i \(-0.344320\pi\)
0.469818 + 0.882764i \(0.344320\pi\)
\(230\) 0 0
\(231\) 14.6874 0.966357
\(232\) 0 0
\(233\) −3.59061 + 24.9732i −0.235229 + 1.63605i 0.439683 + 0.898153i \(0.355091\pi\)
−0.674912 + 0.737898i \(0.735818\pi\)
\(234\) 0 0
\(235\) 6.21230 1.82410i 0.405246 0.118991i
\(236\) 0 0
\(237\) 11.2504 + 12.9837i 0.730794 + 0.843381i
\(238\) 0 0
\(239\) 12.5795 + 3.69366i 0.813697 + 0.238923i 0.662000 0.749504i \(-0.269708\pi\)
0.151697 + 0.988427i \(0.451526\pi\)
\(240\) 0 0
\(241\) 21.6963 + 13.9434i 1.39758 + 0.898171i 0.999813 0.0193156i \(-0.00614872\pi\)
0.397767 + 0.917486i \(0.369785\pi\)
\(242\) 0 0
\(243\) 0.746537 0.861550i 0.0478904 0.0552685i
\(244\) 0 0
\(245\) −1.21546 8.45371i −0.0776529 0.540088i
\(246\) 0 0
\(247\) −2.87538 6.29621i −0.182956 0.400618i
\(248\) 0 0
\(249\) −5.66378 + 12.4019i −0.358927 + 0.785941i
\(250\) 0 0
\(251\) −19.1427 + 12.3023i −1.20828 + 0.776512i −0.980369 0.197171i \(-0.936825\pi\)
−0.227907 + 0.973683i \(0.573188\pi\)
\(252\) 0 0
\(253\) −3.33952 9.96539i −0.209954 0.626519i
\(254\) 0 0
\(255\) −2.82407 + 1.81492i −0.176850 + 0.113655i
\(256\) 0 0
\(257\) −0.309807 + 0.678382i −0.0193252 + 0.0423163i −0.919048 0.394144i \(-0.871041\pi\)
0.899723 + 0.436461i \(0.143768\pi\)
\(258\) 0 0
\(259\) 2.80824 + 6.14918i 0.174495 + 0.382092i
\(260\) 0 0
\(261\) 0.0260713 + 0.181330i 0.00161377 + 0.0112240i
\(262\) 0 0
\(263\) −11.3480 + 13.0963i −0.699750 + 0.807554i −0.988719 0.149784i \(-0.952142\pi\)
0.288969 + 0.957338i \(0.406688\pi\)
\(264\) 0 0
\(265\) −8.79280 5.65079i −0.540138 0.347125i
\(266\) 0 0
\(267\) 0.254464 + 0.0747173i 0.0155729 + 0.00457262i
\(268\) 0 0
\(269\) 16.9178 + 19.5242i 1.03150 + 1.19041i 0.981460 + 0.191665i \(0.0613886\pi\)
0.0500373 + 0.998747i \(0.484066\pi\)
\(270\) 0 0
\(271\) 4.83679 1.42021i 0.293814 0.0862717i −0.131504 0.991316i \(-0.541980\pi\)
0.425318 + 0.905044i \(0.360162\pi\)
\(272\) 0 0
\(273\) 3.03366 21.0996i 0.183605 1.27700i
\(274\) 0 0
\(275\) 2.19150 0.132152
\(276\) 0 0
\(277\) −13.2268 −0.794720 −0.397360 0.917663i \(-0.630074\pi\)
−0.397360 + 0.917663i \(0.630074\pi\)
\(278\) 0 0
\(279\) −0.0134521 + 0.0935613i −0.000805355 + 0.00560137i
\(280\) 0 0
\(281\) −2.06162 + 0.605346i −0.122986 + 0.0361119i −0.342646 0.939464i \(-0.611323\pi\)
0.219660 + 0.975576i \(0.429505\pi\)
\(282\) 0 0
\(283\) −4.09886 4.73034i −0.243652 0.281189i 0.620731 0.784024i \(-0.286836\pi\)
−0.864383 + 0.502834i \(0.832291\pi\)
\(284\) 0 0
\(285\) 3.54984 + 1.04233i 0.210274 + 0.0617421i
\(286\) 0 0
\(287\) −6.69596 4.30323i −0.395250 0.254012i
\(288\) 0 0
\(289\) 8.57928 9.90102i 0.504664 0.582413i
\(290\) 0 0
\(291\) 2.89731 + 20.1512i 0.169843 + 1.18128i
\(292\) 0 0
\(293\) −5.19288 11.3708i −0.303371 0.664290i 0.695138 0.718876i \(-0.255343\pi\)
−0.998509 + 0.0545862i \(0.982616\pi\)
\(294\) 0 0
\(295\) 5.31159 11.6307i 0.309252 0.677168i
\(296\) 0 0
\(297\) 9.74679 6.26388i 0.565566 0.363467i
\(298\) 0 0
\(299\) −15.0059 + 2.73915i −0.867811 + 0.158409i
\(300\) 0 0
\(301\) 32.5971 20.9489i 1.87887 1.20747i
\(302\) 0 0
\(303\) −5.16178 + 11.3027i −0.296537 + 0.649325i
\(304\) 0 0
\(305\) −3.69995 8.10176i −0.211859 0.463905i
\(306\) 0 0
\(307\) −1.86343 12.9604i −0.106352 0.739691i −0.971305 0.237839i \(-0.923561\pi\)
0.864953 0.501853i \(-0.167348\pi\)
\(308\) 0 0
\(309\) 0.423951 0.489266i 0.0241178 0.0278334i
\(310\) 0 0
\(311\) −23.6964 15.2287i −1.34370 0.863543i −0.346479 0.938058i \(-0.612623\pi\)
−0.997220 + 0.0745144i \(0.976259\pi\)
\(312\) 0 0
\(313\) 0.0686569 + 0.0201595i 0.00388072 + 0.00113948i 0.283672 0.958921i \(-0.408447\pi\)
−0.279792 + 0.960061i \(0.590265\pi\)
\(314\) 0 0
\(315\) −0.283332 0.326982i −0.0159639 0.0184233i
\(316\) 0 0
\(317\) 14.5984 4.28647i 0.819926 0.240752i 0.155242 0.987877i \(-0.450384\pi\)
0.664684 + 0.747125i \(0.268566\pi\)
\(318\) 0 0
\(319\) −0.520586 + 3.62076i −0.0291472 + 0.202724i
\(320\) 0 0
\(321\) −20.5040 −1.14442
\(322\) 0 0
\(323\) 4.29714 0.239099
\(324\) 0 0
\(325\) 0.452652 3.14826i 0.0251086 0.174634i
\(326\) 0 0
\(327\) 20.2113 5.93457i 1.11769 0.328182i
\(328\) 0 0
\(329\) −16.7145 19.2896i −0.921502 1.06347i
\(330\) 0 0
\(331\) 14.1847 + 4.16499i 0.779659 + 0.228929i 0.647261 0.762268i \(-0.275914\pi\)
0.132398 + 0.991197i \(0.457732\pi\)
\(332\) 0 0
\(333\) 0.158327 + 0.101751i 0.00867628 + 0.00557590i
\(334\) 0 0
\(335\) −9.01691 + 10.4061i −0.492647 + 0.568544i
\(336\) 0 0
\(337\) −3.72179 25.8856i −0.202739 1.41008i −0.796110 0.605152i \(-0.793112\pi\)
0.593371 0.804929i \(-0.297797\pi\)
\(338\) 0 0
\(339\) −4.07077 8.91375i −0.221094 0.484129i
\(340\) 0 0
\(341\) −0.784064 + 1.71686i −0.0424595 + 0.0929733i
\(342\) 0 0
\(343\) −5.10933 + 3.28357i −0.275878 + 0.177296i
\(344\) 0 0
\(345\) 4.14597 7.02044i 0.223212 0.377968i
\(346\) 0 0
\(347\) −26.1914 + 16.8322i −1.40603 + 0.903600i −0.999948 0.0102365i \(-0.996742\pi\)
−0.406082 + 0.913837i \(0.633105\pi\)
\(348\) 0 0
\(349\) −6.90520 + 15.1203i −0.369627 + 0.809370i 0.629840 + 0.776725i \(0.283120\pi\)
−0.999467 + 0.0326449i \(0.989607\pi\)
\(350\) 0 0
\(351\) −6.98538 15.2958i −0.372852 0.816432i
\(352\) 0 0
\(353\) −2.82843 19.6722i −0.150542 1.04704i −0.915313 0.402742i \(-0.868057\pi\)
0.764771 0.644302i \(-0.222852\pi\)
\(354\) 0 0
\(355\) −1.77821 + 2.05216i −0.0943775 + 0.108917i
\(356\) 0 0
\(357\) 11.1329 + 7.15470i 0.589217 + 0.378667i
\(358\) 0 0
\(359\) 17.5829 + 5.16279i 0.927987 + 0.272482i 0.710594 0.703602i \(-0.248426\pi\)
0.217394 + 0.976084i \(0.430245\pi\)
\(360\) 0 0
\(361\) 9.34103 + 10.7801i 0.491633 + 0.567375i
\(362\) 0 0
\(363\) −10.1091 + 2.96831i −0.530592 + 0.155796i
\(364\) 0 0
\(365\) −0.0657887 + 0.457570i −0.00344354 + 0.0239503i
\(366\) 0 0
\(367\) −16.9068 −0.882525 −0.441263 0.897378i \(-0.645469\pi\)
−0.441263 + 0.897378i \(0.645469\pi\)
\(368\) 0 0
\(369\) −0.221597 −0.0115359
\(370\) 0 0
\(371\) −5.86388 + 40.7842i −0.304437 + 2.11741i
\(372\) 0 0
\(373\) −22.2975 + 6.54715i −1.15452 + 0.338999i −0.802302 0.596918i \(-0.796392\pi\)
−0.352221 + 0.935917i \(0.614573\pi\)
\(374\) 0 0
\(375\) 1.11331 + 1.28483i 0.0574911 + 0.0663483i
\(376\) 0 0
\(377\) 5.09398 + 1.49573i 0.262353 + 0.0770339i
\(378\) 0 0
\(379\) 12.6620 + 8.13739i 0.650405 + 0.417990i 0.823814 0.566860i \(-0.191842\pi\)
−0.173409 + 0.984850i \(0.555478\pi\)
\(380\) 0 0
\(381\) −10.7080 + 12.3577i −0.548588 + 0.633104i
\(382\) 0 0
\(383\) 2.13807 + 14.8706i 0.109250 + 0.759851i 0.968629 + 0.248511i \(0.0799413\pi\)
−0.859379 + 0.511339i \(0.829150\pi\)
\(384\) 0 0
\(385\) −3.58887 7.85854i −0.182906 0.400508i
\(386\) 0 0
\(387\) 0.448138 0.981285i 0.0227801 0.0498815i
\(388\) 0 0
\(389\) 21.3885 13.7455i 1.08444 0.696927i 0.128860 0.991663i \(-0.458868\pi\)
0.955579 + 0.294736i \(0.0952318\pi\)
\(390\) 0 0
\(391\) 2.32314 9.18050i 0.117486 0.464278i
\(392\) 0 0
\(393\) −15.8356 + 10.1769i −0.798801 + 0.513359i
\(394\) 0 0
\(395\) 4.19792 9.19217i 0.211221 0.462508i
\(396\) 0 0
\(397\) 4.50490 + 9.86435i 0.226094 + 0.495078i 0.988350 0.152199i \(-0.0486353\pi\)
−0.762256 + 0.647276i \(0.775908\pi\)
\(398\) 0 0
\(399\) −2.07564 14.4364i −0.103912 0.722723i
\(400\) 0 0
\(401\) −5.98123 + 6.90270i −0.298688 + 0.344705i −0.885178 0.465252i \(-0.845964\pi\)
0.586490 + 0.809956i \(0.300509\pi\)
\(402\) 0 0
\(403\) 2.30446 + 1.48099i 0.114793 + 0.0737732i
\(404\) 0 0
\(405\) 8.30796 + 2.43944i 0.412826 + 0.121217i
\(406\) 0 0
\(407\) 2.46098 + 2.84012i 0.121986 + 0.140779i
\(408\) 0 0
\(409\) −9.78041 + 2.87179i −0.483610 + 0.142001i −0.514444 0.857524i \(-0.672002\pi\)
0.0308343 + 0.999525i \(0.490184\pi\)
\(410\) 0 0
\(411\) −3.50088 + 24.3491i −0.172686 + 1.20105i
\(412\) 0 0
\(413\) −50.4053 −2.48028
\(414\) 0 0
\(415\) 8.01967 0.393670
\(416\) 0 0
\(417\) −4.15032 + 28.8661i −0.203242 + 1.41358i
\(418\) 0 0
\(419\) 31.7234 9.31484i 1.54979 0.455060i 0.608752 0.793360i \(-0.291670\pi\)
0.941038 + 0.338301i \(0.109852\pi\)
\(420\) 0 0
\(421\) −21.4295 24.7310i −1.04441 1.20531i −0.978234 0.207506i \(-0.933465\pi\)
−0.0661771 0.997808i \(-0.521080\pi\)
\(422\) 0 0
\(423\) −0.681811 0.200198i −0.0331508 0.00973395i
\(424\) 0 0
\(425\) 1.66114 + 1.06755i 0.0805773 + 0.0517839i
\(426\) 0 0
\(427\) −22.9931 + 26.5354i −1.11271 + 1.28414i
\(428\) 0 0
\(429\) −1.68645 11.7295i −0.0814226 0.566307i
\(430\) 0 0
\(431\) 4.62218 + 10.1212i 0.222643 + 0.487519i 0.987684 0.156462i \(-0.0500088\pi\)
−0.765041 + 0.643981i \(0.777282\pi\)
\(432\) 0 0
\(433\) −12.5951 + 27.5793i −0.605280 + 1.32538i 0.320476 + 0.947256i \(0.396157\pi\)
−0.925756 + 0.378121i \(0.876570\pi\)
\(434\) 0 0
\(435\) −2.38724 + 1.53418i −0.114459 + 0.0735585i
\(436\) 0 0
\(437\) −9.32316 + 4.69078i −0.445987 + 0.224390i
\(438\) 0 0
\(439\) 1.95931 1.25917i 0.0935128 0.0600970i −0.493049 0.870002i \(-0.664118\pi\)
0.586562 + 0.809905i \(0.300481\pi\)
\(440\) 0 0
\(441\) −0.389390 + 0.852644i −0.0185424 + 0.0406021i
\(442\) 0 0
\(443\) −8.86811 19.4184i −0.421337 0.922598i −0.994654 0.103265i \(-0.967071\pi\)
0.573317 0.819333i \(-0.305656\pi\)
\(444\) 0 0
\(445\) −0.0222007 0.154409i −0.00105241 0.00731970i
\(446\) 0 0
\(447\) −11.4976 + 13.2689i −0.543818 + 0.627599i
\(448\) 0 0
\(449\) −32.2929 20.7534i −1.52400 0.979413i −0.991083 0.133243i \(-0.957461\pi\)
−0.532913 0.846170i \(-0.678903\pi\)
\(450\) 0 0
\(451\) −4.24556 1.24661i −0.199916 0.0587005i
\(452\) 0 0
\(453\) 17.0952 + 19.7289i 0.803202 + 0.926944i
\(454\) 0 0
\(455\) −12.0307 + 3.53253i −0.564008 + 0.165608i
\(456\) 0 0
\(457\) 3.89954 27.1219i 0.182413 1.26871i −0.668623 0.743601i \(-0.733116\pi\)
0.851036 0.525107i \(-0.175975\pi\)
\(458\) 0 0
\(459\) 10.4394 0.487268
\(460\) 0 0
\(461\) −17.0131 −0.792381 −0.396190 0.918168i \(-0.629668\pi\)
−0.396190 + 0.918168i \(0.629668\pi\)
\(462\) 0 0
\(463\) −2.64651 + 18.4069i −0.122994 + 0.855441i 0.831141 + 0.556062i \(0.187688\pi\)
−0.954134 + 0.299378i \(0.903221\pi\)
\(464\) 0 0
\(465\) −1.40487 + 0.412508i −0.0651495 + 0.0191296i
\(466\) 0 0
\(467\) 11.9296 + 13.7675i 0.552038 + 0.637086i 0.961357 0.275306i \(-0.0887791\pi\)
−0.409319 + 0.912391i \(0.634234\pi\)
\(468\) 0 0
\(469\) 52.0817 + 15.2926i 2.40491 + 0.706145i
\(470\) 0 0
\(471\) 25.0271 + 16.0839i 1.15319 + 0.741108i
\(472\) 0 0
\(473\) 14.1061 16.2794i 0.648601 0.748526i
\(474\) 0 0
\(475\) −0.309706 2.15405i −0.0142103 0.0988347i
\(476\) 0 0
\(477\) 0.476534 + 1.04346i 0.0218190 + 0.0477769i
\(478\) 0 0
\(479\) 6.76936 14.8228i 0.309300 0.677273i −0.689599 0.724192i \(-0.742213\pi\)
0.998899 + 0.0469191i \(0.0149403\pi\)
\(480\) 0 0
\(481\) 4.58837 2.94877i 0.209212 0.134452i
\(482\) 0 0
\(483\) −31.9643 3.37021i −1.45443 0.153350i
\(484\) 0 0
\(485\) 10.0740 6.47419i 0.457438 0.293978i
\(486\) 0 0
\(487\) −12.3960 + 27.1434i −0.561715 + 1.22998i 0.389377 + 0.921078i \(0.372690\pi\)
−0.951092 + 0.308906i \(0.900037\pi\)
\(488\) 0 0
\(489\) −13.9465 30.5385i −0.630681 1.38100i
\(490\) 0 0
\(491\) 3.29656 + 22.9281i 0.148772 + 1.03473i 0.918234 + 0.396038i \(0.129615\pi\)
−0.769463 + 0.638692i \(0.779476\pi\)
\(492\) 0 0
\(493\) −2.15839 + 2.49092i −0.0972092 + 0.112185i
\(494\) 0 0
\(495\) −0.202339 0.130035i −0.00909447 0.00584466i
\(496\) 0 0
\(497\) 10.2709 + 3.01582i 0.460714 + 0.135278i
\(498\) 0 0
\(499\) −11.0505 12.7529i −0.494688 0.570900i 0.452425 0.891803i \(-0.350559\pi\)
−0.947112 + 0.320903i \(0.896014\pi\)
\(500\) 0 0
\(501\) −7.76202 + 2.27913i −0.346781 + 0.101824i
\(502\) 0 0
\(503\) 1.00237 6.97162i 0.0446933 0.310849i −0.955196 0.295974i \(-0.904356\pi\)
0.999889 0.0148751i \(-0.00473507\pi\)
\(504\) 0 0
\(505\) 7.30886 0.325240
\(506\) 0 0
\(507\) 4.90223 0.217715
\(508\) 0 0
\(509\) 3.72507 25.9085i 0.165111 1.14837i −0.723705 0.690109i \(-0.757563\pi\)
0.888816 0.458263i \(-0.151528\pi\)
\(510\) 0 0
\(511\) 1.74855 0.513420i 0.0773511 0.0227123i
\(512\) 0 0
\(513\) −7.53427 8.69502i −0.332646 0.383894i
\(514\) 0 0
\(515\) −0.365377 0.107284i −0.0161004 0.00472752i
\(516\) 0 0
\(517\) −11.9366 7.67116i −0.524969 0.337377i
\(518\) 0 0
\(519\) −0.688461 + 0.794526i −0.0302201 + 0.0348758i
\(520\) 0 0
\(521\) 0.217375 + 1.51188i 0.00952337 + 0.0662365i 0.994029 0.109117i \(-0.0348023\pi\)
−0.984506 + 0.175353i \(0.943893\pi\)
\(522\) 0 0
\(523\) −4.46561 9.77833i −0.195268 0.427577i 0.786518 0.617567i \(-0.211882\pi\)
−0.981786 + 0.189990i \(0.939154\pi\)
\(524\) 0 0
\(525\) 2.78410 6.09632i 0.121508 0.266065i
\(526\) 0 0
\(527\) −1.43066 + 0.919427i −0.0623204 + 0.0400509i
\(528\) 0 0
\(529\) 4.98116 + 22.4541i 0.216572 + 0.976267i
\(530\) 0 0
\(531\) −1.18054 + 0.758686i −0.0512310 + 0.0329242i
\(532\) 0 0
\(533\) −2.66777 + 5.84160i −0.115554 + 0.253028i
\(534\) 0 0
\(535\) 5.01017 + 10.9708i 0.216609 + 0.474307i
\(536\) 0 0
\(537\) 4.09005 + 28.4469i 0.176499 + 1.22757i
\(538\) 0 0
\(539\) −12.2569 + 14.1452i −0.527943 + 0.609278i
\(540\) 0 0
\(541\) 12.5230 + 8.04805i 0.538406 + 0.346013i 0.781415 0.624011i \(-0.214498\pi\)
−0.243009 + 0.970024i \(0.578134\pi\)
\(542\) 0 0
\(543\) −33.9076 9.95617i −1.45511 0.427260i
\(544\) 0 0
\(545\) −8.11397 9.36402i −0.347564 0.401111i
\(546\) 0 0
\(547\) 31.4688 9.24007i 1.34551 0.395077i 0.471877 0.881665i \(-0.343577\pi\)
0.873632 + 0.486588i \(0.161759\pi\)
\(548\) 0 0
\(549\) −0.139115 + 0.967569i −0.00593730 + 0.0412948i
\(550\) 0 0
\(551\) 3.63246 0.154748
\(552\) 0 0
\(553\) −39.8370 −1.69404
\(554\) 0 0
\(555\) −0.414892 + 2.88564i −0.0176112 + 0.122488i
\(556\) 0 0
\(557\) 35.0586 10.2941i 1.48548 0.436177i 0.564386 0.825511i \(-0.309113\pi\)
0.921097 + 0.389334i \(0.127295\pi\)
\(558\) 0 0
\(559\) −20.4730 23.6271i −0.865915 0.999319i
\(560\) 0 0
\(561\) 7.05881 + 2.07265i 0.298023 + 0.0875075i
\(562\) 0 0
\(563\) 30.3853 + 19.5275i 1.28059 + 0.822985i 0.990960 0.134154i \(-0.0428318\pi\)
0.289629 + 0.957139i \(0.406468\pi\)
\(564\) 0 0
\(565\) −3.77465 + 4.35617i −0.158801 + 0.183266i
\(566\) 0 0
\(567\) −4.85777 33.7866i −0.204007 1.41890i
\(568\) 0 0
\(569\) 3.65977 + 8.01378i 0.153426 + 0.335955i 0.970700 0.240293i \(-0.0772435\pi\)
−0.817275 + 0.576248i \(0.804516\pi\)
\(570\) 0 0
\(571\) −0.710988 + 1.55685i −0.0297539 + 0.0651520i −0.923925 0.382573i \(-0.875038\pi\)
0.894172 + 0.447725i \(0.147765\pi\)
\(572\) 0 0
\(573\) 18.1104 11.6388i 0.756571 0.486219i
\(574\) 0 0
\(575\) −4.76939 0.502869i −0.198897 0.0209711i
\(576\) 0 0
\(577\) −33.1398 + 21.2977i −1.37963 + 0.886634i −0.999270 0.0382050i \(-0.987836\pi\)
−0.380359 + 0.924839i \(0.624200\pi\)
\(578\) 0 0
\(579\) 6.65144 14.5646i 0.276424 0.605285i
\(580\) 0 0
\(581\) −13.1333 28.7579i −0.544860 1.19308i
\(582\) 0 0
\(583\) 3.25981 + 22.6725i 0.135007 + 0.938998i
\(584\) 0 0
\(585\) −0.228599 + 0.263818i −0.00945141 + 0.0109075i
\(586\) 0 0
\(587\) 11.4489 + 7.35776i 0.472546 + 0.303687i 0.755153 0.655549i \(-0.227563\pi\)
−0.282606 + 0.959236i \(0.591199\pi\)
\(588\) 0 0
\(589\) 1.79833 + 0.528037i 0.0740988 + 0.0217574i
\(590\) 0 0
\(591\) −16.3323 18.8485i −0.671821 0.775323i
\(592\) 0 0
\(593\) 38.6668 11.3536i 1.58785 0.466236i 0.635720 0.771919i \(-0.280703\pi\)
0.952133 + 0.305684i \(0.0988850\pi\)
\(594\) 0 0
\(595\) 1.10781 7.70499i 0.0454158 0.315874i
\(596\) 0 0
\(597\) −40.6130 −1.66218
\(598\) 0 0
\(599\) 48.4251 1.97859 0.989297 0.145914i \(-0.0466124\pi\)
0.989297 + 0.145914i \(0.0466124\pi\)
\(600\) 0 0
\(601\) 5.48857 38.1739i 0.223883 1.55714i −0.499264 0.866450i \(-0.666396\pi\)
0.723147 0.690694i \(-0.242695\pi\)
\(602\) 0 0
\(603\) 1.44998 0.425753i 0.0590478 0.0173380i
\(604\) 0 0
\(605\) 4.05839 + 4.68363i 0.164997 + 0.190417i
\(606\) 0 0
\(607\) −19.3731 5.68846i −0.786330 0.230887i −0.136171 0.990685i \(-0.543480\pi\)
−0.650159 + 0.759798i \(0.725298\pi\)
\(608\) 0 0
\(609\) 9.41088 + 6.04800i 0.381348 + 0.245078i
\(610\) 0 0
\(611\) −13.4857 + 15.5634i −0.545574 + 0.629626i
\(612\) 0 0
\(613\) 6.73249 + 46.8255i 0.271923 + 1.89126i 0.428411 + 0.903584i \(0.359073\pi\)
−0.156489 + 0.987680i \(0.550017\pi\)
\(614\) 0 0
\(615\) −1.42594 3.12237i −0.0574994 0.125906i
\(616\) 0 0
\(617\) 13.3727 29.2822i 0.538366 1.17886i −0.423641 0.905830i \(-0.639248\pi\)
0.962007 0.273026i \(-0.0880245\pi\)
\(618\) 0 0
\(619\) 36.3012 23.3294i 1.45907 0.937687i 0.460316 0.887755i \(-0.347736\pi\)
0.998753 0.0499315i \(-0.0159003\pi\)
\(620\) 0 0
\(621\) −22.6494 + 11.3956i −0.908890 + 0.457292i
\(622\) 0 0
\(623\) −0.517342 + 0.332476i −0.0207269 + 0.0133203i
\(624\) 0 0
\(625\) 0.415415 0.909632i 0.0166166 0.0363853i
\(626\) 0 0
\(627\) −3.36814 7.37520i −0.134511 0.294537i
\(628\) 0 0
\(629\) 0.481890 + 3.35162i 0.0192142 + 0.133638i
\(630\) 0 0
\(631\) 8.02835 9.26521i 0.319603 0.368842i −0.573101 0.819485i \(-0.694260\pi\)
0.892704 + 0.450643i \(0.148805\pi\)
\(632\) 0 0
\(633\) 7.79601 + 5.01019i 0.309863 + 0.199137i
\(634\) 0 0
\(635\) 9.22856 + 2.70975i 0.366224 + 0.107533i
\(636\) 0 0
\(637\) 17.7891 + 20.5297i 0.704830 + 0.813417i
\(638\) 0 0
\(639\) 0.285948 0.0839619i 0.0113119 0.00332148i
\(640\) 0 0
\(641\) 1.69343 11.7781i 0.0668864 0.465205i −0.928660 0.370932i \(-0.879038\pi\)
0.995546 0.0942731i \(-0.0300527\pi\)
\(642\) 0 0
\(643\) −12.1095 −0.477552 −0.238776 0.971075i \(-0.576746\pi\)
−0.238776 + 0.971075i \(0.576746\pi\)
\(644\) 0 0
\(645\) 16.7103 0.657969
\(646\) 0 0
\(647\) 5.94441 41.3443i 0.233699 1.62541i −0.448178 0.893944i \(-0.647927\pi\)
0.681877 0.731467i \(-0.261164\pi\)
\(648\) 0 0
\(649\) −26.8859 + 7.89443i −1.05537 + 0.309883i
\(650\) 0 0
\(651\) 3.77989 + 4.36223i 0.148146 + 0.170969i
\(652\) 0 0
\(653\) 19.1230 + 5.61501i 0.748340 + 0.219732i 0.633597 0.773663i \(-0.281578\pi\)
0.114742 + 0.993395i \(0.463396\pi\)
\(654\) 0 0
\(655\) 9.31467 + 5.98618i 0.363954 + 0.233899i
\(656\) 0 0
\(657\) 0.0332247 0.0383434i 0.00129622 0.00149592i
\(658\) 0 0
\(659\) 1.99431 + 13.8708i 0.0776875 + 0.540328i 0.991082 + 0.133253i \(0.0425423\pi\)
−0.913395 + 0.407075i \(0.866549\pi\)
\(660\) 0 0
\(661\) −9.79773 21.4540i −0.381087 0.834465i −0.998843 0.0480947i \(-0.984685\pi\)
0.617755 0.786370i \(-0.288042\pi\)
\(662\) 0 0
\(663\) 4.43552 9.71244i 0.172261 0.377200i
\(664\) 0 0
\(665\) −7.21707 + 4.63813i −0.279866 + 0.179859i
\(666\) 0 0
\(667\) 1.96379 7.76045i 0.0760383 0.300486i
\(668\) 0 0
\(669\) 7.86811 5.05653i 0.304199 0.195497i
\(670\) 0 0
\(671\) −8.10844 + 17.7550i −0.313023 + 0.685424i
\(672\) 0 0
\(673\) 4.83473 + 10.5866i 0.186365 + 0.408083i 0.979635 0.200788i \(-0.0643501\pi\)
−0.793270 + 0.608871i \(0.791623\pi\)
\(674\) 0 0
\(675\) −0.752391 5.23299i −0.0289595 0.201418i
\(676\) 0 0
\(677\) −8.06822 + 9.31122i −0.310087 + 0.357859i −0.889306 0.457313i \(-0.848812\pi\)
0.579219 + 0.815172i \(0.303358\pi\)
\(678\) 0 0
\(679\) −39.7135 25.5223i −1.52406 0.979456i
\(680\) 0 0
\(681\) −37.8230 11.1058i −1.44938 0.425577i
\(682\) 0 0
\(683\) −2.40269 2.77285i −0.0919364 0.106100i 0.707917 0.706295i \(-0.249635\pi\)
−0.799854 + 0.600195i \(0.795090\pi\)
\(684\) 0 0
\(685\) 13.8836 4.07658i 0.530464 0.155758i
\(686\) 0 0
\(687\) 3.44029 23.9277i 0.131255 0.912900i
\(688\) 0 0
\(689\) 33.2441 1.26650
\(690\) 0 0
\(691\) 40.9110 1.55633 0.778164 0.628061i \(-0.216151\pi\)
0.778164 + 0.628061i \(0.216151\pi\)
\(692\) 0 0
\(693\) −0.134939 + 0.938522i −0.00512591 + 0.0356515i
\(694\) 0 0
\(695\) 16.4591 4.83282i 0.624329 0.183319i
\(696\) 0 0
\(697\) −2.61084 3.01307i −0.0988928 0.114128i
\(698\) 0 0
\(699\) 41.1555 + 12.0843i 1.55664 + 0.457071i
\(700\) 0 0
\(701\) 3.73723 + 2.40177i 0.141153 + 0.0907136i 0.609311 0.792931i \(-0.291446\pi\)
−0.468158 + 0.883645i \(0.655082\pi\)
\(702\) 0 0
\(703\) 2.44380 2.82029i 0.0921696 0.106369i
\(704\) 0 0
\(705\) −1.56649 10.8952i −0.0589976 0.410337i
\(706\) 0 0
\(707\) −11.9692 26.2090i −0.450150 0.985690i
\(708\) 0 0
\(709\) −14.9124 + 32.6537i −0.560048 + 1.22633i 0.391881 + 0.920016i \(0.371825\pi\)
−0.951929 + 0.306319i \(0.900903\pi\)
\(710\) 0 0
\(711\) −0.933020 + 0.599615i −0.0349910 + 0.0224873i
\(712\) 0 0
\(713\) 2.10033 3.55652i 0.0786579 0.133193i
\(714\) 0 0
\(715\) −5.86385 + 3.76847i −0.219295 + 0.140933i
\(716\) 0 0
\(717\) 9.25912 20.2746i 0.345788 0.757170i
\(718\) 0 0
\(719\) 15.5751 + 34.1048i 0.580854 + 1.27189i 0.940813 + 0.338925i \(0.110063\pi\)
−0.359959 + 0.932968i \(0.617209\pi\)
\(720\) 0 0
\(721\) 0.213641 + 1.48590i 0.00795640 + 0.0553380i
\(722\) 0 0
\(723\) 28.7128 33.1363i 1.06784 1.23235i
\(724\) 0 0
\(725\) 1.40420 + 0.902423i 0.0521506 + 0.0335151i
\(726\) 0 0
\(727\) 2.38744 + 0.701015i 0.0885452 + 0.0259992i 0.325705 0.945471i \(-0.394398\pi\)
−0.237160 + 0.971471i \(0.576217\pi\)
\(728\) 0 0
\(729\) −18.2799 21.0961i −0.677033 0.781338i
\(730\) 0 0
\(731\) 18.6226 5.46809i 0.688781 0.202244i
\(732\) 0 0
\(733\) 0.0854324 0.594196i 0.00315552 0.0219471i −0.988183 0.153280i \(-0.951016\pi\)
0.991338 + 0.131333i \(0.0419256\pi\)
\(734\) 0 0
\(735\) −14.5197 −0.535568
\(736\) 0 0
\(737\) 30.1752 1.11152
\(738\) 0 0
\(739\) 2.68046 18.6430i 0.0986025 0.685795i −0.879229 0.476400i \(-0.841941\pi\)
0.977831 0.209395i \(-0.0671495\pi\)
\(740\) 0 0
\(741\) −11.2908 + 3.31526i −0.414776 + 0.121789i
\(742\) 0 0
\(743\) 10.2057 + 11.7780i 0.374411 + 0.432093i 0.911416 0.411485i \(-0.134990\pi\)
−0.537005 + 0.843579i \(0.680444\pi\)
\(744\) 0 0
\(745\) 9.90906 + 2.90956i 0.363040 + 0.106598i
\(746\) 0 0
\(747\) −0.740448 0.475857i −0.0270916 0.0174107i
\(748\) 0 0
\(749\) 31.1354 35.9321i 1.13766 1.31293i
\(750\) 0 0
\(751\) 2.95266 + 20.5362i 0.107744 + 0.749377i 0.970035 + 0.242964i \(0.0781198\pi\)
−0.862291 + 0.506413i \(0.830971\pi\)
\(752\) 0 0
\(753\) 16.0704 + 35.1892i 0.585637 + 1.28237i
\(754\) 0 0
\(755\) 6.37881 13.9676i 0.232148 0.508334i
\(756\) 0 0
\(757\) 3.53742 2.27336i 0.128570 0.0826268i −0.474775 0.880107i \(-0.657471\pi\)
0.603345 + 0.797480i \(0.293834\pi\)
\(758\) 0 0
\(759\) −17.5774 + 3.20856i −0.638020 + 0.116463i
\(760\) 0 0
\(761\) −16.1522 + 10.3804i −0.585516 + 0.376288i −0.799605 0.600526i \(-0.794958\pi\)
0.214090 + 0.976814i \(0.431322\pi\)
\(762\) 0 0
\(763\) −20.2909 + 44.4309i −0.734580 + 1.60851i
\(764\) 0 0
\(765\) −0.0900273 0.197132i −0.00325494 0.00712733i
\(766\) 0 0
\(767\) 5.78771 + 40.2544i 0.208982 + 1.45350i
\(768\) 0 0
\(769\) −23.8002 + 27.4669i −0.858257 + 0.990481i 0.141743 + 0.989904i \(0.454729\pi\)
−1.00000 0.000577919i \(0.999816\pi\)
\(770\) 0 0
\(771\) 1.06660 + 0.685464i 0.0384128 + 0.0246864i
\(772\) 0 0
\(773\) 6.18512 + 1.81612i 0.222463 + 0.0653211i 0.391065 0.920363i \(-0.372107\pi\)
−0.168601 + 0.985684i \(0.553925\pi\)
\(774\) 0 0
\(775\) 0.563997 + 0.650888i 0.0202594 + 0.0233806i
\(776\) 0 0
\(777\) 11.0271 3.23785i 0.395595 0.116157i
\(778\) 0 0
\(779\) −0.625318 + 4.34918i −0.0224043 + 0.155826i
\(780\) 0 0
\(781\) 5.95080 0.212936
\(782\) 0 0
\(783\) 8.82459 0.315365
\(784\) 0 0
\(785\) 2.49038 17.3210i 0.0888855 0.618212i
\(786\) 0 0
\(787\) −40.6562 + 11.9377i −1.44924 + 0.425535i −0.909290 0.416163i \(-0.863374\pi\)
−0.539948 + 0.841698i \(0.681556\pi\)
\(788\) 0 0
\(789\) 19.2925 + 22.2647i 0.686830 + 0.792645i
\(790\) 0 0
\(791\) 21.8024 + 6.40175i 0.775203 + 0.227620i
\(792\) 0 0
\(793\) 23.8317 + 15.3157i 0.846288 + 0.543876i
\(794\) 0 0
\(795\) −11.6364 + 13.4291i −0.412699 + 0.476280i
\(796\) 0 0