Properties

Label 460.2.m.a.81.1
Level $460$
Weight $2$
Character 460.81
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 81.1
Character \(\chi\) \(=\) 460.81
Dual form 460.2.m.a.301.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.161849 + 1.12569i) q^{3} +(-0.959493 + 0.281733i) q^{5} +(0.847514 + 0.978083i) q^{7} +(1.63751 + 0.480815i) q^{9} +O(q^{10})\) \(q+(-0.161849 + 1.12569i) q^{3} +(-0.959493 + 0.281733i) q^{5} +(0.847514 + 0.978083i) q^{7} +(1.63751 + 0.480815i) q^{9} +(0.123375 + 0.0792885i) q^{11} +(-2.87486 + 3.31776i) q^{13} +(-0.161849 - 1.12569i) q^{15} +(0.0296401 + 0.0649028i) q^{17} +(-0.913223 + 1.99968i) q^{19} +(-1.23818 + 0.795732i) q^{21} +(-0.0966389 + 4.79486i) q^{23} +(0.841254 - 0.540641i) q^{25} +(-2.22358 + 4.86896i) q^{27} +(-1.49193 - 3.26687i) q^{29} +(1.16431 + 8.09798i) q^{31} +(-0.109222 + 0.126049i) q^{33} +(-1.08874 - 0.699691i) q^{35} +(-4.22517 - 1.24062i) q^{37} +(-3.26946 - 3.77316i) q^{39} +(2.94012 - 0.863298i) q^{41} +(-0.290905 + 2.02329i) q^{43} -1.70664 q^{45} +7.11821 q^{47} +(0.757837 - 5.27087i) q^{49} +(-0.0778574 + 0.0228610i) q^{51} +(-2.31840 - 2.67558i) q^{53} +(-0.140716 - 0.0413179i) q^{55} +(-2.10321 - 1.35165i) q^{57} +(6.41962 - 7.40864i) q^{59} +(0.284809 + 1.98089i) q^{61} +(0.917532 + 2.00911i) q^{63} +(1.82368 - 3.99331i) q^{65} +(5.94685 - 3.82181i) q^{67} +(-5.38186 - 0.884828i) q^{69} +(3.06874 - 1.97216i) q^{71} +(-4.39721 + 9.62854i) q^{73} +(0.472435 + 1.03449i) q^{75} +(0.0270115 + 0.187869i) q^{77} +(1.28994 - 1.48867i) q^{79} +(-0.813891 - 0.523056i) q^{81} +(4.79463 + 1.40783i) q^{83} +(-0.0467247 - 0.0539232i) q^{85} +(3.91893 - 1.15070i) q^{87} +(2.53647 - 17.6415i) q^{89} -5.68152 q^{91} -9.30422 q^{93} +(0.312856 - 2.17596i) q^{95} +(3.38532 - 0.994019i) q^{97} +(0.163905 + 0.189156i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{10}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.161849 + 1.12569i −0.0934436 + 0.649915i 0.888238 + 0.459384i \(0.151930\pi\)
−0.981681 + 0.190530i \(0.938979\pi\)
\(4\) 0 0
\(5\) −0.959493 + 0.281733i −0.429098 + 0.125995i
\(6\) 0 0
\(7\) 0.847514 + 0.978083i 0.320330 + 0.369681i 0.892962 0.450132i \(-0.148623\pi\)
−0.572632 + 0.819813i \(0.694078\pi\)
\(8\) 0 0
\(9\) 1.63751 + 0.480815i 0.545836 + 0.160272i
\(10\) 0 0
\(11\) 0.123375 + 0.0792885i 0.0371991 + 0.0239064i 0.559108 0.829095i \(-0.311144\pi\)
−0.521909 + 0.853001i \(0.674780\pi\)
\(12\) 0 0
\(13\) −2.87486 + 3.31776i −0.797342 + 0.920181i −0.998232 0.0594325i \(-0.981071\pi\)
0.200891 + 0.979614i \(0.435616\pi\)
\(14\) 0 0
\(15\) −0.161849 1.12569i −0.0417893 0.290651i
\(16\) 0 0
\(17\) 0.0296401 + 0.0649028i 0.00718879 + 0.0157412i 0.913192 0.407529i \(-0.133609\pi\)
−0.906004 + 0.423270i \(0.860882\pi\)
\(18\) 0 0
\(19\) −0.913223 + 1.99968i −0.209508 + 0.458758i −0.984990 0.172611i \(-0.944780\pi\)
0.775482 + 0.631369i \(0.217507\pi\)
\(20\) 0 0
\(21\) −1.23818 + 0.795732i −0.270194 + 0.173643i
\(22\) 0 0
\(23\) −0.0966389 + 4.79486i −0.0201506 + 0.999797i
\(24\) 0 0
\(25\) 0.841254 0.540641i 0.168251 0.108128i
\(26\) 0 0
\(27\) −2.22358 + 4.86896i −0.427928 + 0.937033i
\(28\) 0 0
\(29\) −1.49193 3.26687i −0.277044 0.606642i 0.719048 0.694960i \(-0.244578\pi\)
−0.996092 + 0.0883180i \(0.971851\pi\)
\(30\) 0 0
\(31\) 1.16431 + 8.09798i 0.209117 + 1.45444i 0.776047 + 0.630675i \(0.217222\pi\)
−0.566930 + 0.823766i \(0.691869\pi\)
\(32\) 0 0
\(33\) −0.109222 + 0.126049i −0.0190131 + 0.0219423i
\(34\) 0 0
\(35\) −1.08874 0.699691i −0.184031 0.118269i
\(36\) 0 0
\(37\) −4.22517 1.24062i −0.694614 0.203957i −0.0846786 0.996408i \(-0.526986\pi\)
−0.609935 + 0.792451i \(0.708805\pi\)
\(38\) 0 0
\(39\) −3.26946 3.77316i −0.523533 0.604189i
\(40\) 0 0
\(41\) 2.94012 0.863298i 0.459170 0.134824i −0.0439636 0.999033i \(-0.513999\pi\)
0.503134 + 0.864209i \(0.332180\pi\)
\(42\) 0 0
\(43\) −0.290905 + 2.02329i −0.0443626 + 0.308548i 0.955544 + 0.294850i \(0.0952696\pi\)
−0.999906 + 0.0136986i \(0.995639\pi\)
\(44\) 0 0
\(45\) −1.70664 −0.254411
\(46\) 0 0
\(47\) 7.11821 1.03830 0.519149 0.854684i \(-0.326249\pi\)
0.519149 + 0.854684i \(0.326249\pi\)
\(48\) 0 0
\(49\) 0.757837 5.27087i 0.108262 0.752982i
\(50\) 0 0
\(51\) −0.0778574 + 0.0228610i −0.0109022 + 0.00320118i
\(52\) 0 0
\(53\) −2.31840 2.67558i −0.318457 0.367519i 0.573840 0.818967i \(-0.305453\pi\)
−0.892297 + 0.451448i \(0.850908\pi\)
\(54\) 0 0
\(55\) −0.140716 0.0413179i −0.0189741 0.00557131i
\(56\) 0 0
\(57\) −2.10321 1.35165i −0.278576 0.179030i
\(58\) 0 0
\(59\) 6.41962 7.40864i 0.835763 0.964522i −0.163996 0.986461i \(-0.552438\pi\)
0.999759 + 0.0219386i \(0.00698382\pi\)
\(60\) 0 0
\(61\) 0.284809 + 1.98089i 0.0364660 + 0.253627i 0.999897 0.0143287i \(-0.00456113\pi\)
−0.963431 + 0.267955i \(0.913652\pi\)
\(62\) 0 0
\(63\) 0.917532 + 2.00911i 0.115598 + 0.253125i
\(64\) 0 0
\(65\) 1.82368 3.99331i 0.226200 0.495309i
\(66\) 0 0
\(67\) 5.94685 3.82181i 0.726523 0.466908i −0.124377 0.992235i \(-0.539693\pi\)
0.850901 + 0.525327i \(0.176057\pi\)
\(68\) 0 0
\(69\) −5.38186 0.884828i −0.647900 0.106521i
\(70\) 0 0
\(71\) 3.06874 1.97216i 0.364193 0.234053i −0.345727 0.938335i \(-0.612368\pi\)
0.709920 + 0.704283i \(0.248731\pi\)
\(72\) 0 0
\(73\) −4.39721 + 9.62854i −0.514654 + 1.12694i 0.456770 + 0.889585i \(0.349006\pi\)
−0.971424 + 0.237350i \(0.923721\pi\)
\(74\) 0 0
\(75\) 0.472435 + 1.03449i 0.0545521 + 0.119452i
\(76\) 0 0
\(77\) 0.0270115 + 0.187869i 0.00307825 + 0.0214097i
\(78\) 0 0
\(79\) 1.28994 1.48867i 0.145129 0.167488i −0.678531 0.734572i \(-0.737383\pi\)
0.823660 + 0.567084i \(0.191928\pi\)
\(80\) 0 0
\(81\) −0.813891 0.523056i −0.0904324 0.0581174i
\(82\) 0 0
\(83\) 4.79463 + 1.40783i 0.526279 + 0.154529i 0.534070 0.845440i \(-0.320662\pi\)
−0.00779126 + 0.999970i \(0.502480\pi\)
\(84\) 0 0
\(85\) −0.0467247 0.0539232i −0.00506801 0.00584879i
\(86\) 0 0
\(87\) 3.91893 1.15070i 0.420154 0.123368i
\(88\) 0 0
\(89\) 2.53647 17.6415i 0.268865 1.87000i −0.190408 0.981705i \(-0.560981\pi\)
0.459273 0.888295i \(-0.348110\pi\)
\(90\) 0 0
\(91\) −5.68152 −0.595586
\(92\) 0 0
\(93\) −9.30422 −0.964803
\(94\) 0 0
\(95\) 0.312856 2.17596i 0.0320984 0.223249i
\(96\) 0 0
\(97\) 3.38532 0.994019i 0.343727 0.100927i −0.105313 0.994439i \(-0.533584\pi\)
0.449040 + 0.893512i \(0.351766\pi\)
\(98\) 0 0
\(99\) 0.163905 + 0.189156i 0.0164730 + 0.0190109i
\(100\) 0 0
\(101\) 10.9470 + 3.21434i 1.08927 + 0.319839i 0.776582 0.630017i \(-0.216952\pi\)
0.312689 + 0.949855i \(0.398770\pi\)
\(102\) 0 0
\(103\) 11.9199 + 7.66047i 1.17451 + 0.754809i 0.974368 0.224959i \(-0.0722249\pi\)
0.200137 + 0.979768i \(0.435861\pi\)
\(104\) 0 0
\(105\) 0.963844 1.11234i 0.0940615 0.108553i
\(106\) 0 0
\(107\) −0.0334566 0.232696i −0.00323437 0.0224955i 0.988140 0.153553i \(-0.0490717\pi\)
−0.991375 + 0.131058i \(0.958163\pi\)
\(108\) 0 0
\(109\) −6.90497 15.1198i −0.661376 1.44821i −0.881234 0.472679i \(-0.843287\pi\)
0.219859 0.975532i \(-0.429440\pi\)
\(110\) 0 0
\(111\) 2.08039 4.55542i 0.197462 0.432381i
\(112\) 0 0
\(113\) 10.5444 6.77645i 0.991929 0.637474i 0.0592736 0.998242i \(-0.481122\pi\)
0.932656 + 0.360767i \(0.117485\pi\)
\(114\) 0 0
\(115\) −1.25814 4.62786i −0.117322 0.431550i
\(116\) 0 0
\(117\) −6.30283 + 4.05058i −0.582697 + 0.374476i
\(118\) 0 0
\(119\) −0.0383599 + 0.0839965i −0.00351645 + 0.00769995i
\(120\) 0 0
\(121\) −4.56063 9.98639i −0.414603 0.907853i
\(122\) 0 0
\(123\) 0.495946 + 3.44938i 0.0447179 + 0.311020i
\(124\) 0 0
\(125\) −0.654861 + 0.755750i −0.0585725 + 0.0675963i
\(126\) 0 0
\(127\) −2.73048 1.75477i −0.242291 0.155711i 0.413860 0.910340i \(-0.364180\pi\)
−0.656151 + 0.754630i \(0.727817\pi\)
\(128\) 0 0
\(129\) −2.23050 0.654934i −0.196385 0.0576638i
\(130\) 0 0
\(131\) −4.89170 5.64532i −0.427390 0.493234i 0.500684 0.865630i \(-0.333082\pi\)
−0.928074 + 0.372396i \(0.878536\pi\)
\(132\) 0 0
\(133\) −2.72982 + 0.801548i −0.236706 + 0.0695030i
\(134\) 0 0
\(135\) 0.761765 5.29819i 0.0655623 0.455996i
\(136\) 0 0
\(137\) −16.6394 −1.42160 −0.710801 0.703393i \(-0.751667\pi\)
−0.710801 + 0.703393i \(0.751667\pi\)
\(138\) 0 0
\(139\) 5.63655 0.478086 0.239043 0.971009i \(-0.423166\pi\)
0.239043 + 0.971009i \(0.423166\pi\)
\(140\) 0 0
\(141\) −1.15208 + 8.01287i −0.0970223 + 0.674805i
\(142\) 0 0
\(143\) −0.617746 + 0.181387i −0.0516585 + 0.0151683i
\(144\) 0 0
\(145\) 2.35188 + 2.71421i 0.195313 + 0.225403i
\(146\) 0 0
\(147\) 5.81069 + 1.70617i 0.479258 + 0.140723i
\(148\) 0 0
\(149\) 2.37434 + 1.52589i 0.194513 + 0.125006i 0.634272 0.773110i \(-0.281300\pi\)
−0.439759 + 0.898116i \(0.644936\pi\)
\(150\) 0 0
\(151\) −8.85909 + 10.2239i −0.720943 + 0.832012i −0.991420 0.130714i \(-0.958273\pi\)
0.270477 + 0.962726i \(0.412818\pi\)
\(152\) 0 0
\(153\) 0.0173296 + 0.120530i 0.00140102 + 0.00974429i
\(154\) 0 0
\(155\) −3.39862 7.44193i −0.272983 0.597750i
\(156\) 0 0
\(157\) 2.51094 5.49819i 0.200395 0.438803i −0.782578 0.622552i \(-0.786096\pi\)
0.982973 + 0.183749i \(0.0588232\pi\)
\(158\) 0 0
\(159\) 3.38709 2.17675i 0.268614 0.172627i
\(160\) 0 0
\(161\) −4.77167 + 3.96919i −0.376060 + 0.312816i
\(162\) 0 0
\(163\) −1.21995 + 0.784011i −0.0955535 + 0.0614085i −0.587545 0.809192i \(-0.699905\pi\)
0.491991 + 0.870600i \(0.336269\pi\)
\(164\) 0 0
\(165\) 0.0692857 0.151715i 0.00539388 0.0118110i
\(166\) 0 0
\(167\) −1.48242 3.24605i −0.114713 0.251187i 0.843563 0.537030i \(-0.180454\pi\)
−0.958277 + 0.285843i \(0.907726\pi\)
\(168\) 0 0
\(169\) −0.892646 6.20849i −0.0686650 0.477576i
\(170\) 0 0
\(171\) −2.45689 + 2.83540i −0.187883 + 0.216828i
\(172\) 0 0
\(173\) 5.30307 + 3.40807i 0.403185 + 0.259111i 0.726481 0.687187i \(-0.241155\pi\)
−0.323296 + 0.946298i \(0.604791\pi\)
\(174\) 0 0
\(175\) 1.24177 + 0.364615i 0.0938686 + 0.0275623i
\(176\) 0 0
\(177\) 7.30078 + 8.42555i 0.548761 + 0.633303i
\(178\) 0 0
\(179\) −0.491203 + 0.144230i −0.0367143 + 0.0107803i −0.300038 0.953927i \(-0.596999\pi\)
0.263324 + 0.964707i \(0.415181\pi\)
\(180\) 0 0
\(181\) −1.13130 + 7.86835i −0.0840887 + 0.584850i 0.903595 + 0.428387i \(0.140918\pi\)
−0.987684 + 0.156462i \(0.949991\pi\)
\(182\) 0 0
\(183\) −2.27595 −0.168243
\(184\) 0 0
\(185\) 4.40355 0.323755
\(186\) 0 0
\(187\) −0.00148919 + 0.0103575i −0.000108900 + 0.000757417i
\(188\) 0 0
\(189\) −6.64677 + 1.95167i −0.483481 + 0.141963i
\(190\) 0 0
\(191\) −6.58494 7.59942i −0.476469 0.549875i 0.465730 0.884927i \(-0.345792\pi\)
−0.942200 + 0.335052i \(0.891246\pi\)
\(192\) 0 0
\(193\) 19.1000 + 5.60827i 1.37485 + 0.403692i 0.883973 0.467537i \(-0.154859\pi\)
0.490876 + 0.871230i \(0.336677\pi\)
\(194\) 0 0
\(195\) 4.20005 + 2.69921i 0.300772 + 0.193294i
\(196\) 0 0
\(197\) −7.70052 + 8.88688i −0.548640 + 0.633164i −0.960566 0.278054i \(-0.910311\pi\)
0.411926 + 0.911217i \(0.364856\pi\)
\(198\) 0 0
\(199\) 2.31515 + 16.1022i 0.164117 + 1.14146i 0.890770 + 0.454454i \(0.150165\pi\)
−0.726654 + 0.687004i \(0.758925\pi\)
\(200\) 0 0
\(201\) 3.33966 + 7.31284i 0.235561 + 0.515808i
\(202\) 0 0
\(203\) 1.93084 4.22795i 0.135518 0.296744i
\(204\) 0 0
\(205\) −2.57781 + 1.65666i −0.180042 + 0.115706i
\(206\) 0 0
\(207\) −2.46369 + 7.80515i −0.171238 + 0.542495i
\(208\) 0 0
\(209\) −0.271221 + 0.174303i −0.0187607 + 0.0120568i
\(210\) 0 0
\(211\) −6.32195 + 13.8431i −0.435221 + 0.953001i 0.557230 + 0.830358i \(0.311864\pi\)
−0.992451 + 0.122643i \(0.960863\pi\)
\(212\) 0 0
\(213\) 1.72336 + 3.77363i 0.118083 + 0.258565i
\(214\) 0 0
\(215\) −0.290905 2.02329i −0.0198395 0.137987i
\(216\) 0 0
\(217\) −6.93373 + 8.00195i −0.470692 + 0.543208i
\(218\) 0 0
\(219\) −10.1270 6.50824i −0.684321 0.439786i
\(220\) 0 0
\(221\) −0.300543 0.0882474i −0.0202167 0.00593616i
\(222\) 0 0
\(223\) 5.99921 + 6.92345i 0.401737 + 0.463629i 0.920187 0.391479i \(-0.128036\pi\)
−0.518451 + 0.855108i \(0.673491\pi\)
\(224\) 0 0
\(225\) 1.63751 0.480815i 0.109167 0.0320544i
\(226\) 0 0
\(227\) 2.32490 16.1701i 0.154309 1.07324i −0.754580 0.656208i \(-0.772160\pi\)
0.908890 0.417037i \(-0.136931\pi\)
\(228\) 0 0
\(229\) −10.2975 −0.680475 −0.340238 0.940339i \(-0.610508\pi\)
−0.340238 + 0.940339i \(0.610508\pi\)
\(230\) 0 0
\(231\) −0.215854 −0.0142021
\(232\) 0 0
\(233\) −0.620623 + 4.31653i −0.0406584 + 0.282785i 0.959341 + 0.282248i \(0.0910801\pi\)
−1.00000 0.000537159i \(0.999829\pi\)
\(234\) 0 0
\(235\) −6.82987 + 2.00543i −0.445532 + 0.130820i
\(236\) 0 0
\(237\) 1.46700 + 1.69300i 0.0952917 + 0.109972i
\(238\) 0 0
\(239\) 22.8596 + 6.71219i 1.47866 + 0.434175i 0.918905 0.394480i \(-0.129075\pi\)
0.559760 + 0.828655i \(0.310893\pi\)
\(240\) 0 0
\(241\) 15.2923 + 9.82776i 0.985063 + 0.633062i 0.930825 0.365466i \(-0.119090\pi\)
0.0542385 + 0.998528i \(0.482727\pi\)
\(242\) 0 0
\(243\) −9.79525 + 11.3043i −0.628365 + 0.725172i
\(244\) 0 0
\(245\) 0.757837 + 5.27087i 0.0484164 + 0.336744i
\(246\) 0 0
\(247\) −4.00907 8.77865i −0.255091 0.558572i
\(248\) 0 0
\(249\) −2.36078 + 5.16939i −0.149608 + 0.327596i
\(250\) 0 0
\(251\) 7.95141 5.11006i 0.501888 0.322544i −0.265083 0.964226i \(-0.585399\pi\)
0.766971 + 0.641682i \(0.221763\pi\)
\(252\) 0 0
\(253\) −0.392100 + 0.583905i −0.0246511 + 0.0367098i
\(254\) 0 0
\(255\) 0.0682629 0.0438699i 0.00427479 0.00274724i
\(256\) 0 0
\(257\) −0.798862 + 1.74926i −0.0498316 + 0.109116i −0.932910 0.360109i \(-0.882739\pi\)
0.883079 + 0.469225i \(0.155467\pi\)
\(258\) 0 0
\(259\) −2.36746 5.18401i −0.147107 0.322119i
\(260\) 0 0
\(261\) −0.872283 6.06686i −0.0539930 0.375529i
\(262\) 0 0
\(263\) −9.31681 + 10.7522i −0.574499 + 0.663008i −0.966413 0.256994i \(-0.917268\pi\)
0.391913 + 0.920002i \(0.371813\pi\)
\(264\) 0 0
\(265\) 2.97829 + 1.91403i 0.182955 + 0.117578i
\(266\) 0 0
\(267\) 19.4483 + 5.71054i 1.19022 + 0.349479i
\(268\) 0 0
\(269\) 7.75728 + 8.95237i 0.472970 + 0.545836i 0.941235 0.337752i \(-0.109666\pi\)
−0.468266 + 0.883588i \(0.655121\pi\)
\(270\) 0 0
\(271\) −9.89565 + 2.90562i −0.601118 + 0.176504i −0.568112 0.822951i \(-0.692326\pi\)
−0.0330054 + 0.999455i \(0.510508\pi\)
\(272\) 0 0
\(273\) 0.919550 6.39561i 0.0556537 0.387080i
\(274\) 0 0
\(275\) 0.146656 0.00884372
\(276\) 0 0
\(277\) −19.2636 −1.15743 −0.578717 0.815528i \(-0.696447\pi\)
−0.578717 + 0.815528i \(0.696447\pi\)
\(278\) 0 0
\(279\) −1.98706 + 13.8203i −0.118962 + 0.827401i
\(280\) 0 0
\(281\) 29.2929 8.60118i 1.74747 0.513103i 0.757311 0.653055i \(-0.226513\pi\)
0.990158 + 0.139952i \(0.0446947\pi\)
\(282\) 0 0
\(283\) −15.1637 17.4999i −0.901391 1.04026i −0.998985 0.0450344i \(-0.985660\pi\)
0.0975945 0.995226i \(-0.468885\pi\)
\(284\) 0 0
\(285\) 2.39881 + 0.704356i 0.142094 + 0.0417224i
\(286\) 0 0
\(287\) 3.33617 + 2.14403i 0.196928 + 0.126558i
\(288\) 0 0
\(289\) 11.1293 12.8439i 0.654665 0.755523i
\(290\) 0 0
\(291\) 0.571042 + 3.97169i 0.0334751 + 0.232824i
\(292\) 0 0
\(293\) −4.32120 9.46211i −0.252447 0.552782i 0.740401 0.672165i \(-0.234636\pi\)
−0.992848 + 0.119383i \(0.961908\pi\)
\(294\) 0 0
\(295\) −4.07233 + 8.91715i −0.237100 + 0.519177i
\(296\) 0 0
\(297\) −0.660388 + 0.424405i −0.0383196 + 0.0246265i
\(298\) 0 0
\(299\) −15.6304 14.1051i −0.903927 0.815722i
\(300\) 0 0
\(301\) −2.22549 + 1.43023i −0.128275 + 0.0824373i
\(302\) 0 0
\(303\) −5.39010 + 11.8027i −0.309653 + 0.678046i
\(304\) 0 0
\(305\) −0.831352 1.82041i −0.0476031 0.104236i
\(306\) 0 0
\(307\) 4.38541 + 30.5012i 0.250288 + 1.74079i 0.596478 + 0.802630i \(0.296566\pi\)
−0.346189 + 0.938165i \(0.612525\pi\)
\(308\) 0 0
\(309\) −10.5525 + 12.1782i −0.600311 + 0.692796i
\(310\) 0 0
\(311\) −24.1308 15.5079i −1.36833 0.879372i −0.369572 0.929202i \(-0.620496\pi\)
−0.998758 + 0.0498301i \(0.984132\pi\)
\(312\) 0 0
\(313\) −18.6545 5.47746i −1.05442 0.309604i −0.291816 0.956475i \(-0.594259\pi\)
−0.762600 + 0.646870i \(0.776078\pi\)
\(314\) 0 0
\(315\) −1.44640 1.66923i −0.0814953 0.0940506i
\(316\) 0 0
\(317\) 13.0751 3.83918i 0.734369 0.215630i 0.106898 0.994270i \(-0.465908\pi\)
0.627471 + 0.778640i \(0.284090\pi\)
\(318\) 0 0
\(319\) 0.0749579 0.521344i 0.00419684 0.0291896i
\(320\) 0 0
\(321\) 0.267357 0.0149224
\(322\) 0 0
\(323\) −0.156853 −0.00872753
\(324\) 0 0
\(325\) −0.624766 + 4.34534i −0.0346558 + 0.241036i
\(326\) 0 0
\(327\) 18.1377 5.32570i 1.00301 0.294512i
\(328\) 0 0
\(329\) 6.03278 + 6.96220i 0.332598 + 0.383839i
\(330\) 0 0
\(331\) 3.58665 + 1.05313i 0.197140 + 0.0578855i 0.378812 0.925474i \(-0.376333\pi\)
−0.181672 + 0.983359i \(0.558151\pi\)
\(332\) 0 0
\(333\) −6.32224 4.06305i −0.346456 0.222654i
\(334\) 0 0
\(335\) −4.62923 + 5.34242i −0.252922 + 0.291888i
\(336\) 0 0
\(337\) −4.44773 30.9346i −0.242283 1.68512i −0.640606 0.767870i \(-0.721317\pi\)
0.398323 0.917245i \(-0.369592\pi\)
\(338\) 0 0
\(339\) 5.92155 + 12.9664i 0.321614 + 0.704237i
\(340\) 0 0
\(341\) −0.498429 + 1.09141i −0.0269915 + 0.0591030i
\(342\) 0 0
\(343\) 13.4188 8.62375i 0.724548 0.465639i
\(344\) 0 0
\(345\) 5.41314 0.667258i 0.291434 0.0359240i
\(346\) 0 0
\(347\) −3.71660 + 2.38851i −0.199517 + 0.128222i −0.636585 0.771207i \(-0.719653\pi\)
0.437067 + 0.899429i \(0.356017\pi\)
\(348\) 0 0
\(349\) −11.2696 + 24.6771i −0.603250 + 1.32093i 0.323846 + 0.946110i \(0.395024\pi\)
−0.927096 + 0.374824i \(0.877703\pi\)
\(350\) 0 0
\(351\) −9.76158 21.3749i −0.521035 1.14091i
\(352\) 0 0
\(353\) −0.809559 5.63060i −0.0430885 0.299687i −0.999958 0.00916873i \(-0.997081\pi\)
0.956870 0.290518i \(-0.0938276\pi\)
\(354\) 0 0
\(355\) −2.38882 + 2.75684i −0.126785 + 0.146318i
\(356\) 0 0
\(357\) −0.0883451 0.0567760i −0.00467572 0.00300490i
\(358\) 0 0
\(359\) −21.5713 6.33392i −1.13849 0.334291i −0.342452 0.939535i \(-0.611257\pi\)
−0.796040 + 0.605244i \(0.793076\pi\)
\(360\) 0 0
\(361\) 9.27761 + 10.7069i 0.488295 + 0.563523i
\(362\) 0 0
\(363\) 11.9797 3.51755i 0.628769 0.184623i
\(364\) 0 0
\(365\) 1.50642 10.4774i 0.0788494 0.548410i
\(366\) 0 0
\(367\) −13.5709 −0.708393 −0.354196 0.935171i \(-0.615246\pi\)
−0.354196 + 0.935171i \(0.615246\pi\)
\(368\) 0 0
\(369\) 5.22956 0.272240
\(370\) 0 0
\(371\) 0.652060 4.53518i 0.0338533 0.235455i
\(372\) 0 0
\(373\) 16.0298 4.70678i 0.829992 0.243708i 0.160979 0.986958i \(-0.448535\pi\)
0.669014 + 0.743250i \(0.266717\pi\)
\(374\) 0 0
\(375\) −0.744747 0.859484i −0.0384586 0.0443836i
\(376\) 0 0
\(377\) 15.1278 + 4.44191i 0.779120 + 0.228770i
\(378\) 0 0
\(379\) 16.6997 + 10.7323i 0.857807 + 0.551279i 0.894001 0.448066i \(-0.147887\pi\)
−0.0361935 + 0.999345i \(0.511523\pi\)
\(380\) 0 0
\(381\) 2.41724 2.78965i 0.123839 0.142918i
\(382\) 0 0
\(383\) −4.26884 29.6904i −0.218128 1.51711i −0.744942 0.667130i \(-0.767523\pi\)
0.526814 0.849981i \(-0.323386\pi\)
\(384\) 0 0
\(385\) −0.0788463 0.172649i −0.00401838 0.00879902i
\(386\) 0 0
\(387\) −1.44919 + 3.17328i −0.0736663 + 0.161307i
\(388\) 0 0
\(389\) −7.51283 + 4.82820i −0.380915 + 0.244799i −0.717061 0.697011i \(-0.754513\pi\)
0.336145 + 0.941810i \(0.390877\pi\)
\(390\) 0 0
\(391\) −0.314064 + 0.135848i −0.0158829 + 0.00687013i
\(392\) 0 0
\(393\) 7.14657 4.59282i 0.360497 0.231677i
\(394\) 0 0
\(395\) −0.818280 + 1.79178i −0.0411722 + 0.0901545i
\(396\) 0 0
\(397\) −5.75471 12.6011i −0.288821 0.632429i 0.708490 0.705721i \(-0.249377\pi\)
−0.997311 + 0.0732919i \(0.976650\pi\)
\(398\) 0 0
\(399\) −0.460472 3.20265i −0.0230524 0.160333i
\(400\) 0 0
\(401\) −0.487003 + 0.562031i −0.0243198 + 0.0280665i −0.767779 0.640715i \(-0.778638\pi\)
0.743459 + 0.668781i \(0.233184\pi\)
\(402\) 0 0
\(403\) −30.2144 19.4176i −1.50509 0.967260i
\(404\) 0 0
\(405\) 0.928285 + 0.272569i 0.0461269 + 0.0135441i
\(406\) 0 0
\(407\) −0.422915 0.488069i −0.0209631 0.0241927i
\(408\) 0 0
\(409\) 18.5059 5.43383i 0.915059 0.268686i 0.209890 0.977725i \(-0.432689\pi\)
0.705169 + 0.709039i \(0.250871\pi\)
\(410\) 0 0
\(411\) 2.69308 18.7307i 0.132840 0.923920i
\(412\) 0 0
\(413\) 12.6870 0.624285
\(414\) 0 0
\(415\) −4.99704 −0.245295
\(416\) 0 0
\(417\) −0.912270 + 6.34498i −0.0446741 + 0.310715i
\(418\) 0 0
\(419\) −3.50879 + 1.03027i −0.171415 + 0.0503321i −0.366314 0.930491i \(-0.619380\pi\)
0.194899 + 0.980823i \(0.437562\pi\)
\(420\) 0 0
\(421\) 6.52623 + 7.53167i 0.318069 + 0.367071i 0.892159 0.451721i \(-0.149190\pi\)
−0.574090 + 0.818792i \(0.694644\pi\)
\(422\) 0 0
\(423\) 11.6561 + 3.42255i 0.566740 + 0.166410i
\(424\) 0 0
\(425\) 0.0600240 + 0.0385751i 0.00291159 + 0.00187117i
\(426\) 0 0
\(427\) −1.69609 + 1.95740i −0.0820797 + 0.0947250i
\(428\) 0 0
\(429\) −0.104203 0.724745i −0.00503095 0.0349910i
\(430\) 0 0
\(431\) −15.8418 34.6886i −0.763071 1.67089i −0.741342 0.671128i \(-0.765810\pi\)
−0.0217290 0.999764i \(-0.506917\pi\)
\(432\) 0 0
\(433\) −4.46576 + 9.77865i −0.214611 + 0.469932i −0.986067 0.166351i \(-0.946802\pi\)
0.771456 + 0.636283i \(0.219529\pi\)
\(434\) 0 0
\(435\) −3.43600 + 2.20818i −0.164744 + 0.105874i
\(436\) 0 0
\(437\) −9.49993 4.57202i −0.454443 0.218710i
\(438\) 0 0
\(439\) 17.5570 11.2832i 0.837952 0.538519i −0.0498435 0.998757i \(-0.515872\pi\)
0.887796 + 0.460238i \(0.152236\pi\)
\(440\) 0 0
\(441\) 3.77528 8.26671i 0.179775 0.393653i
\(442\) 0 0
\(443\) −10.5849 23.1778i −0.502905 1.10121i −0.975514 0.219936i \(-0.929415\pi\)
0.472609 0.881272i \(-0.343312\pi\)
\(444\) 0 0
\(445\) 2.53647 + 17.6415i 0.120240 + 0.836290i
\(446\) 0 0
\(447\) −2.10196 + 2.42579i −0.0994194 + 0.114736i
\(448\) 0 0
\(449\) 19.9207 + 12.8023i 0.940116 + 0.604176i 0.918428 0.395589i \(-0.129459\pi\)
0.0216886 + 0.999765i \(0.493096\pi\)
\(450\) 0 0
\(451\) 0.431188 + 0.126608i 0.0203039 + 0.00596175i
\(452\) 0 0
\(453\) −10.0751 11.6273i −0.473369 0.546298i
\(454\) 0 0
\(455\) 5.45138 1.60067i 0.255565 0.0750406i
\(456\) 0 0
\(457\) 4.73409 32.9263i 0.221451 1.54023i −0.511103 0.859519i \(-0.670763\pi\)
0.732554 0.680708i \(-0.238328\pi\)
\(458\) 0 0
\(459\) −0.381917 −0.0178264
\(460\) 0 0
\(461\) 32.2765 1.50327 0.751633 0.659582i \(-0.229267\pi\)
0.751633 + 0.659582i \(0.229267\pi\)
\(462\) 0 0
\(463\) 2.12635 14.7891i 0.0988199 0.687307i −0.878840 0.477116i \(-0.841682\pi\)
0.977660 0.210191i \(-0.0674087\pi\)
\(464\) 0 0
\(465\) 8.92734 2.62130i 0.413995 0.121560i
\(466\) 0 0
\(467\) 11.4407 + 13.2032i 0.529411 + 0.610972i 0.955962 0.293491i \(-0.0948171\pi\)
−0.426551 + 0.904463i \(0.640272\pi\)
\(468\) 0 0
\(469\) 8.77808 + 2.57748i 0.405334 + 0.119017i
\(470\) 0 0
\(471\) 5.78284 + 3.71640i 0.266459 + 0.171243i
\(472\) 0 0
\(473\) −0.196314 + 0.226558i −0.00902652 + 0.0104172i
\(474\) 0 0
\(475\) 0.312856 + 2.17596i 0.0143548 + 0.0998401i
\(476\) 0 0
\(477\) −2.50994 5.49600i −0.114922 0.251644i
\(478\) 0 0
\(479\) −5.46652 + 11.9700i −0.249772 + 0.546924i −0.992439 0.122736i \(-0.960833\pi\)
0.742668 + 0.669660i \(0.233560\pi\)
\(480\) 0 0
\(481\) 16.2628 10.4515i 0.741522 0.476547i
\(482\) 0 0
\(483\) −3.69576 6.01381i −0.168163 0.273638i
\(484\) 0 0
\(485\) −2.96814 + 1.90751i −0.134776 + 0.0866155i
\(486\) 0 0
\(487\) 14.1549 30.9949i 0.641421 1.40452i −0.257446 0.966293i \(-0.582881\pi\)
0.898867 0.438223i \(-0.144392\pi\)
\(488\) 0 0
\(489\) −0.685103 1.50017i −0.0309814 0.0678399i
\(490\) 0 0
\(491\) −0.901268 6.26845i −0.0406736 0.282891i −1.00000 0.000591419i \(-0.999812\pi\)
0.959326 0.282300i \(-0.0910973\pi\)
\(492\) 0 0
\(493\) 0.167808 0.193661i 0.00755770 0.00872205i
\(494\) 0 0
\(495\) −0.210557 0.135317i −0.00946383 0.00608203i
\(496\) 0 0
\(497\) 4.52974 + 1.33005i 0.203187 + 0.0596610i
\(498\) 0 0
\(499\) 14.6008 + 16.8502i 0.653621 + 0.754319i 0.981721 0.190324i \(-0.0609538\pi\)
−0.328100 + 0.944643i \(0.606408\pi\)
\(500\) 0 0
\(501\) 3.89396 1.14337i 0.173969 0.0510820i
\(502\) 0 0
\(503\) −0.934184 + 6.49739i −0.0416532 + 0.289704i 0.958339 + 0.285635i \(0.0922044\pi\)
−0.999992 + 0.00406947i \(0.998705\pi\)
\(504\) 0 0
\(505\) −11.4092 −0.507702
\(506\) 0 0
\(507\) 7.13328 0.316800
\(508\) 0 0
\(509\) −5.46645 + 38.0200i −0.242296 + 1.68521i 0.398241 + 0.917281i \(0.369621\pi\)
−0.640537 + 0.767927i \(0.721288\pi\)
\(510\) 0 0
\(511\) −13.1442 + 3.85949i −0.581465 + 0.170734i
\(512\) 0 0
\(513\) −7.70575 8.89290i −0.340217 0.392631i
\(514\) 0 0
\(515\) −13.5953 3.99194i −0.599080 0.175906i
\(516\) 0 0
\(517\) 0.878211 + 0.564392i 0.0386237 + 0.0248219i
\(518\) 0 0
\(519\) −4.69472 + 5.41799i −0.206075 + 0.237823i
\(520\) 0 0
\(521\) −0.668277 4.64797i −0.0292778 0.203631i 0.969932 0.243376i \(-0.0782548\pi\)
−0.999210 + 0.0397443i \(0.987346\pi\)
\(522\) 0 0
\(523\) −2.76081 6.04533i −0.120722 0.264344i 0.839617 0.543178i \(-0.182779\pi\)
−0.960339 + 0.278834i \(0.910052\pi\)
\(524\) 0 0
\(525\) −0.611421 + 1.33882i −0.0266846 + 0.0584311i
\(526\) 0 0
\(527\) −0.491072 + 0.315593i −0.0213914 + 0.0137474i
\(528\) 0 0
\(529\) −22.9813 0.926739i −0.999188 0.0402930i
\(530\) 0 0
\(531\) 14.0744 9.04504i 0.610775 0.392521i
\(532\) 0 0
\(533\) −5.58821 + 12.2365i −0.242052 + 0.530021i
\(534\) 0 0
\(535\) 0.0976593 + 0.213844i 0.00422218 + 0.00924528i
\(536\) 0 0
\(537\) −0.0828571 0.576284i −0.00357555 0.0248685i
\(538\) 0 0
\(539\) 0.511418 0.590208i 0.0220283 0.0254220i
\(540\) 0 0
\(541\) −11.9439 7.67586i −0.513507 0.330011i 0.258092 0.966120i \(-0.416906\pi\)
−0.771599 + 0.636109i \(0.780543\pi\)
\(542\) 0 0
\(543\) −8.67419 2.54697i −0.372245 0.109301i
\(544\) 0 0
\(545\) 10.8850 + 12.5620i 0.466262 + 0.538095i
\(546\) 0 0
\(547\) −1.84741 + 0.542450i −0.0789898 + 0.0231935i −0.320989 0.947083i \(-0.604015\pi\)
0.241999 + 0.970277i \(0.422197\pi\)
\(548\) 0 0
\(549\) −0.486065 + 3.38066i −0.0207448 + 0.144283i
\(550\) 0 0
\(551\) 7.89516 0.336345
\(552\) 0 0
\(553\) 2.54928 0.108406
\(554\) 0 0
\(555\) −0.712710 + 4.95701i −0.0302528 + 0.210413i
\(556\) 0 0
\(557\) −15.7314 + 4.61916i −0.666561 + 0.195720i −0.597471 0.801891i \(-0.703828\pi\)
−0.0690898 + 0.997610i \(0.522009\pi\)
\(558\) 0 0
\(559\) −5.87647 6.78181i −0.248548 0.286840i
\(560\) 0 0
\(561\) −0.0114183 0.00335271i −0.000482081 0.000141552i
\(562\) 0 0
\(563\) 14.5901 + 9.37651i 0.614901 + 0.395173i 0.810692 0.585473i \(-0.199091\pi\)
−0.195791 + 0.980646i \(0.562728\pi\)
\(564\) 0 0
\(565\) −8.20809 + 9.47264i −0.345317 + 0.398517i
\(566\) 0 0
\(567\) −0.178192 1.23935i −0.00748335 0.0520478i
\(568\) 0 0
\(569\) 7.25944 + 15.8960i 0.304332 + 0.666393i 0.998576 0.0533461i \(-0.0169886\pi\)
−0.694245 + 0.719739i \(0.744261\pi\)
\(570\) 0 0
\(571\) −3.99142 + 8.73998i −0.167036 + 0.365757i −0.974577 0.224055i \(-0.928071\pi\)
0.807541 + 0.589811i \(0.200798\pi\)
\(572\) 0 0
\(573\) 9.62032 6.18261i 0.401895 0.258282i
\(574\) 0 0
\(575\) 2.51100 + 4.08594i 0.104716 + 0.170395i
\(576\) 0 0
\(577\) 0.123392 0.0792992i 0.00513688 0.00330127i −0.538070 0.842900i \(-0.680846\pi\)
0.543207 + 0.839599i \(0.317210\pi\)
\(578\) 0 0
\(579\) −9.40447 + 20.5929i −0.390836 + 0.855812i
\(580\) 0 0
\(581\) 2.68654 + 5.88270i 0.111456 + 0.244055i
\(582\) 0 0
\(583\) −0.0738909 0.513923i −0.00306025 0.0212845i
\(584\) 0 0
\(585\) 4.90634 5.66222i 0.202852 0.234104i
\(586\) 0 0
\(587\) −19.1716 12.3208i −0.791297 0.508536i 0.0814683 0.996676i \(-0.474039\pi\)
−0.872765 + 0.488140i \(0.837675\pi\)
\(588\) 0 0
\(589\) −17.2567 5.06701i −0.711048 0.208783i
\(590\) 0 0
\(591\) −8.75750 10.1067i −0.360236 0.415734i
\(592\) 0 0
\(593\) −25.8292 + 7.58412i −1.06068 + 0.311443i −0.765123 0.643884i \(-0.777322\pi\)
−0.295553 + 0.955326i \(0.595504\pi\)
\(594\) 0 0
\(595\) 0.0131415 0.0914013i 0.000538750 0.00374709i
\(596\) 0 0
\(597\) −18.5008 −0.757186
\(598\) 0 0
\(599\) −21.7594 −0.889065 −0.444533 0.895763i \(-0.646630\pi\)
−0.444533 + 0.895763i \(0.646630\pi\)
\(600\) 0 0
\(601\) −5.11741 + 35.5924i −0.208744 + 1.45184i 0.568520 + 0.822669i \(0.307516\pi\)
−0.777264 + 0.629175i \(0.783393\pi\)
\(602\) 0 0
\(603\) 11.5756 3.39890i 0.471394 0.138414i
\(604\) 0 0
\(605\) 7.18938 + 8.29699i 0.292290 + 0.337321i
\(606\) 0 0
\(607\) −3.57593 1.04999i −0.145142 0.0426176i 0.208354 0.978053i \(-0.433189\pi\)
−0.353497 + 0.935436i \(0.615007\pi\)
\(608\) 0 0
\(609\) 4.44683 + 2.85781i 0.180195 + 0.115804i
\(610\) 0 0
\(611\) −20.4638 + 23.6165i −0.827878 + 0.955422i
\(612\) 0 0
\(613\) −4.17760 29.0558i −0.168732 1.17355i −0.881510 0.472165i \(-0.843473\pi\)
0.712779 0.701389i \(-0.247436\pi\)
\(614\) 0 0
\(615\) −1.44766 3.16993i −0.0583752 0.127824i
\(616\) 0 0
\(617\) 0.486818 1.06598i 0.0195986 0.0429149i −0.899580 0.436757i \(-0.856127\pi\)
0.919178 + 0.393842i \(0.128854\pi\)
\(618\) 0 0
\(619\) 33.5034 21.5313i 1.34661 0.865416i 0.349183 0.937054i \(-0.386459\pi\)
0.997431 + 0.0716380i \(0.0228226\pi\)
\(620\) 0 0
\(621\) −23.1311 11.1323i −0.928219 0.446723i
\(622\) 0 0
\(623\) 19.4046 12.4706i 0.777428 0.499623i
\(624\) 0 0
\(625\) 0.415415 0.909632i 0.0166166 0.0363853i
\(626\) 0 0
\(627\) −0.152314 0.333520i −0.00608282 0.0133195i
\(628\) 0 0
\(629\) −0.0447147 0.310998i −0.00178289 0.0124003i
\(630\) 0 0
\(631\) −15.5777 + 17.9776i −0.620137 + 0.715676i −0.975733 0.218964i \(-0.929732\pi\)
0.355596 + 0.934640i \(0.384278\pi\)
\(632\) 0 0
\(633\) −14.5598 9.35703i −0.578701 0.371908i
\(634\) 0 0
\(635\) 3.11425 + 0.914426i 0.123585 + 0.0362879i
\(636\) 0 0
\(637\) 15.3088 + 17.6673i 0.606558 + 0.700005i
\(638\) 0 0
\(639\) 5.97333 1.75393i 0.236301 0.0693844i
\(640\) 0 0
\(641\) 2.51874 17.5182i 0.0994841 0.691927i −0.877650 0.479302i \(-0.840890\pi\)
0.977134 0.212625i \(-0.0682012\pi\)
\(642\) 0 0
\(643\) 27.7826 1.09564 0.547819 0.836597i \(-0.315458\pi\)
0.547819 + 0.836597i \(0.315458\pi\)
\(644\) 0 0
\(645\) 2.32467 0.0915337
\(646\) 0 0
\(647\) −3.73708 + 25.9920i −0.146920 + 1.02185i 0.774303 + 0.632815i \(0.218101\pi\)
−0.921223 + 0.389035i \(0.872808\pi\)
\(648\) 0 0
\(649\) 1.37944 0.405041i 0.0541478 0.0158992i
\(650\) 0 0
\(651\) −7.88546 9.10030i −0.309055 0.356669i
\(652\) 0 0
\(653\) 25.9558 + 7.62131i 1.01573 + 0.298245i 0.746895 0.664942i \(-0.231544\pi\)
0.268834 + 0.963187i \(0.413362\pi\)
\(654\) 0 0
\(655\) 6.28402 + 4.03850i 0.245537 + 0.157797i
\(656\) 0 0
\(657\) −11.8300 + 13.6526i −0.461533 + 0.532637i
\(658\) 0 0
\(659\) 7.20152 + 50.0877i 0.280531 + 1.95114i 0.307629 + 0.951507i \(0.400465\pi\)
−0.0270971 + 0.999633i \(0.508626\pi\)
\(660\) 0 0
\(661\) 3.27525 + 7.17179i 0.127392 + 0.278950i 0.962572 0.271028i \(-0.0873635\pi\)
−0.835179 + 0.549978i \(0.814636\pi\)
\(662\) 0 0
\(663\) 0.147981 0.324034i 0.00574712 0.0125844i
\(664\) 0 0
\(665\) 2.39342 1.53816i 0.0928130 0.0596473i
\(666\) 0 0
\(667\) 15.8083 6.83788i 0.612102 0.264764i
\(668\) 0 0
\(669\) −8.76459 + 5.63266i −0.338859 + 0.217771i
\(670\) 0 0
\(671\) −0.121923 + 0.266975i −0.00470679 + 0.0103064i
\(672\) 0 0
\(673\) 8.82588 + 19.3260i 0.340213 + 0.744962i 0.999979 0.00650935i \(-0.00207200\pi\)
−0.659766 + 0.751471i \(0.729345\pi\)
\(674\) 0 0
\(675\) 0.761765 + 5.29819i 0.0293204 + 0.203928i
\(676\) 0 0
\(677\) −21.6947 + 25.0370i −0.833795 + 0.962251i −0.999715 0.0238881i \(-0.992395\pi\)
0.165919 + 0.986139i \(0.446941\pi\)
\(678\) 0 0
\(679\) 3.84134 + 2.46868i 0.147417 + 0.0947392i
\(680\) 0 0
\(681\) 17.8261 + 5.23422i 0.683098 + 0.200576i
\(682\) 0 0
\(683\) −9.86271 11.3822i −0.377386 0.435527i 0.535003 0.844850i \(-0.320310\pi\)
−0.912390 + 0.409323i \(0.865765\pi\)
\(684\) 0 0
\(685\) 15.9654 4.68787i 0.610007 0.179114i
\(686\) 0 0
\(687\) 1.66663 11.5917i 0.0635861 0.442251i
\(688\) 0 0
\(689\) 15.5420 0.592103
\(690\) 0 0
\(691\) −28.1650 −1.07145 −0.535724 0.844393i \(-0.679961\pi\)
−0.535724 + 0.844393i \(0.679961\pi\)
\(692\) 0 0
\(693\) −0.0460989 + 0.320625i −0.00175115 + 0.0121795i
\(694\) 0 0
\(695\) −5.40823 + 1.58800i −0.205146 + 0.0602362i
\(696\) 0 0
\(697\) 0.143176 + 0.165234i 0.00542318 + 0.00625869i
\(698\) 0 0
\(699\) −4.75860 1.39725i −0.179987 0.0528489i
\(700\) 0 0
\(701\) −7.42277 4.77033i −0.280354 0.180173i 0.392905 0.919579i \(-0.371470\pi\)
−0.673260 + 0.739406i \(0.735106\pi\)
\(702\) 0 0
\(703\) 6.33937 7.31603i 0.239094 0.275929i
\(704\) 0 0
\(705\) −1.15208 8.01287i −0.0433897 0.301782i
\(706\) 0 0
\(707\) 6.13387 + 13.4313i 0.230688 + 0.505136i
\(708\) 0 0
\(709\) −20.5822 + 45.0687i −0.772981 + 1.69259i −0.0530037 + 0.998594i \(0.516880\pi\)
−0.719977 + 0.693998i \(0.755848\pi\)
\(710\) 0 0
\(711\) 2.82806 1.81748i 0.106060 0.0681609i
\(712\) 0 0
\(713\) −38.9412 + 4.80014i −1.45836 + 0.179767i
\(714\) 0 0
\(715\) 0.541621 0.348079i 0.0202555 0.0130174i
\(716\) 0 0
\(717\) −11.2556 + 24.6464i −0.420349 + 0.920435i
\(718\) 0 0
\(719\) −11.0701 24.2402i −0.412846 0.904007i −0.995805 0.0915052i \(-0.970832\pi\)
0.582958 0.812502i \(-0.301895\pi\)
\(720\) 0 0
\(721\) 2.60972 + 18.1510i 0.0971912 + 0.675980i
\(722\) 0 0
\(723\) −13.5380 + 15.6237i −0.503484 + 0.581051i
\(724\) 0 0
\(725\) −3.02129 1.94167i −0.112208 0.0721117i
\(726\) 0 0
\(727\) 10.9763 + 3.22292i 0.407087 + 0.119532i 0.478864 0.877889i \(-0.341049\pi\)
−0.0717769 + 0.997421i \(0.522867\pi\)
\(728\) 0 0
\(729\) −13.0404 15.0495i −0.482979 0.557387i
\(730\) 0 0
\(731\) −0.139940 + 0.0410900i −0.00517585 + 0.00151977i
\(732\) 0 0
\(733\) 3.86837 26.9051i 0.142882 0.993763i −0.784629 0.619966i \(-0.787146\pi\)
0.927510 0.373797i \(-0.121944\pi\)
\(734\) 0 0
\(735\) −6.05600 −0.223379
\(736\) 0 0
\(737\) 1.03672 0.0381881
\(738\) 0 0
\(739\) −4.72428 + 32.8581i −0.173785 + 1.20870i 0.697011 + 0.717061i \(0.254513\pi\)
−0.870796 + 0.491644i \(0.836396\pi\)
\(740\) 0 0
\(741\) 10.5309 3.09214i 0.386861 0.113593i
\(742\) 0 0
\(743\) 32.5407 + 37.5540i 1.19380 + 1.37772i 0.907751 + 0.419509i \(0.137798\pi\)
0.286053 + 0.958214i \(0.407657\pi\)
\(744\) 0 0
\(745\) −2.70806 0.795157i −0.0992155 0.0291323i
\(746\) 0 0
\(747\) 7.17433 + 4.61066i 0.262495 + 0.168695i
\(748\) 0 0
\(749\) 0.199241 0.229936i 0.00728009 0.00840168i
\(750\) 0 0
\(751\) −0.395963 2.75398i −0.0144489 0.100494i 0.981321 0.192378i \(-0.0616201\pi\)
−0.995770 + 0.0918843i \(0.970711\pi\)
\(752\) 0 0
\(753\) 4.46539 + 9.77784i 0.162728 + 0.356324i
\(754\) 0 0
\(755\) 5.61982 12.3057i 0.204526 0.447850i
\(756\) 0 0
\(757\) 44.8193 28.8036i 1.62898 1.04688i 0.679212 0.733942i \(-0.262322\pi\)
0.949772 0.312942i \(-0.101315\pi\)
\(758\) 0 0
\(759\) −0.593832 0.535885i −0.0215547 0.0194514i
\(760\) 0 0
\(761\) −30.8007 + 19.7944i −1.11653 + 0.717547i −0.962705 0.270552i \(-0.912794\pi\)
−0.153820 + 0.988099i \(0.549158\pi\)
\(762\) 0 0
\(763\) 8.93633 19.5678i 0.323517 0.708403i
\(764\) 0 0
\(765\) −0.0505850 0.110766i −0.00182890 0.00400474i
\(766\) 0 0
\(767\) 6.12460 + 42.5975i 0.221146 + 1.53811i
\(768\) 0 0
\(769\) 26.7788 30.9044i 0.965668 1.11444i −0.0277173 0.999616i \(-0.508824\pi\)
0.993386 0.114825i \(-0.0366307\pi\)
\(770\) 0 0
\(771\) −1.83983 1.18238i −0.0662597 0.0425825i
\(772\) 0 0
\(773\) 29.9481 + 8.79354i 1.07716 + 0.316282i 0.771741 0.635937i \(-0.219386\pi\)
0.305416 + 0.952219i \(0.401205\pi\)
\(774\) 0 0
\(775\) 5.35758 + 6.18298i 0.192450 + 0.222099i
\(776\) 0 0
\(777\) 6.21874 1.82599i 0.223096 0.0655069i
\(778\) 0 0
\(779\) −0.958669 + 6.66769i −0.0343479 + 0.238895i
\(780\) 0 0
\(781\) 0.534977 0.0191430
\(782\) 0 0
\(783\) 19.2237 0.686999
\(784\) 0 0
\(785\) −0.860210 + 5.98289i −0.0307022 + 0.213538i
\(786\) 0 0
\(787\) 4.45260 1.30740i 0.158718 0.0466038i −0.201408 0.979507i \(-0.564552\pi\)
0.360126 + 0.932904i \(0.382734\pi\)
\(788\) 0 0
\(789\) −10.5956 12.2280i −0.377215 0.435329i
\(790\) 0 0
\(791\) 15.5644 + 4.57012i 0.553407 + 0.162495i
\(792\) 0 0
\(793\) −7.39089 4.74984i −0.262458 0.168672i
\(794\) 0 0
\(795\) −2.63663 + 3.04283i −0.0935115 + 0.107918i
\(796\)