Properties

Label 460.2.m.a.41.2
Level $460$
Weight $2$
Character 460.41
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 41.2
Character \(\chi\) \(=\) 460.41
Dual form 460.2.m.a.101.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.329283 - 0.380013i) q^{3} +(-0.142315 + 0.989821i) q^{5} +(-0.847137 - 1.85497i) q^{7} +(0.390962 + 2.71920i) q^{9} +O(q^{10})\) \(q+(0.329283 - 0.380013i) q^{3} +(-0.142315 + 0.989821i) q^{5} +(-0.847137 - 1.85497i) q^{7} +(0.390962 + 2.71920i) q^{9} +(4.95488 - 1.45488i) q^{11} +(0.773111 - 1.69288i) q^{13} +(0.329283 + 0.380013i) q^{15} +(0.687204 - 0.441639i) q^{17} +(5.37737 + 3.45583i) q^{19} +(-0.983860 - 0.288887i) q^{21} +(4.01575 - 2.62178i) q^{23} +(-0.959493 - 0.281733i) q^{25} +(2.43109 + 1.56237i) q^{27} +(-1.82922 + 1.17557i) q^{29} +(-2.33171 - 2.69094i) q^{31} +(1.07868 - 2.36199i) q^{33} +(1.95665 - 0.574525i) q^{35} +(-0.0791837 - 0.550735i) q^{37} +(-0.388742 - 0.851227i) q^{39} +(0.207389 - 1.44242i) q^{41} +(-6.92394 + 7.99065i) q^{43} -2.74716 q^{45} +1.60379 q^{47} +(1.86075 - 2.14742i) q^{49} +(0.0584560 - 0.406570i) q^{51} +(-2.53532 - 5.55157i) q^{53} +(0.734922 + 5.11150i) q^{55} +(3.08393 - 0.905525i) q^{57} +(-2.28512 + 5.00371i) q^{59} +(-0.676314 - 0.780507i) q^{61} +(4.71284 - 3.02876i) q^{63} +(1.56562 + 1.00616i) q^{65} +(4.15251 + 1.21929i) q^{67} +(0.326011 - 2.38934i) q^{69} +(-0.396395 - 0.116392i) q^{71} +(-5.14265 - 3.30498i) q^{73} +(-0.423007 + 0.271850i) q^{75} +(-6.89623 - 7.95868i) q^{77} +(-4.50110 + 9.85604i) q^{79} +(-6.51342 + 1.91251i) q^{81} +(-2.02608 - 14.0917i) q^{83} +(0.339345 + 0.743061i) q^{85} +(-0.155600 + 1.08222i) q^{87} +(-8.47579 + 9.78158i) q^{89} -3.79517 q^{91} -1.79038 q^{93} +(-4.18593 + 4.83082i) q^{95} +(-2.60153 + 18.0940i) q^{97} +(5.89329 + 12.9045i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.329283 0.380013i 0.190112 0.219400i −0.652690 0.757625i \(-0.726359\pi\)
0.842801 + 0.538225i \(0.180905\pi\)
\(4\) 0 0
\(5\) −0.142315 + 0.989821i −0.0636451 + 0.442662i
\(6\) 0 0
\(7\) −0.847137 1.85497i −0.320188 0.701113i 0.679275 0.733884i \(-0.262294\pi\)
−0.999463 + 0.0327703i \(0.989567\pi\)
\(8\) 0 0
\(9\) 0.390962 + 2.71920i 0.130321 + 0.906400i
\(10\) 0 0
\(11\) 4.95488 1.45488i 1.49395 0.438664i 0.570152 0.821539i \(-0.306884\pi\)
0.923800 + 0.382875i \(0.125066\pi\)
\(12\) 0 0
\(13\) 0.773111 1.69288i 0.214422 0.469519i −0.771605 0.636102i \(-0.780546\pi\)
0.986028 + 0.166582i \(0.0532731\pi\)
\(14\) 0 0
\(15\) 0.329283 + 0.380013i 0.0850205 + 0.0981188i
\(16\) 0 0
\(17\) 0.687204 0.441639i 0.166671 0.107113i −0.454646 0.890672i \(-0.650234\pi\)
0.621317 + 0.783559i \(0.286598\pi\)
\(18\) 0 0
\(19\) 5.37737 + 3.45583i 1.23365 + 0.792821i 0.984456 0.175632i \(-0.0561968\pi\)
0.249197 + 0.968453i \(0.419833\pi\)
\(20\) 0 0
\(21\) −0.983860 0.288887i −0.214696 0.0630404i
\(22\) 0 0
\(23\) 4.01575 2.62178i 0.837343 0.546678i
\(24\) 0 0
\(25\) −0.959493 0.281733i −0.191899 0.0563465i
\(26\) 0 0
\(27\) 2.43109 + 1.56237i 0.467863 + 0.300677i
\(28\) 0 0
\(29\) −1.82922 + 1.17557i −0.339678 + 0.218298i −0.699347 0.714782i \(-0.746526\pi\)
0.359669 + 0.933080i \(0.382889\pi\)
\(30\) 0 0
\(31\) −2.33171 2.69094i −0.418788 0.483307i 0.506679 0.862135i \(-0.330873\pi\)
−0.925467 + 0.378828i \(0.876327\pi\)
\(32\) 0 0
\(33\) 1.07868 2.36199i 0.187775 0.411169i
\(34\) 0 0
\(35\) 1.95665 0.574525i 0.330734 0.0971124i
\(36\) 0 0
\(37\) −0.0791837 0.550735i −0.0130177 0.0905403i 0.982277 0.187436i \(-0.0600177\pi\)
−0.995295 + 0.0968958i \(0.969109\pi\)
\(38\) 0 0
\(39\) −0.388742 0.851227i −0.0622486 0.136305i
\(40\) 0 0
\(41\) 0.207389 1.44242i 0.0323887 0.225268i −0.967198 0.254025i \(-0.918246\pi\)
0.999586 + 0.0287564i \(0.00915470\pi\)
\(42\) 0 0
\(43\) −6.92394 + 7.99065i −1.05589 + 1.21856i −0.0808066 + 0.996730i \(0.525750\pi\)
−0.975085 + 0.221834i \(0.928796\pi\)
\(44\) 0 0
\(45\) −2.74716 −0.409523
\(46\) 0 0
\(47\) 1.60379 0.233938 0.116969 0.993136i \(-0.462682\pi\)
0.116969 + 0.993136i \(0.462682\pi\)
\(48\) 0 0
\(49\) 1.86075 2.14742i 0.265821 0.306774i
\(50\) 0 0
\(51\) 0.0584560 0.406570i 0.00818548 0.0569312i
\(52\) 0 0
\(53\) −2.53532 5.55157i −0.348252 0.762566i −0.999992 0.00412306i \(-0.998688\pi\)
0.651739 0.758443i \(-0.274040\pi\)
\(54\) 0 0
\(55\) 0.734922 + 5.11150i 0.0990969 + 0.689234i
\(56\) 0 0
\(57\) 3.08393 0.905525i 0.408477 0.119940i
\(58\) 0 0
\(59\) −2.28512 + 5.00371i −0.297497 + 0.651427i −0.998066 0.0621569i \(-0.980202\pi\)
0.700570 + 0.713584i \(0.252929\pi\)
\(60\) 0 0
\(61\) −0.676314 0.780507i −0.0865931 0.0999337i 0.710799 0.703395i \(-0.248333\pi\)
−0.797393 + 0.603461i \(0.793788\pi\)
\(62\) 0 0
\(63\) 4.71284 3.02876i 0.593762 0.381588i
\(64\) 0 0
\(65\) 1.56562 + 1.00616i 0.194191 + 0.124799i
\(66\) 0 0
\(67\) 4.15251 + 1.21929i 0.507310 + 0.148960i 0.525364 0.850877i \(-0.323929\pi\)
−0.0180546 + 0.999837i \(0.505747\pi\)
\(68\) 0 0
\(69\) 0.326011 2.38934i 0.0392471 0.287643i
\(70\) 0 0
\(71\) −0.396395 0.116392i −0.0470435 0.0138132i 0.258126 0.966111i \(-0.416895\pi\)
−0.305170 + 0.952298i \(0.598713\pi\)
\(72\) 0 0
\(73\) −5.14265 3.30498i −0.601902 0.386819i 0.203911 0.978989i \(-0.434635\pi\)
−0.805812 + 0.592171i \(0.798271\pi\)
\(74\) 0 0
\(75\) −0.423007 + 0.271850i −0.0488446 + 0.0313905i
\(76\) 0 0
\(77\) −6.89623 7.95868i −0.785899 0.906975i
\(78\) 0 0
\(79\) −4.50110 + 9.85604i −0.506414 + 1.10889i 0.467918 + 0.883772i \(0.345004\pi\)
−0.974331 + 0.225119i \(0.927723\pi\)
\(80\) 0 0
\(81\) −6.51342 + 1.91251i −0.723713 + 0.212501i
\(82\) 0 0
\(83\) −2.02608 14.0917i −0.222391 1.54677i −0.728954 0.684563i \(-0.759993\pi\)
0.506562 0.862203i \(-0.330916\pi\)
\(84\) 0 0
\(85\) 0.339345 + 0.743061i 0.0368071 + 0.0805963i
\(86\) 0 0
\(87\) −0.155600 + 1.08222i −0.0166821 + 0.116026i
\(88\) 0 0
\(89\) −8.47579 + 9.78158i −0.898432 + 1.03685i 0.100689 + 0.994918i \(0.467895\pi\)
−0.999121 + 0.0419279i \(0.986650\pi\)
\(90\) 0 0
\(91\) −3.79517 −0.397842
\(92\) 0 0
\(93\) −1.79038 −0.185654
\(94\) 0 0
\(95\) −4.18593 + 4.83082i −0.429467 + 0.495632i
\(96\) 0 0
\(97\) −2.60153 + 18.0940i −0.264145 + 1.83717i 0.236637 + 0.971598i \(0.423955\pi\)
−0.500783 + 0.865573i \(0.666954\pi\)
\(98\) 0 0
\(99\) 5.89329 + 12.9045i 0.592298 + 1.29695i
\(100\) 0 0
\(101\) −1.22251 8.50275i −0.121644 0.846055i −0.955693 0.294364i \(-0.904892\pi\)
0.834049 0.551690i \(-0.186017\pi\)
\(102\) 0 0
\(103\) 5.08228 1.49229i 0.500772 0.147040i −0.0215847 0.999767i \(-0.506871\pi\)
0.522357 + 0.852727i \(0.325053\pi\)
\(104\) 0 0
\(105\) 0.425965 0.932733i 0.0415699 0.0910254i
\(106\) 0 0
\(107\) −7.77359 8.97120i −0.751501 0.867279i 0.243211 0.969973i \(-0.421799\pi\)
−0.994713 + 0.102694i \(0.967254\pi\)
\(108\) 0 0
\(109\) −14.4592 + 9.29236i −1.38494 + 0.890046i −0.999466 0.0326726i \(-0.989598\pi\)
−0.385473 + 0.922719i \(0.625962\pi\)
\(110\) 0 0
\(111\) −0.235360 0.151257i −0.0223394 0.0143567i
\(112\) 0 0
\(113\) −9.05703 2.65938i −0.852014 0.250174i −0.173566 0.984822i \(-0.555529\pi\)
−0.678448 + 0.734649i \(0.737347\pi\)
\(114\) 0 0
\(115\) 2.02359 + 4.34800i 0.188701 + 0.405453i
\(116\) 0 0
\(117\) 4.90553 + 1.44039i 0.453516 + 0.133164i
\(118\) 0 0
\(119\) −1.40138 0.900615i −0.128465 0.0825592i
\(120\) 0 0
\(121\) 13.1804 8.47050i 1.19821 0.770046i
\(122\) 0 0
\(123\) −0.479848 0.553774i −0.0432665 0.0499322i
\(124\) 0 0
\(125\) 0.415415 0.909632i 0.0371558 0.0813600i
\(126\) 0 0
\(127\) 8.54876 2.51014i 0.758579 0.222739i 0.120504 0.992713i \(-0.461549\pi\)
0.638075 + 0.769974i \(0.279731\pi\)
\(128\) 0 0
\(129\) 0.756615 + 5.26237i 0.0666162 + 0.463326i
\(130\) 0 0
\(131\) −3.02063 6.61426i −0.263914 0.577890i 0.730563 0.682845i \(-0.239258\pi\)
−0.994477 + 0.104955i \(0.966530\pi\)
\(132\) 0 0
\(133\) 1.85509 12.9024i 0.160857 1.11878i
\(134\) 0 0
\(135\) −1.89244 + 2.18399i −0.162875 + 0.187968i
\(136\) 0 0
\(137\) −18.2823 −1.56196 −0.780982 0.624553i \(-0.785281\pi\)
−0.780982 + 0.624553i \(0.785281\pi\)
\(138\) 0 0
\(139\) 5.19550 0.440676 0.220338 0.975424i \(-0.429284\pi\)
0.220338 + 0.975424i \(0.429284\pi\)
\(140\) 0 0
\(141\) 0.528102 0.609462i 0.0444742 0.0513260i
\(142\) 0 0
\(143\) 1.36773 9.51279i 0.114376 0.795499i
\(144\) 0 0
\(145\) −0.903278 1.97790i −0.0750131 0.164256i
\(146\) 0 0
\(147\) −0.203333 1.41421i −0.0167707 0.116642i
\(148\) 0 0
\(149\) 0.326269 0.0958011i 0.0267290 0.00784833i −0.268341 0.963324i \(-0.586475\pi\)
0.295070 + 0.955476i \(0.404657\pi\)
\(150\) 0 0
\(151\) −4.41140 + 9.65961i −0.358994 + 0.786088i 0.640836 + 0.767678i \(0.278588\pi\)
−0.999831 + 0.0184103i \(0.994139\pi\)
\(152\) 0 0
\(153\) 1.46958 + 1.69598i 0.118808 + 0.137112i
\(154\) 0 0
\(155\) 2.99539 1.92502i 0.240595 0.154621i
\(156\) 0 0
\(157\) −20.2295 13.0007i −1.61449 1.03757i −0.959414 0.282001i \(-0.909002\pi\)
−0.655072 0.755566i \(-0.727362\pi\)
\(158\) 0 0
\(159\) −2.94450 0.864584i −0.233514 0.0685659i
\(160\) 0 0
\(161\) −8.26522 5.22811i −0.651390 0.412033i
\(162\) 0 0
\(163\) 5.55239 + 1.63033i 0.434897 + 0.127697i 0.491851 0.870680i \(-0.336321\pi\)
−0.0569537 + 0.998377i \(0.518139\pi\)
\(164\) 0 0
\(165\) 2.18443 + 1.40385i 0.170058 + 0.109289i
\(166\) 0 0
\(167\) 9.05165 5.81714i 0.700437 0.450144i −0.141345 0.989960i \(-0.545143\pi\)
0.841783 + 0.539817i \(0.181506\pi\)
\(168\) 0 0
\(169\) 6.24506 + 7.20718i 0.480389 + 0.554399i
\(170\) 0 0
\(171\) −7.29474 + 15.9732i −0.557843 + 1.22150i
\(172\) 0 0
\(173\) 7.04012 2.06717i 0.535250 0.157164i −0.00292639 0.999996i \(-0.500932\pi\)
0.538177 + 0.842832i \(0.319113\pi\)
\(174\) 0 0
\(175\) 0.290216 + 2.01850i 0.0219383 + 0.152584i
\(176\) 0 0
\(177\) 1.14902 + 2.51601i 0.0863658 + 0.189115i
\(178\) 0 0
\(179\) 1.38089 9.60431i 0.103213 0.717859i −0.870845 0.491558i \(-0.836428\pi\)
0.974057 0.226301i \(-0.0726634\pi\)
\(180\) 0 0
\(181\) 12.3974 14.3074i 0.921491 1.06346i −0.0763037 0.997085i \(-0.524312\pi\)
0.997795 0.0663729i \(-0.0211427\pi\)
\(182\) 0 0
\(183\) −0.519301 −0.0383878
\(184\) 0 0
\(185\) 0.556398 0.0409072
\(186\) 0 0
\(187\) 2.76248 3.18807i 0.202013 0.233135i
\(188\) 0 0
\(189\) 0.838678 5.83314i 0.0610049 0.424298i
\(190\) 0 0
\(191\) 11.3966 + 24.9550i 0.824626 + 1.80568i 0.523272 + 0.852166i \(0.324711\pi\)
0.301354 + 0.953512i \(0.402561\pi\)
\(192\) 0 0
\(193\) 2.60069 + 18.0882i 0.187202 + 1.30202i 0.839211 + 0.543805i \(0.183017\pi\)
−0.652010 + 0.758211i \(0.726074\pi\)
\(194\) 0 0
\(195\) 0.897887 0.263643i 0.0642990 0.0188799i
\(196\) 0 0
\(197\) −4.53893 + 9.93886i −0.323385 + 0.708115i −0.999591 0.0285981i \(-0.990896\pi\)
0.676206 + 0.736713i \(0.263623\pi\)
\(198\) 0 0
\(199\) 2.29908 + 2.65328i 0.162978 + 0.188086i 0.831364 0.555728i \(-0.187560\pi\)
−0.668387 + 0.743814i \(0.733015\pi\)
\(200\) 0 0
\(201\) 1.83069 1.17652i 0.129127 0.0829850i
\(202\) 0 0
\(203\) 3.73025 + 2.39728i 0.261812 + 0.168256i
\(204\) 0 0
\(205\) 1.39822 + 0.410555i 0.0976562 + 0.0286744i
\(206\) 0 0
\(207\) 8.69915 + 9.89463i 0.604632 + 0.687724i
\(208\) 0 0
\(209\) 31.6721 + 9.29975i 2.19080 + 0.643277i
\(210\) 0 0
\(211\) 1.47913 + 0.950580i 0.101828 + 0.0654406i 0.590564 0.806991i \(-0.298905\pi\)
−0.488736 + 0.872432i \(0.662542\pi\)
\(212\) 0 0
\(213\) −0.174757 + 0.112309i −0.0119741 + 0.00769531i
\(214\) 0 0
\(215\) −6.92394 7.99065i −0.472209 0.544958i
\(216\) 0 0
\(217\) −3.01634 + 6.60486i −0.204762 + 0.448367i
\(218\) 0 0
\(219\) −2.94932 + 0.865999i −0.199297 + 0.0585188i
\(220\) 0 0
\(221\) −0.216356 1.50479i −0.0145537 0.101223i
\(222\) 0 0
\(223\) −0.572783 1.25422i −0.0383564 0.0839887i 0.889484 0.456966i \(-0.151064\pi\)
−0.927840 + 0.372978i \(0.878337\pi\)
\(224\) 0 0
\(225\) 0.390962 2.71920i 0.0260641 0.181280i
\(226\) 0 0
\(227\) 15.5051 17.8938i 1.02911 1.18766i 0.0470875 0.998891i \(-0.485006\pi\)
0.982022 0.188765i \(-0.0604485\pi\)
\(228\) 0 0
\(229\) 0.556469 0.0367725 0.0183863 0.999831i \(-0.494147\pi\)
0.0183863 + 0.999831i \(0.494147\pi\)
\(230\) 0 0
\(231\) −5.29521 −0.348399
\(232\) 0 0
\(233\) 8.18763 9.44902i 0.536389 0.619026i −0.421268 0.906936i \(-0.638415\pi\)
0.957657 + 0.287910i \(0.0929604\pi\)
\(234\) 0 0
\(235\) −0.228244 + 1.58747i −0.0148890 + 0.103555i
\(236\) 0 0
\(237\) 2.26328 + 4.95590i 0.147016 + 0.321920i
\(238\) 0 0
\(239\) −3.17500 22.0826i −0.205374 1.42841i −0.788005 0.615669i \(-0.788886\pi\)
0.582632 0.812736i \(-0.302023\pi\)
\(240\) 0 0
\(241\) 15.3930 4.51981i 0.991553 0.291146i 0.254568 0.967055i \(-0.418067\pi\)
0.736985 + 0.675909i \(0.236249\pi\)
\(242\) 0 0
\(243\) −5.01943 + 10.9910i −0.321996 + 0.705074i
\(244\) 0 0
\(245\) 1.86075 + 2.14742i 0.118879 + 0.137193i
\(246\) 0 0
\(247\) 10.0076 6.43149i 0.636768 0.409226i
\(248\) 0 0
\(249\) −6.02218 3.87022i −0.381640 0.245265i
\(250\) 0 0
\(251\) −29.7141 8.72486i −1.87554 0.550708i −0.997380 0.0723403i \(-0.976953\pi\)
−0.878160 0.478368i \(-0.841229\pi\)
\(252\) 0 0
\(253\) 16.0832 18.8330i 1.01114 1.18402i
\(254\) 0 0
\(255\) 0.394113 + 0.115722i 0.0246803 + 0.00724679i
\(256\) 0 0
\(257\) 21.8619 + 14.0498i 1.36371 + 0.876402i 0.998512 0.0545292i \(-0.0173658\pi\)
0.365195 + 0.930931i \(0.381002\pi\)
\(258\) 0 0
\(259\) −0.954518 + 0.613432i −0.0593109 + 0.0381168i
\(260\) 0 0
\(261\) −3.91176 4.51441i −0.242132 0.279435i
\(262\) 0 0
\(263\) 1.54736 3.38826i 0.0954146 0.208929i −0.855906 0.517131i \(-0.827000\pi\)
0.951321 + 0.308202i \(0.0997273\pi\)
\(264\) 0 0
\(265\) 5.85587 1.71944i 0.359723 0.105624i
\(266\) 0 0
\(267\) 0.926193 + 6.44182i 0.0566821 + 0.394233i
\(268\) 0 0
\(269\) 5.79490 + 12.6891i 0.353321 + 0.773666i 0.999941 + 0.0108535i \(0.00345484\pi\)
−0.646620 + 0.762813i \(0.723818\pi\)
\(270\) 0 0
\(271\) 2.13569 14.8540i 0.129734 0.902318i −0.816156 0.577831i \(-0.803899\pi\)
0.945890 0.324487i \(-0.105192\pi\)
\(272\) 0 0
\(273\) −1.24968 + 1.44221i −0.0756343 + 0.0872866i
\(274\) 0 0
\(275\) −5.16406 −0.311405
\(276\) 0 0
\(277\) −3.87509 −0.232831 −0.116416 0.993201i \(-0.537140\pi\)
−0.116416 + 0.993201i \(0.537140\pi\)
\(278\) 0 0
\(279\) 6.40560 7.39245i 0.383493 0.442574i
\(280\) 0 0
\(281\) 1.68704 11.7336i 0.100641 0.699971i −0.875561 0.483107i \(-0.839508\pi\)
0.976202 0.216864i \(-0.0695827\pi\)
\(282\) 0 0
\(283\) 0.222697 + 0.487639i 0.0132380 + 0.0289871i 0.916136 0.400869i \(-0.131292\pi\)
−0.902898 + 0.429856i \(0.858564\pi\)
\(284\) 0 0
\(285\) 0.457418 + 3.18141i 0.0270951 + 0.188451i
\(286\) 0 0
\(287\) −2.85133 + 0.837227i −0.168309 + 0.0494200i
\(288\) 0 0
\(289\) −6.78485 + 14.8568i −0.399109 + 0.873927i
\(290\) 0 0
\(291\) 6.01932 + 6.94667i 0.352859 + 0.407221i
\(292\) 0 0
\(293\) −19.0883 + 12.2673i −1.11515 + 0.716662i −0.962409 0.271605i \(-0.912446\pi\)
−0.152739 + 0.988267i \(0.548809\pi\)
\(294\) 0 0
\(295\) −4.62757 2.97396i −0.269428 0.173151i
\(296\) 0 0
\(297\) 14.3188 + 4.20438i 0.830861 + 0.243963i
\(298\) 0 0
\(299\) −1.33372 8.82510i −0.0771310 0.510369i
\(300\) 0 0
\(301\) 20.6880 + 6.07453i 1.19243 + 0.350130i
\(302\) 0 0
\(303\) −3.63370 2.33524i −0.208751 0.134156i
\(304\) 0 0
\(305\) 0.868812 0.558352i 0.0497481 0.0319711i
\(306\) 0 0
\(307\) −9.48462 10.9458i −0.541316 0.624712i 0.417521 0.908667i \(-0.362899\pi\)
−0.958838 + 0.283955i \(0.908353\pi\)
\(308\) 0 0
\(309\) 1.10642 2.42272i 0.0629419 0.137824i
\(310\) 0 0
\(311\) 9.93898 2.91835i 0.563588 0.165484i 0.0124856 0.999922i \(-0.496026\pi\)
0.551102 + 0.834438i \(0.314207\pi\)
\(312\) 0 0
\(313\) 2.65668 + 18.4776i 0.150164 + 1.04442i 0.915942 + 0.401310i \(0.131445\pi\)
−0.765778 + 0.643105i \(0.777646\pi\)
\(314\) 0 0
\(315\) 2.32722 + 5.09591i 0.131124 + 0.287122i
\(316\) 0 0
\(317\) 2.50055 17.3917i 0.140445 0.976815i −0.790710 0.612191i \(-0.790288\pi\)
0.931155 0.364624i \(-0.118803\pi\)
\(318\) 0 0
\(319\) −7.35325 + 8.48610i −0.411703 + 0.475131i
\(320\) 0 0
\(321\) −5.96888 −0.333150
\(322\) 0 0
\(323\) 5.22158 0.290536
\(324\) 0 0
\(325\) −1.21873 + 1.40649i −0.0676031 + 0.0780182i
\(326\) 0 0
\(327\) −1.22995 + 8.55449i −0.0680164 + 0.473064i
\(328\) 0 0
\(329\) −1.35863 2.97499i −0.0749039 0.164017i
\(330\) 0 0
\(331\) 4.12915 + 28.7188i 0.226958 + 1.57853i 0.710813 + 0.703381i \(0.248327\pi\)
−0.483854 + 0.875149i \(0.660764\pi\)
\(332\) 0 0
\(333\) 1.46660 0.430633i 0.0803692 0.0235985i
\(334\) 0 0
\(335\) −1.79784 + 3.93672i −0.0982265 + 0.215086i
\(336\) 0 0
\(337\) 0.353263 + 0.407687i 0.0192434 + 0.0222081i 0.765290 0.643686i \(-0.222596\pi\)
−0.746046 + 0.665894i \(0.768050\pi\)
\(338\) 0 0
\(339\) −3.99292 + 2.56610i −0.216866 + 0.139371i
\(340\) 0 0
\(341\) −15.4684 9.94091i −0.837659 0.538331i
\(342\) 0 0
\(343\) −19.2563 5.65415i −1.03974 0.305295i
\(344\) 0 0
\(345\) 2.31863 + 0.662732i 0.124831 + 0.0356803i
\(346\) 0 0
\(347\) 7.33312 + 2.15320i 0.393663 + 0.115590i 0.472572 0.881292i \(-0.343326\pi\)
−0.0789095 + 0.996882i \(0.525144\pi\)
\(348\) 0 0
\(349\) −22.5810 14.5119i −1.20873 0.776805i −0.228286 0.973594i \(-0.573312\pi\)
−0.980446 + 0.196789i \(0.936948\pi\)
\(350\) 0 0
\(351\) 4.52439 2.90765i 0.241494 0.155199i
\(352\) 0 0
\(353\) −1.30178 1.50233i −0.0692866 0.0799611i 0.720048 0.693924i \(-0.244120\pi\)
−0.789335 + 0.613963i \(0.789574\pi\)
\(354\) 0 0
\(355\) 0.171620 0.375796i 0.00910867 0.0199452i
\(356\) 0 0
\(357\) −0.803697 + 0.235987i −0.0425361 + 0.0124897i
\(358\) 0 0
\(359\) −3.52681 24.5295i −0.186138 1.29462i −0.841894 0.539644i \(-0.818559\pi\)
0.655756 0.754973i \(-0.272350\pi\)
\(360\) 0 0
\(361\) 9.08049 + 19.8835i 0.477921 + 1.04650i
\(362\) 0 0
\(363\) 1.12117 7.79790i 0.0588461 0.409283i
\(364\) 0 0
\(365\) 4.00322 4.61996i 0.209538 0.241820i
\(366\) 0 0
\(367\) −23.8482 −1.24487 −0.622433 0.782673i \(-0.713856\pi\)
−0.622433 + 0.782673i \(0.713856\pi\)
\(368\) 0 0
\(369\) 4.00331 0.208404
\(370\) 0 0
\(371\) −8.15024 + 9.40588i −0.423139 + 0.488329i
\(372\) 0 0
\(373\) −4.56885 + 31.7770i −0.236566 + 1.64535i 0.432126 + 0.901813i \(0.357763\pi\)
−0.668692 + 0.743539i \(0.733146\pi\)
\(374\) 0 0
\(375\) −0.208883 0.457389i −0.0107867 0.0236195i
\(376\) 0 0
\(377\) 0.575902 + 4.00549i 0.0296605 + 0.206293i
\(378\) 0 0
\(379\) 11.3523 3.33333i 0.583127 0.171222i 0.0231533 0.999732i \(-0.492629\pi\)
0.559974 + 0.828510i \(0.310811\pi\)
\(380\) 0 0
\(381\) 1.86107 4.07518i 0.0953457 0.208778i
\(382\) 0 0
\(383\) 5.75799 + 6.64507i 0.294219 + 0.339547i 0.883543 0.468350i \(-0.155151\pi\)
−0.589324 + 0.807897i \(0.700606\pi\)
\(384\) 0 0
\(385\) 8.85910 5.69340i 0.451502 0.290163i
\(386\) 0 0
\(387\) −24.4352 15.7035i −1.24211 0.798256i
\(388\) 0 0
\(389\) −27.5522 8.09006i −1.39695 0.410182i −0.505316 0.862935i \(-0.668624\pi\)
−0.891636 + 0.452752i \(0.850442\pi\)
\(390\) 0 0
\(391\) 1.60176 3.57521i 0.0810047 0.180806i
\(392\) 0 0
\(393\) −3.50814 1.03008i −0.176962 0.0519608i
\(394\) 0 0
\(395\) −9.11515 5.85795i −0.458633 0.294745i
\(396\) 0 0
\(397\) −29.6357 + 19.0457i −1.48737 + 0.955876i −0.490965 + 0.871180i \(0.663356\pi\)
−0.996407 + 0.0846961i \(0.973008\pi\)
\(398\) 0 0
\(399\) −4.29224 4.95351i −0.214881 0.247985i
\(400\) 0 0
\(401\) −1.74850 + 3.82868i −0.0873159 + 0.191195i −0.948253 0.317517i \(-0.897151\pi\)
0.860937 + 0.508712i \(0.169878\pi\)
\(402\) 0 0
\(403\) −6.35810 + 1.86691i −0.316720 + 0.0929973i
\(404\) 0 0
\(405\) −0.966089 6.71930i −0.0480054 0.333885i
\(406\) 0 0
\(407\) −1.19360 2.61362i −0.0591646 0.129552i
\(408\) 0 0
\(409\) 4.07089 28.3137i 0.201293 1.40002i −0.599162 0.800628i \(-0.704499\pi\)
0.800455 0.599393i \(-0.204591\pi\)
\(410\) 0 0
\(411\) −6.02006 + 6.94751i −0.296947 + 0.342696i
\(412\) 0 0
\(413\) 11.2175 0.551979
\(414\) 0 0
\(415\) 14.2366 0.698848
\(416\) 0 0
\(417\) 1.71079 1.97435i 0.0837776 0.0966845i
\(418\) 0 0
\(419\) 0.714304 4.96809i 0.0348960 0.242707i −0.964906 0.262595i \(-0.915422\pi\)
0.999802 + 0.0198877i \(0.00633086\pi\)
\(420\) 0 0
\(421\) 1.51626 + 3.32015i 0.0738981 + 0.161814i 0.942976 0.332861i \(-0.108014\pi\)
−0.869078 + 0.494676i \(0.835287\pi\)
\(422\) 0 0
\(423\) 0.627023 + 4.36104i 0.0304869 + 0.212041i
\(424\) 0 0
\(425\) −0.783792 + 0.230142i −0.0380195 + 0.0111635i
\(426\) 0 0
\(427\) −0.874889 + 1.91574i −0.0423388 + 0.0927091i
\(428\) 0 0
\(429\) −3.16461 3.65215i −0.152789 0.176328i
\(430\) 0 0
\(431\) −12.4652 + 8.01092i −0.600429 + 0.385873i −0.805257 0.592925i \(-0.797973\pi\)
0.204828 + 0.978798i \(0.434337\pi\)
\(432\) 0 0
\(433\) 3.17361 + 2.03956i 0.152514 + 0.0980148i 0.614672 0.788783i \(-0.289288\pi\)
−0.462158 + 0.886798i \(0.652925\pi\)
\(434\) 0 0
\(435\) −1.04906 0.308032i −0.0502987 0.0147690i
\(436\) 0 0
\(437\) 30.6546 0.220513i 1.46641 0.0105486i
\(438\) 0 0
\(439\) −3.29916 0.968720i −0.157460 0.0462345i 0.202052 0.979375i \(-0.435239\pi\)
−0.359513 + 0.933140i \(0.617057\pi\)
\(440\) 0 0
\(441\) 6.56674 + 4.22019i 0.312702 + 0.200961i
\(442\) 0 0
\(443\) −11.4987 + 7.38979i −0.546321 + 0.351099i −0.784507 0.620120i \(-0.787084\pi\)
0.238185 + 0.971220i \(0.423447\pi\)
\(444\) 0 0
\(445\) −8.47579 9.78158i −0.401791 0.463692i
\(446\) 0 0
\(447\) 0.0710290 0.155532i 0.00335956 0.00735640i
\(448\) 0 0
\(449\) 38.7322 11.3728i 1.82789 0.536716i 0.828169 0.560478i \(-0.189383\pi\)
0.999718 + 0.0237623i \(0.00756450\pi\)
\(450\) 0 0
\(451\) −1.07097 7.44874i −0.0504299 0.350748i
\(452\) 0 0
\(453\) 2.21818 + 4.85713i 0.104219 + 0.228208i
\(454\) 0 0
\(455\) 0.540109 3.75654i 0.0253207 0.176109i
\(456\) 0 0
\(457\) −22.3145 + 25.7523i −1.04383 + 1.20464i −0.0654432 + 0.997856i \(0.520846\pi\)
−0.978386 + 0.206787i \(0.933699\pi\)
\(458\) 0 0
\(459\) 2.36065 0.110186
\(460\) 0 0
\(461\) −5.55797 −0.258861 −0.129430 0.991589i \(-0.541315\pi\)
−0.129430 + 0.991589i \(0.541315\pi\)
\(462\) 0 0
\(463\) −20.7022 + 23.8916i −0.962114 + 1.11034i 0.0317241 + 0.999497i \(0.489900\pi\)
−0.993838 + 0.110842i \(0.964645\pi\)
\(464\) 0 0
\(465\) 0.254798 1.77216i 0.0118160 0.0821820i
\(466\) 0 0
\(467\) 5.93445 + 12.9946i 0.274614 + 0.601320i 0.995814 0.0914068i \(-0.0291364\pi\)
−0.721200 + 0.692727i \(0.756409\pi\)
\(468\) 0 0
\(469\) −1.25600 8.73569i −0.0579968 0.403377i
\(470\) 0 0
\(471\) −11.6016 + 3.40655i −0.534575 + 0.156965i
\(472\) 0 0
\(473\) −22.6818 + 49.6663i −1.04291 + 2.28366i
\(474\) 0 0
\(475\) −4.18593 4.83082i −0.192064 0.221653i
\(476\) 0 0
\(477\) 14.1046 9.06448i 0.645806 0.415034i
\(478\) 0 0
\(479\) 6.42979 + 4.13217i 0.293785 + 0.188804i 0.679227 0.733928i \(-0.262315\pi\)
−0.385443 + 0.922732i \(0.625951\pi\)
\(480\) 0 0
\(481\) −0.993544 0.291731i −0.0453017 0.0133018i
\(482\) 0 0
\(483\) −4.70834 + 1.41936i −0.214237 + 0.0645832i
\(484\) 0 0
\(485\) −17.5396 5.15010i −0.796434 0.233854i
\(486\) 0 0
\(487\) −27.2128 17.4886i −1.23313 0.792485i −0.248755 0.968566i \(-0.580021\pi\)
−0.984376 + 0.176081i \(0.943658\pi\)
\(488\) 0 0
\(489\) 2.44785 1.57314i 0.110696 0.0711399i
\(490\) 0 0
\(491\) −10.4483 12.0580i −0.471525 0.544169i 0.469310 0.883033i \(-0.344503\pi\)
−0.940835 + 0.338864i \(0.889957\pi\)
\(492\) 0 0
\(493\) −0.737870 + 1.61571i −0.0332320 + 0.0727680i
\(494\) 0 0
\(495\) −13.6119 + 3.99680i −0.611808 + 0.179643i
\(496\) 0 0
\(497\) 0.119897 + 0.833902i 0.00537812 + 0.0374056i
\(498\) 0 0
\(499\) −13.1002 28.6854i −0.586444 1.28413i −0.937567 0.347804i \(-0.886928\pi\)
0.351124 0.936329i \(-0.385800\pi\)
\(500\) 0 0
\(501\) 0.769965 5.35522i 0.0343995 0.239254i
\(502\) 0 0
\(503\) −17.0861 + 19.7184i −0.761830 + 0.879198i −0.995659 0.0930794i \(-0.970329\pi\)
0.233829 + 0.972278i \(0.424874\pi\)
\(504\) 0 0
\(505\) 8.59018 0.382258
\(506\) 0 0
\(507\) 4.79521 0.212963
\(508\) 0 0
\(509\) −10.0322 + 11.5778i −0.444671 + 0.513178i −0.933194 0.359373i \(-0.882990\pi\)
0.488523 + 0.872551i \(0.337536\pi\)
\(510\) 0 0
\(511\) −1.77411 + 12.3392i −0.0784822 + 0.545856i
\(512\) 0 0
\(513\) 7.67360 + 16.8028i 0.338798 + 0.741863i
\(514\) 0 0
\(515\) 0.753819 + 5.24293i 0.0332172 + 0.231031i
\(516\) 0 0
\(517\) 7.94661 2.33334i 0.349492 0.102620i
\(518\) 0 0
\(519\) 1.53264 3.35602i 0.0672755 0.147313i
\(520\) 0 0
\(521\) 8.48353 + 9.79051i 0.371670 + 0.428930i 0.910516 0.413474i \(-0.135685\pi\)
−0.538846 + 0.842405i \(0.681139\pi\)
\(522\) 0 0
\(523\) 3.36065 2.15976i 0.146951 0.0944396i −0.465099 0.885259i \(-0.653981\pi\)
0.612050 + 0.790819i \(0.290345\pi\)
\(524\) 0 0
\(525\) 0.862618 + 0.554371i 0.0376477 + 0.0241947i
\(526\) 0 0
\(527\) −2.79079 0.819449i −0.121569 0.0356958i
\(528\) 0 0
\(529\) 9.25258 21.0568i 0.402286 0.915514i
\(530\) 0 0
\(531\) −14.4995 4.25743i −0.629224 0.184757i
\(532\) 0 0
\(533\) −2.28150 1.46623i −0.0988229 0.0635096i
\(534\) 0 0
\(535\) 9.98619 6.41773i 0.431740 0.277463i
\(536\) 0 0
\(537\) −3.19505 3.68729i −0.137877 0.159118i
\(538\) 0 0
\(539\) 6.09554 13.3474i 0.262553 0.574912i
\(540\) 0 0
\(541\) 21.1098 6.19840i 0.907582 0.266490i 0.205559 0.978645i \(-0.434099\pi\)
0.702023 + 0.712155i \(0.252280\pi\)
\(542\) 0 0
\(543\) −1.35473 9.42234i −0.0581369 0.404351i
\(544\) 0 0
\(545\) −7.14002 15.6345i −0.305845 0.669707i
\(546\) 0 0
\(547\) 4.93221 34.3043i 0.210886 1.46674i −0.559321 0.828951i \(-0.688938\pi\)
0.770207 0.637793i \(-0.220153\pi\)
\(548\) 0 0
\(549\) 1.85794 2.14418i 0.0792951 0.0915114i
\(550\) 0 0
\(551\) −13.8990 −0.592115
\(552\) 0 0
\(553\) 22.0957 0.939606
\(554\) 0 0
\(555\) 0.183212 0.211438i 0.00777693 0.00897506i
\(556\) 0 0
\(557\) −2.68578 + 18.6800i −0.113800 + 0.791497i 0.850365 + 0.526193i \(0.176381\pi\)
−0.964165 + 0.265303i \(0.914528\pi\)
\(558\) 0 0
\(559\) 8.17422 + 17.8990i 0.345733 + 0.757049i
\(560\) 0 0
\(561\) −0.301870 2.09955i −0.0127450 0.0886433i
\(562\) 0 0
\(563\) 44.9326 13.1934i 1.89368 0.556035i 0.901240 0.433320i \(-0.142658\pi\)
0.992442 0.122716i \(-0.0391603\pi\)
\(564\) 0 0
\(565\) 3.92126 8.58637i 0.164969 0.361231i
\(566\) 0 0
\(567\) 9.06541 + 10.4620i 0.380712 + 0.439365i
\(568\) 0 0
\(569\) −11.8294 + 7.60230i −0.495915 + 0.318705i −0.764580 0.644529i \(-0.777054\pi\)
0.268666 + 0.963233i \(0.413417\pi\)
\(570\) 0 0
\(571\) 27.4155 + 17.6189i 1.14730 + 0.737327i 0.969100 0.246667i \(-0.0793354\pi\)
0.178203 + 0.983994i \(0.442972\pi\)
\(572\) 0 0
\(573\) 13.2359 + 3.88641i 0.552937 + 0.162357i
\(574\) 0 0
\(575\) −4.59173 + 1.38421i −0.191488 + 0.0577254i
\(576\) 0 0
\(577\) −6.62015 1.94385i −0.275600 0.0809236i 0.141012 0.990008i \(-0.454964\pi\)
−0.416612 + 0.909084i \(0.636783\pi\)
\(578\) 0 0
\(579\) 7.73010 + 4.96783i 0.321252 + 0.206456i
\(580\) 0 0
\(581\) −24.4234 + 15.6959i −1.01325 + 0.651177i
\(582\) 0 0
\(583\) −20.6391 23.8188i −0.854783 0.986472i
\(584\) 0 0
\(585\) −2.12386 + 4.65061i −0.0878109 + 0.192279i
\(586\) 0 0
\(587\) 8.98073 2.63698i 0.370674 0.108840i −0.0910895 0.995843i \(-0.529035\pi\)
0.461764 + 0.887003i \(0.347217\pi\)
\(588\) 0 0
\(589\) −3.23906 22.5282i −0.133463 0.928257i
\(590\) 0 0
\(591\) 2.28230 + 4.99755i 0.0938814 + 0.205572i
\(592\) 0 0
\(593\) −0.159893 + 1.11208i −0.00656601 + 0.0456676i −0.992841 0.119443i \(-0.961889\pi\)
0.986275 + 0.165111i \(0.0527982\pi\)
\(594\) 0 0
\(595\) 1.09089 1.25895i 0.0447220 0.0516119i
\(596\) 0 0
\(597\) 1.76533 0.0722501
\(598\) 0 0
\(599\) 7.19246 0.293876 0.146938 0.989146i \(-0.453058\pi\)
0.146938 + 0.989146i \(0.453058\pi\)
\(600\) 0 0
\(601\) 5.00113 5.77161i 0.204000 0.235429i −0.644526 0.764583i \(-0.722945\pi\)
0.848526 + 0.529154i \(0.177491\pi\)
\(602\) 0 0
\(603\) −1.69201 + 11.7682i −0.0689040 + 0.479238i
\(604\) 0 0
\(605\) 6.50853 + 14.2517i 0.264609 + 0.579413i
\(606\) 0 0
\(607\) 5.24301 + 36.4659i 0.212807 + 1.48011i 0.763723 + 0.645544i \(0.223369\pi\)
−0.550916 + 0.834561i \(0.685721\pi\)
\(608\) 0 0
\(609\) 2.13930 0.628156i 0.0866890 0.0254542i
\(610\) 0 0
\(611\) 1.23991 2.71503i 0.0501614 0.109838i
\(612\) 0 0
\(613\) −14.3462 16.5564i −0.579437 0.668706i 0.388047 0.921640i \(-0.373150\pi\)
−0.967484 + 0.252934i \(0.918604\pi\)
\(614\) 0 0
\(615\) 0.616427 0.396154i 0.0248567 0.0159745i
\(616\) 0 0
\(617\) −0.711146 0.457026i −0.0286297 0.0183992i 0.526248 0.850331i \(-0.323598\pi\)
−0.554877 + 0.831932i \(0.687235\pi\)
\(618\) 0 0
\(619\) −12.9114 3.79113i −0.518953 0.152378i 0.0117584 0.999931i \(-0.496257\pi\)
−0.530712 + 0.847552i \(0.678075\pi\)
\(620\) 0 0
\(621\) 13.8588 0.0996929i 0.556135 0.00400054i
\(622\) 0 0
\(623\) 25.3247 + 7.43601i 1.01461 + 0.297917i
\(624\) 0 0
\(625\) 0.841254 + 0.540641i 0.0336501 + 0.0216256i
\(626\) 0 0
\(627\) 13.9631 8.97353i 0.557632 0.358368i
\(628\) 0 0
\(629\) −0.297641 0.343497i −0.0118677 0.0136961i
\(630\) 0 0
\(631\) −2.58301 + 5.65600i −0.102828 + 0.225162i −0.954052 0.299640i \(-0.903133\pi\)
0.851224 + 0.524802i \(0.175861\pi\)
\(632\) 0 0
\(633\) 0.848285 0.249079i 0.0337163 0.00990000i
\(634\) 0 0
\(635\) 1.26798 + 8.81897i 0.0503181 + 0.349970i
\(636\) 0 0
\(637\) −2.19675 4.81021i −0.0870383 0.190587i
\(638\) 0 0
\(639\) 0.161518 1.12338i 0.00638956 0.0444404i
\(640\) 0 0
\(641\) −20.7252 + 23.9181i −0.818596 + 0.944710i −0.999246 0.0388377i \(-0.987634\pi\)
0.180650 + 0.983547i \(0.442180\pi\)
\(642\) 0 0
\(643\) 8.22655 0.324423 0.162212 0.986756i \(-0.448137\pi\)
0.162212 + 0.986756i \(0.448137\pi\)
\(644\) 0 0
\(645\) −5.31649 −0.209336
\(646\) 0 0
\(647\) 29.7511 34.3346i 1.16964 1.34983i 0.244751 0.969586i \(-0.421294\pi\)
0.924885 0.380246i \(-0.124161\pi\)
\(648\) 0 0
\(649\) −4.04267 + 28.1174i −0.158688 + 1.10370i
\(650\) 0 0
\(651\) 1.51670 + 3.32111i 0.0594442 + 0.130165i
\(652\) 0 0
\(653\) −5.01926 34.9097i −0.196419 1.36612i −0.814570 0.580065i \(-0.803027\pi\)
0.618151 0.786059i \(-0.287882\pi\)
\(654\) 0 0
\(655\) 6.97681 2.04858i 0.272607 0.0800445i
\(656\) 0 0
\(657\) 6.97632 15.2760i 0.272172 0.595974i
\(658\) 0 0
\(659\) −11.5821 13.3665i −0.451176 0.520685i 0.483904 0.875121i \(-0.339218\pi\)
−0.935080 + 0.354436i \(0.884673\pi\)
\(660\) 0 0
\(661\) 35.0648 22.5348i 1.36386 0.876503i 0.365344 0.930873i \(-0.380951\pi\)
0.998521 + 0.0543702i \(0.0173151\pi\)
\(662\) 0 0
\(663\) −0.643081 0.413283i −0.0249752 0.0160506i
\(664\) 0 0
\(665\) 12.5071 + 3.67241i 0.485004 + 0.142410i
\(666\) 0 0
\(667\) −4.26362 + 9.51660i −0.165088 + 0.368484i
\(668\) 0 0
\(669\) −0.665227 0.195328i −0.0257192 0.00755182i
\(670\) 0 0
\(671\) −4.48660 2.88336i −0.173203 0.111311i
\(672\) 0 0
\(673\) −7.80311 + 5.01476i −0.300788 + 0.193305i −0.682325 0.731049i \(-0.739031\pi\)
0.381537 + 0.924353i \(0.375395\pi\)
\(674\) 0 0
\(675\) −1.89244 2.18399i −0.0728401 0.0840620i
\(676\) 0 0
\(677\) −17.9722 + 39.3536i −0.690727 + 1.51248i 0.160137 + 0.987095i \(0.448806\pi\)
−0.850864 + 0.525386i \(0.823921\pi\)
\(678\) 0 0
\(679\) 35.7678 10.5024i 1.37264 0.403044i
\(680\) 0 0
\(681\) −1.69432 11.7843i −0.0649266 0.451574i
\(682\) 0 0
\(683\) 17.9307 + 39.2628i 0.686101 + 1.50235i 0.856047 + 0.516898i \(0.172913\pi\)
−0.169947 + 0.985453i \(0.554360\pi\)
\(684\) 0 0
\(685\) 2.60185 18.0962i 0.0994114 0.691422i
\(686\) 0 0
\(687\) 0.183236 0.211465i 0.00699088 0.00806791i
\(688\) 0 0
\(689\) −11.3582 −0.432713
\(690\) 0 0
\(691\) −12.1223 −0.461153 −0.230576 0.973054i \(-0.574061\pi\)
−0.230576 + 0.973054i \(0.574061\pi\)
\(692\) 0 0
\(693\) 18.9451 21.8638i 0.719664 0.830536i
\(694\) 0 0
\(695\) −0.739396 + 5.14261i −0.0280469 + 0.195070i
\(696\) 0 0
\(697\) −0.494511 1.08283i −0.0187309 0.0410150i
\(698\) 0 0
\(699\) −0.894704 6.22280i −0.0338408 0.235368i
\(700\) 0 0
\(701\) 29.2788 8.59704i 1.10585 0.324706i 0.322674 0.946510i \(-0.395418\pi\)
0.783172 + 0.621805i \(0.213600\pi\)
\(702\) 0 0
\(703\) 1.47744 3.23515i 0.0557228 0.122016i
\(704\) 0 0
\(705\) 0.528102 + 0.609462i 0.0198895 + 0.0229537i
\(706\) 0 0
\(707\) −14.7367 + 9.47071i −0.554231 + 0.356183i
\(708\) 0 0
\(709\) 2.71801 + 1.74676i 0.102077 + 0.0656008i 0.590683 0.806903i \(-0.298858\pi\)
−0.488606 + 0.872504i \(0.662495\pi\)
\(710\) 0 0
\(711\) −28.5603 8.38606i −1.07110 0.314502i
\(712\) 0 0
\(713\) −16.4186 4.69293i −0.614883 0.175751i
\(714\) 0 0
\(715\) 9.22131 + 2.70762i 0.344857 + 0.101259i
\(716\) 0 0
\(717\) −9.43714 6.06488i −0.352437 0.226497i
\(718\) 0 0
\(719\) 19.3740 12.4509i 0.722530 0.464342i −0.126986 0.991904i \(-0.540530\pi\)
0.849516 + 0.527563i \(0.176894\pi\)
\(720\) 0 0
\(721\) −7.07355 8.16331i −0.263433 0.304018i
\(722\) 0 0
\(723\) 3.35108 7.33785i 0.124628 0.272897i
\(724\) 0 0
\(725\) 2.08632 0.612599i 0.0774840 0.0227513i
\(726\) 0 0
\(727\) 2.37341 + 16.5074i 0.0880250 + 0.612227i 0.985310 + 0.170776i \(0.0546273\pi\)
−0.897285 + 0.441452i \(0.854464\pi\)
\(728\) 0 0
\(729\) −5.93609 12.9982i −0.219855 0.481416i
\(730\) 0 0
\(731\) −1.22917 + 8.54909i −0.0454626 + 0.316200i
\(732\) 0 0
\(733\) 17.5131 20.2112i 0.646860 0.746516i −0.333712 0.942675i \(-0.608301\pi\)
0.980572 + 0.196159i \(0.0628468\pi\)
\(734\) 0 0
\(735\) 1.42876 0.0527005
\(736\) 0 0
\(737\) 22.3491 0.823240
\(738\) 0 0
\(739\) −14.1958 + 16.3828i −0.522201 + 0.602652i −0.954181 0.299231i \(-0.903270\pi\)
0.431980 + 0.901883i \(0.357815\pi\)
\(740\) 0 0
\(741\) 0.851281 5.92079i 0.0312726 0.217506i
\(742\) 0 0
\(743\) 6.04276 + 13.2318i 0.221687 + 0.485427i 0.987497 0.157640i \(-0.0503887\pi\)
−0.765809 + 0.643068i \(0.777661\pi\)
\(744\) 0 0
\(745\) 0.0483931 + 0.336581i 0.00177299 + 0.0123314i
\(746\) 0 0
\(747\) 37.5261 11.0187i 1.37301 0.403151i
\(748\) 0 0
\(749\) −10.0560 + 22.0196i −0.367439 + 0.804580i
\(750\) 0 0
\(751\) 22.1421 + 25.5534i 0.807977 + 0.932455i 0.998790 0.0491710i \(-0.0156579\pi\)
−0.190813 + 0.981626i \(0.561112\pi\)
\(752\) 0 0
\(753\) −13.0999 + 8.41880i −0.477387 + 0.306798i
\(754\) 0 0
\(755\) −8.93348 5.74120i −0.325123 0.208944i
\(756\) 0 0
\(757\) 17.1821 + 5.04513i 0.624495 + 0.183368i 0.578644 0.815580i \(-0.303582\pi\)
0.0458509 + 0.998948i \(0.485400\pi\)
\(758\) 0 0
\(759\) −1.86087 12.3132i −0.0675454 0.446942i
\(760\) 0 0
\(761\) 38.0258 + 11.1654i 1.37843 + 0.404745i 0.885224 0.465165i \(-0.154005\pi\)
0.493211 + 0.869910i \(0.335823\pi\)
\(762\) 0 0
\(763\) 29.4860 + 18.9495i 1.06746 + 0.686017i
\(764\) 0 0
\(765\) −1.88786 + 1.21325i −0.0682558 + 0.0438653i
\(766\) 0 0
\(767\) 6.70401 + 7.73684i 0.242068 + 0.279361i
\(768\) 0 0
\(769\) 13.7474 30.1027i 0.495745 1.08553i −0.482084 0.876125i \(-0.660120\pi\)
0.977829 0.209405i \(-0.0671526\pi\)
\(770\) 0 0
\(771\) 12.5378 3.68144i 0.451539 0.132584i
\(772\) 0 0
\(773\) 4.10393 + 28.5435i 0.147608 + 1.02664i 0.920120 + 0.391637i \(0.128091\pi\)
−0.772512 + 0.635001i \(0.781000\pi\)
\(774\) 0 0
\(775\) 1.47914 + 3.23886i 0.0531322 + 0.116343i
\(776\) 0 0
\(777\) −0.0811947 + 0.564721i −0.00291284 + 0.0202593i
\(778\) 0 0
\(779\) 6.09996 7.03973i 0.218554 0.252224i
\(780\) 0 0
\(781\) −2.13343 −0.0763401
\(782\) 0 0
\(783\) −6.28366 −0.224560
\(784\) 0 0
\(785\) 15.7473 18.1734i 0.562045 0.648635i
\(786\) 0 0
\(787\) 2.15774 15.0074i 0.0769151 0.534956i −0.914539 0.404498i \(-0.867446\pi\)
0.991454 0.130458i \(-0.0416447\pi\)
\(788\) 0 0
\(789\) −0.778060 1.70371i −0.0276997 0.0606538i
\(790\) 0 0
\(791\) 2.73946 + 19.0534i 0.0974041 + 0.677461i
\(792\) 0 0
\(793\) −1.84417 + 0.541497i −0.0654883 + 0.0192291i
\(794\) 0 0
\(795\) 1.27483 2.79149i 0.0452135 0.0990039i
\(796\) 0