Properties

Label 460.2.m.a.41.1
Level $460$
Weight $2$
Character 460.41
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 41.1
Character \(\chi\) \(=\) 460.41
Dual form 460.2.m.a.101.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.26886 + 1.46434i) q^{3} +(-0.142315 + 0.989821i) q^{5} +(0.0191296 + 0.0418879i) q^{7} +(-0.107349 - 0.746632i) q^{9} +O(q^{10})\) \(q+(-1.26886 + 1.46434i) q^{3} +(-0.142315 + 0.989821i) q^{5} +(0.0191296 + 0.0418879i) q^{7} +(-0.107349 - 0.746632i) q^{9} +(0.229658 - 0.0674336i) q^{11} +(-1.75005 + 3.83208i) q^{13} +(-1.26886 - 1.46434i) q^{15} +(-0.597021 + 0.383682i) q^{17} +(-3.34165 - 2.14755i) q^{19} +(-0.0856110 - 0.0251377i) q^{21} +(-4.35746 + 2.00313i) q^{23} +(-0.959493 - 0.281733i) q^{25} +(-3.66051 - 2.35247i) q^{27} +(-0.590543 + 0.379519i) q^{29} +(-3.43965 - 3.96957i) q^{31} +(-0.192658 + 0.421862i) q^{33} +(-0.0441840 + 0.0129736i) q^{35} +(0.347733 + 2.41854i) q^{37} +(-3.39091 - 7.42506i) q^{39} +(-0.510902 + 3.55340i) q^{41} +(-3.44042 + 3.97045i) q^{43} +0.754310 q^{45} -0.0114334 q^{47} +(4.58264 - 5.28864i) q^{49} +(0.195694 - 1.36108i) q^{51} +(5.16162 + 11.3024i) q^{53} +(0.0340635 + 0.236917i) q^{55} +(7.38483 - 2.16838i) q^{57} +(-2.03273 + 4.45105i) q^{59} +(3.47877 + 4.01472i) q^{61} +(0.0292213 - 0.0187794i) q^{63} +(-3.54402 - 2.27760i) q^{65} +(2.04121 + 0.599352i) q^{67} +(2.59574 - 8.92251i) q^{69} +(7.02708 + 2.06334i) q^{71} +(-0.786056 - 0.505167i) q^{73} +(1.63002 - 1.04755i) q^{75} +(0.00721790 + 0.00832991i) q^{77} +(4.12602 - 9.03472i) q^{79} +(10.2608 - 3.01283i) q^{81} +(1.46896 + 10.2168i) q^{83} +(-0.294812 - 0.645548i) q^{85} +(0.193571 - 1.34631i) q^{87} +(1.17192 - 1.35246i) q^{89} -0.193996 q^{91} +10.1773 q^{93} +(2.60125 - 3.00201i) q^{95} +(-0.0699118 + 0.486247i) q^{97} +(-0.0750017 - 0.164231i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.26886 + 1.46434i −0.732577 + 0.845439i −0.992759 0.120120i \(-0.961672\pi\)
0.260182 + 0.965560i \(0.416217\pi\)
\(4\) 0 0
\(5\) −0.142315 + 0.989821i −0.0636451 + 0.442662i
\(6\) 0 0
\(7\) 0.0191296 + 0.0418879i 0.00723030 + 0.0158321i 0.913213 0.407483i \(-0.133594\pi\)
−0.905982 + 0.423315i \(0.860866\pi\)
\(8\) 0 0
\(9\) −0.107349 0.746632i −0.0357831 0.248877i
\(10\) 0 0
\(11\) 0.229658 0.0674336i 0.0692444 0.0203320i −0.246927 0.969034i \(-0.579421\pi\)
0.316171 + 0.948702i \(0.397603\pi\)
\(12\) 0 0
\(13\) −1.75005 + 3.83208i −0.485378 + 1.06283i 0.495572 + 0.868567i \(0.334958\pi\)
−0.980950 + 0.194262i \(0.937769\pi\)
\(14\) 0 0
\(15\) −1.26886 1.46434i −0.327618 0.378092i
\(16\) 0 0
\(17\) −0.597021 + 0.383682i −0.144799 + 0.0930566i −0.611034 0.791604i \(-0.709246\pi\)
0.466235 + 0.884661i \(0.345610\pi\)
\(18\) 0 0
\(19\) −3.34165 2.14755i −0.766626 0.492681i 0.0979444 0.995192i \(-0.468773\pi\)
−0.864571 + 0.502511i \(0.832410\pi\)
\(20\) 0 0
\(21\) −0.0856110 0.0251377i −0.0186819 0.00548549i
\(22\) 0 0
\(23\) −4.35746 + 2.00313i −0.908593 + 0.417682i
\(24\) 0 0
\(25\) −0.959493 0.281733i −0.191899 0.0563465i
\(26\) 0 0
\(27\) −3.66051 2.35247i −0.704466 0.452733i
\(28\) 0 0
\(29\) −0.590543 + 0.379519i −0.109661 + 0.0704749i −0.594322 0.804227i \(-0.702579\pi\)
0.484661 + 0.874702i \(0.338943\pi\)
\(30\) 0 0
\(31\) −3.43965 3.96957i −0.617780 0.712956i 0.357504 0.933912i \(-0.383628\pi\)
−0.975284 + 0.220955i \(0.929082\pi\)
\(32\) 0 0
\(33\) −0.192658 + 0.421862i −0.0335374 + 0.0734367i
\(34\) 0 0
\(35\) −0.0441840 + 0.0129736i −0.00746845 + 0.00219294i
\(36\) 0 0
\(37\) 0.347733 + 2.41854i 0.0571670 + 0.397605i 0.998235 + 0.0593878i \(0.0189148\pi\)
−0.941068 + 0.338217i \(0.890176\pi\)
\(38\) 0 0
\(39\) −3.39091 7.42506i −0.542980 1.18896i
\(40\) 0 0
\(41\) −0.510902 + 3.55340i −0.0797895 + 0.554948i 0.910239 + 0.414083i \(0.135898\pi\)
−0.990029 + 0.140866i \(0.955011\pi\)
\(42\) 0 0
\(43\) −3.44042 + 3.97045i −0.524659 + 0.605488i −0.954791 0.297277i \(-0.903921\pi\)
0.430132 + 0.902766i \(0.358467\pi\)
\(44\) 0 0
\(45\) 0.754310 0.112446
\(46\) 0 0
\(47\) −0.0114334 −0.00166774 −0.000833869 1.00000i \(-0.500265\pi\)
−0.000833869 1.00000i \(0.500265\pi\)
\(48\) 0 0
\(49\) 4.58264 5.28864i 0.654662 0.755521i
\(50\) 0 0
\(51\) 0.195694 1.36108i 0.0274027 0.190590i
\(52\) 0 0
\(53\) 5.16162 + 11.3024i 0.709003 + 1.55250i 0.828702 + 0.559690i \(0.189080\pi\)
−0.119699 + 0.992810i \(0.538193\pi\)
\(54\) 0 0
\(55\) 0.0340635 + 0.236917i 0.00459312 + 0.0319459i
\(56\) 0 0
\(57\) 7.38483 2.16838i 0.978145 0.287209i
\(58\) 0 0
\(59\) −2.03273 + 4.45105i −0.264638 + 0.579477i −0.994573 0.104040i \(-0.966823\pi\)
0.729935 + 0.683517i \(0.239550\pi\)
\(60\) 0 0
\(61\) 3.47877 + 4.01472i 0.445411 + 0.514032i 0.933410 0.358813i \(-0.116818\pi\)
−0.487999 + 0.872844i \(0.662273\pi\)
\(62\) 0 0
\(63\) 0.0292213 0.0187794i 0.00368154 0.00236598i
\(64\) 0 0
\(65\) −3.54402 2.27760i −0.439582 0.282502i
\(66\) 0 0
\(67\) 2.04121 + 0.599352i 0.249373 + 0.0732225i 0.404030 0.914746i \(-0.367609\pi\)
−0.154657 + 0.987968i \(0.549427\pi\)
\(68\) 0 0
\(69\) 2.59574 8.92251i 0.312490 1.07414i
\(70\) 0 0
\(71\) 7.02708 + 2.06334i 0.833961 + 0.244873i 0.670717 0.741713i \(-0.265986\pi\)
0.163243 + 0.986586i \(0.447805\pi\)
\(72\) 0 0
\(73\) −0.786056 0.505167i −0.0920008 0.0591254i 0.493832 0.869558i \(-0.335596\pi\)
−0.585832 + 0.810432i \(0.699232\pi\)
\(74\) 0 0
\(75\) 1.63002 1.04755i 0.188218 0.120960i
\(76\) 0 0
\(77\) 0.00721790 + 0.00832991i 0.000822557 + 0.000949281i
\(78\) 0 0
\(79\) 4.12602 9.03472i 0.464213 1.01649i −0.522294 0.852766i \(-0.674924\pi\)
0.986507 0.163720i \(-0.0523492\pi\)
\(80\) 0 0
\(81\) 10.2608 3.01283i 1.14009 0.334759i
\(82\) 0 0
\(83\) 1.46896 + 10.2168i 0.161239 + 1.12144i 0.896303 + 0.443443i \(0.146243\pi\)
−0.735064 + 0.677998i \(0.762848\pi\)
\(84\) 0 0
\(85\) −0.294812 0.645548i −0.0319768 0.0700195i
\(86\) 0 0
\(87\) 0.193571 1.34631i 0.0207530 0.144340i
\(88\) 0 0
\(89\) 1.17192 1.35246i 0.124223 0.143361i −0.690231 0.723589i \(-0.742491\pi\)
0.814454 + 0.580228i \(0.197037\pi\)
\(90\) 0 0
\(91\) −0.193996 −0.0203363
\(92\) 0 0
\(93\) 10.1773 1.05533
\(94\) 0 0
\(95\) 2.60125 3.00201i 0.266883 0.307999i
\(96\) 0 0
\(97\) −0.0699118 + 0.486247i −0.00709846 + 0.0493709i −0.993063 0.117585i \(-0.962485\pi\)
0.985964 + 0.166956i \(0.0533938\pi\)
\(98\) 0 0
\(99\) −0.0750017 0.164231i −0.00753795 0.0165058i
\(100\) 0 0
\(101\) 1.45265 + 10.1034i 0.144544 + 1.00533i 0.924960 + 0.380065i \(0.124098\pi\)
−0.780416 + 0.625261i \(0.784993\pi\)
\(102\) 0 0
\(103\) 2.91739 0.856624i 0.287459 0.0844057i −0.134824 0.990870i \(-0.543047\pi\)
0.422283 + 0.906464i \(0.361229\pi\)
\(104\) 0 0
\(105\) 0.0370655 0.0811622i 0.00361722 0.00792062i
\(106\) 0 0
\(107\) 5.29220 + 6.10753i 0.511616 + 0.590437i 0.951512 0.307612i \(-0.0995299\pi\)
−0.439895 + 0.898049i \(0.644984\pi\)
\(108\) 0 0
\(109\) 7.93159 5.09733i 0.759709 0.488235i −0.102534 0.994729i \(-0.532695\pi\)
0.862243 + 0.506494i \(0.169059\pi\)
\(110\) 0 0
\(111\) −3.98280 2.55959i −0.378030 0.242945i
\(112\) 0 0
\(113\) 3.73369 + 1.09631i 0.351236 + 0.103132i 0.452591 0.891718i \(-0.350500\pi\)
−0.101355 + 0.994850i \(0.532318\pi\)
\(114\) 0 0
\(115\) −1.36261 4.59818i −0.127064 0.428783i
\(116\) 0 0
\(117\) 3.04902 + 0.895274i 0.281882 + 0.0827681i
\(118\) 0 0
\(119\) −0.0274924 0.0176683i −0.00252022 0.00161965i
\(120\) 0 0
\(121\) −9.20559 + 5.91608i −0.836872 + 0.537825i
\(122\) 0 0
\(123\) −4.55514 5.25691i −0.410723 0.474000i
\(124\) 0 0
\(125\) 0.415415 0.909632i 0.0371558 0.0813600i
\(126\) 0 0
\(127\) 9.59424 2.81712i 0.851351 0.249979i 0.173186 0.984889i \(-0.444594\pi\)
0.678165 + 0.734910i \(0.262776\pi\)
\(128\) 0 0
\(129\) −1.44870 10.0759i −0.127551 0.887134i
\(130\) 0 0
\(131\) −0.970457 2.12500i −0.0847892 0.185662i 0.862488 0.506077i \(-0.168905\pi\)
−0.947277 + 0.320415i \(0.896178\pi\)
\(132\) 0 0
\(133\) 0.0260320 0.181056i 0.00225726 0.0156996i
\(134\) 0 0
\(135\) 2.84947 3.28846i 0.245243 0.283026i
\(136\) 0 0
\(137\) −11.2818 −0.963869 −0.481934 0.876207i \(-0.660066\pi\)
−0.481934 + 0.876207i \(0.660066\pi\)
\(138\) 0 0
\(139\) −15.9060 −1.34913 −0.674566 0.738215i \(-0.735669\pi\)
−0.674566 + 0.738215i \(0.735669\pi\)
\(140\) 0 0
\(141\) 0.0145074 0.0167425i 0.00122175 0.00140997i
\(142\) 0 0
\(143\) −0.143502 + 0.998080i −0.0120003 + 0.0834637i
\(144\) 0 0
\(145\) −0.291613 0.638543i −0.0242171 0.0530281i
\(146\) 0 0
\(147\) 1.92966 + 13.4211i 0.159156 + 1.10695i
\(148\) 0 0
\(149\) 18.7291 5.49936i 1.53435 0.450525i 0.597969 0.801519i \(-0.295974\pi\)
0.936378 + 0.350994i \(0.114156\pi\)
\(150\) 0 0
\(151\) −1.09678 + 2.40160i −0.0892543 + 0.195440i −0.948995 0.315291i \(-0.897898\pi\)
0.859741 + 0.510731i \(0.170625\pi\)
\(152\) 0 0
\(153\) 0.350559 + 0.404567i 0.0283410 + 0.0327073i
\(154\) 0 0
\(155\) 4.41868 2.83971i 0.354917 0.228091i
\(156\) 0 0
\(157\) −16.1462 10.3765i −1.28860 0.828136i −0.296681 0.954977i \(-0.595880\pi\)
−0.991923 + 0.126841i \(0.959516\pi\)
\(158\) 0 0
\(159\) −23.0999 6.78275i −1.83194 0.537907i
\(160\) 0 0
\(161\) −0.167263 0.144206i −0.0131822 0.0113650i
\(162\) 0 0
\(163\) 16.3285 + 4.79449i 1.27895 + 0.375534i 0.849515 0.527564i \(-0.176895\pi\)
0.429435 + 0.903098i \(0.358713\pi\)
\(164\) 0 0
\(165\) −0.390150 0.250734i −0.0303731 0.0195196i
\(166\) 0 0
\(167\) −8.11436 + 5.21478i −0.627908 + 0.403532i −0.815534 0.578709i \(-0.803557\pi\)
0.187627 + 0.982240i \(0.439921\pi\)
\(168\) 0 0
\(169\) −3.10899 3.58796i −0.239153 0.275997i
\(170\) 0 0
\(171\) −1.24470 + 2.72552i −0.0951848 + 0.208426i
\(172\) 0 0
\(173\) 20.9509 6.15175i 1.59287 0.467709i 0.639320 0.768941i \(-0.279216\pi\)
0.953551 + 0.301232i \(0.0973979\pi\)
\(174\) 0 0
\(175\) −0.00655350 0.0455806i −0.000495398 0.00344557i
\(176\) 0 0
\(177\) −3.93862 8.62437i −0.296045 0.648247i
\(178\) 0 0
\(179\) −0.746126 + 5.18942i −0.0557681 + 0.387876i 0.942752 + 0.333494i \(0.108228\pi\)
−0.998520 + 0.0543813i \(0.982681\pi\)
\(180\) 0 0
\(181\) −17.0099 + 19.6305i −1.26434 + 1.45912i −0.434943 + 0.900458i \(0.643231\pi\)
−0.829394 + 0.558664i \(0.811314\pi\)
\(182\) 0 0
\(183\) −10.2930 −0.760880
\(184\) 0 0
\(185\) −2.44341 −0.179643
\(186\) 0 0
\(187\) −0.111237 + 0.128375i −0.00813449 + 0.00938770i
\(188\) 0 0
\(189\) 0.0285160 0.198333i 0.00207423 0.0144266i
\(190\) 0 0
\(191\) 6.58771 + 14.4251i 0.476670 + 1.04376i 0.983366 + 0.181637i \(0.0581396\pi\)
−0.506695 + 0.862125i \(0.669133\pi\)
\(192\) 0 0
\(193\) −1.77680 12.3579i −0.127897 0.889544i −0.948213 0.317634i \(-0.897112\pi\)
0.820316 0.571910i \(-0.193797\pi\)
\(194\) 0 0
\(195\) 7.83206 2.29970i 0.560866 0.164685i
\(196\) 0 0
\(197\) −1.08988 + 2.38652i −0.0776511 + 0.170032i −0.944476 0.328581i \(-0.893430\pi\)
0.866825 + 0.498613i \(0.166157\pi\)
\(198\) 0 0
\(199\) 6.22737 + 7.18676i 0.441446 + 0.509456i 0.932250 0.361814i \(-0.117842\pi\)
−0.490804 + 0.871270i \(0.663297\pi\)
\(200\) 0 0
\(201\) −3.46766 + 2.22853i −0.244590 + 0.157188i
\(202\) 0 0
\(203\) −0.0271941 0.0174766i −0.00190865 0.00122662i
\(204\) 0 0
\(205\) −3.44453 1.01140i −0.240576 0.0706395i
\(206\) 0 0
\(207\) 1.96337 + 3.03838i 0.136464 + 0.211182i
\(208\) 0 0
\(209\) −0.912252 0.267861i −0.0631018 0.0185284i
\(210\) 0 0
\(211\) −11.1386 7.15834i −0.766812 0.492800i 0.0978210 0.995204i \(-0.468813\pi\)
−0.864633 + 0.502404i \(0.832449\pi\)
\(212\) 0 0
\(213\) −11.9378 + 7.67197i −0.817966 + 0.525675i
\(214\) 0 0
\(215\) −3.44042 3.97045i −0.234635 0.270783i
\(216\) 0 0
\(217\) 0.100478 0.220016i 0.00682089 0.0149357i
\(218\) 0 0
\(219\) 1.73713 0.510068i 0.117385 0.0344672i
\(220\) 0 0
\(221\) −0.425483 2.95930i −0.0286211 0.199064i
\(222\) 0 0
\(223\) −4.35198 9.52951i −0.291430 0.638143i 0.706120 0.708092i \(-0.250444\pi\)
−0.997551 + 0.0699485i \(0.977717\pi\)
\(224\) 0 0
\(225\) −0.107349 + 0.746632i −0.00715663 + 0.0497755i
\(226\) 0 0
\(227\) −10.5348 + 12.1578i −0.699221 + 0.806944i −0.988647 0.150257i \(-0.951990\pi\)
0.289426 + 0.957200i \(0.406535\pi\)
\(228\) 0 0
\(229\) 4.12377 0.272507 0.136253 0.990674i \(-0.456494\pi\)
0.136253 + 0.990674i \(0.456494\pi\)
\(230\) 0 0
\(231\) −0.0213564 −0.00140515
\(232\) 0 0
\(233\) 1.52329 1.75796i 0.0997937 0.115168i −0.703656 0.710541i \(-0.748450\pi\)
0.803449 + 0.595373i \(0.202996\pi\)
\(234\) 0 0
\(235\) 0.00162715 0.0113171i 0.000106143 0.000738244i
\(236\) 0 0
\(237\) 7.99459 + 17.5057i 0.519304 + 1.13712i
\(238\) 0 0
\(239\) 1.94337 + 13.5164i 0.125706 + 0.874304i 0.950910 + 0.309468i \(0.100151\pi\)
−0.825204 + 0.564835i \(0.808940\pi\)
\(240\) 0 0
\(241\) −1.53832 + 0.451692i −0.0990921 + 0.0290961i −0.330903 0.943665i \(-0.607353\pi\)
0.231811 + 0.972761i \(0.425535\pi\)
\(242\) 0 0
\(243\) −3.18493 + 6.97402i −0.204313 + 0.447383i
\(244\) 0 0
\(245\) 4.58264 + 5.28864i 0.292774 + 0.337879i
\(246\) 0 0
\(247\) 14.0776 9.04715i 0.895739 0.575656i
\(248\) 0 0
\(249\) −16.8248 10.8127i −1.06623 0.685224i
\(250\) 0 0
\(251\) −1.29461 0.380132i −0.0817152 0.0239937i 0.240619 0.970620i \(-0.422649\pi\)
−0.322335 + 0.946626i \(0.604468\pi\)
\(252\) 0 0
\(253\) −0.865646 + 0.753874i −0.0544227 + 0.0473957i
\(254\) 0 0
\(255\) 1.31938 + 0.387405i 0.0826228 + 0.0242602i
\(256\) 0 0
\(257\) −5.22941 3.36074i −0.326202 0.209637i 0.367282 0.930110i \(-0.380289\pi\)
−0.693483 + 0.720473i \(0.743925\pi\)
\(258\) 0 0
\(259\) −0.0946555 + 0.0608314i −0.00588161 + 0.00377988i
\(260\) 0 0
\(261\) 0.346755 + 0.400177i 0.0214636 + 0.0247703i
\(262\) 0 0
\(263\) −2.76648 + 6.05774i −0.170588 + 0.373536i −0.975546 0.219796i \(-0.929461\pi\)
0.804958 + 0.593332i \(0.202188\pi\)
\(264\) 0 0
\(265\) −11.9219 + 3.50059i −0.732357 + 0.215039i
\(266\) 0 0
\(267\) 0.493473 + 3.43218i 0.0302000 + 0.210046i
\(268\) 0 0
\(269\) 5.50695 + 12.0585i 0.335765 + 0.735222i 0.999923 0.0123695i \(-0.00393745\pi\)
−0.664159 + 0.747591i \(0.731210\pi\)
\(270\) 0 0
\(271\) 3.47947 24.2003i 0.211363 1.47006i −0.557249 0.830345i \(-0.688143\pi\)
0.768612 0.639715i \(-0.220948\pi\)
\(272\) 0 0
\(273\) 0.246154 0.284076i 0.0148979 0.0171931i
\(274\) 0 0
\(275\) −0.239353 −0.0144335
\(276\) 0 0
\(277\) 8.82711 0.530370 0.265185 0.964198i \(-0.414567\pi\)
0.265185 + 0.964198i \(0.414567\pi\)
\(278\) 0 0
\(279\) −2.59456 + 2.99429i −0.155333 + 0.179263i
\(280\) 0 0
\(281\) −1.22925 + 8.54963i −0.0733309 + 0.510028i 0.919742 + 0.392525i \(0.128398\pi\)
−0.993072 + 0.117503i \(0.962511\pi\)
\(282\) 0 0
\(283\) 8.43440 + 18.4688i 0.501373 + 1.09785i 0.976021 + 0.217678i \(0.0698483\pi\)
−0.474647 + 0.880176i \(0.657424\pi\)
\(284\) 0 0
\(285\) 1.09534 + 7.61826i 0.0648823 + 0.451267i
\(286\) 0 0
\(287\) −0.158618 + 0.0465744i −0.00936292 + 0.00274920i
\(288\) 0 0
\(289\) −6.85283 + 15.0056i −0.403108 + 0.882683i
\(290\) 0 0
\(291\) −0.623324 0.719355i −0.0365399 0.0421693i
\(292\) 0 0
\(293\) −24.0325 + 15.4448i −1.40400 + 0.902294i −0.999923 0.0124328i \(-0.996042\pi\)
−0.404074 + 0.914726i \(0.632406\pi\)
\(294\) 0 0
\(295\) −4.11646 2.64549i −0.239669 0.154026i
\(296\) 0 0
\(297\) −0.999300 0.293421i −0.0579853 0.0170260i
\(298\) 0 0
\(299\) −0.0503797 20.2037i −0.00291353 1.16841i
\(300\) 0 0
\(301\) −0.232128 0.0681588i −0.0133796 0.00392861i
\(302\) 0 0
\(303\) −16.6381 10.6926i −0.955832 0.614276i
\(304\) 0 0
\(305\) −4.46893 + 2.87201i −0.255890 + 0.164451i
\(306\) 0 0
\(307\) −20.0401 23.1275i −1.14375 1.31996i −0.940094 0.340915i \(-0.889263\pi\)
−0.203656 0.979043i \(-0.565282\pi\)
\(308\) 0 0
\(309\) −2.44738 + 5.35900i −0.139226 + 0.304863i
\(310\) 0 0
\(311\) 26.7357 7.85031i 1.51604 0.445150i 0.585297 0.810819i \(-0.300978\pi\)
0.930745 + 0.365668i \(0.119160\pi\)
\(312\) 0 0
\(313\) −2.90518 20.2060i −0.164211 1.14211i −0.890587 0.454813i \(-0.849706\pi\)
0.726376 0.687297i \(-0.241203\pi\)
\(314\) 0 0
\(315\) 0.0144296 + 0.0315964i 0.000813017 + 0.00178026i
\(316\) 0 0
\(317\) 3.21783 22.3805i 0.180731 1.25701i −0.674308 0.738451i \(-0.735558\pi\)
0.855039 0.518564i \(-0.173533\pi\)
\(318\) 0 0
\(319\) −0.110030 + 0.126982i −0.00616052 + 0.00710962i
\(320\) 0 0
\(321\) −15.6586 −0.873977
\(322\) 0 0
\(323\) 2.81901 0.156854
\(324\) 0 0
\(325\) 2.75879 3.18381i 0.153030 0.176606i
\(326\) 0 0
\(327\) −2.59985 + 18.0824i −0.143772 + 0.999958i
\(328\) 0 0
\(329\) −0.000218717 0 0.000478923i −1.20582e−5 0 2.64039e-5i
\(330\) 0 0
\(331\) −2.81411 19.5725i −0.154677 1.07580i −0.908247 0.418435i \(-0.862579\pi\)
0.753569 0.657368i \(-0.228330\pi\)
\(332\) 0 0
\(333\) 1.76843 0.519257i 0.0969093 0.0284551i
\(334\) 0 0
\(335\) −0.883745 + 1.93513i −0.0482842 + 0.105728i
\(336\) 0 0
\(337\) −4.78872 5.52647i −0.260858 0.301046i 0.610179 0.792264i \(-0.291098\pi\)
−0.871037 + 0.491217i \(0.836552\pi\)
\(338\) 0 0
\(339\) −6.34291 + 4.07634i −0.344500 + 0.221396i
\(340\) 0 0
\(341\) −1.05763 0.679695i −0.0572736 0.0368075i
\(342\) 0 0
\(343\) 0.618482 + 0.181603i 0.0333949 + 0.00980562i
\(344\) 0 0
\(345\) 8.46228 + 3.83912i 0.455594 + 0.206691i
\(346\) 0 0
\(347\) −1.22212 0.358846i −0.0656067 0.0192639i 0.248764 0.968564i \(-0.419975\pi\)
−0.314371 + 0.949300i \(0.601794\pi\)
\(348\) 0 0
\(349\) 18.2910 + 11.7549i 0.979095 + 0.629226i 0.929219 0.369529i \(-0.120481\pi\)
0.0498757 + 0.998755i \(0.484117\pi\)
\(350\) 0 0
\(351\) 15.4209 9.91044i 0.823109 0.528980i
\(352\) 0 0
\(353\) −8.72769 10.0723i −0.464528 0.536094i 0.474353 0.880335i \(-0.342682\pi\)
−0.938882 + 0.344240i \(0.888136\pi\)
\(354\) 0 0
\(355\) −3.04239 + 6.66191i −0.161473 + 0.353577i
\(356\) 0 0
\(357\) 0.0607565 0.0178397i 0.00321557 0.000944178i
\(358\) 0 0
\(359\) 2.88625 + 20.0743i 0.152331 + 1.05948i 0.912300 + 0.409523i \(0.134305\pi\)
−0.759969 + 0.649959i \(0.774786\pi\)
\(360\) 0 0
\(361\) −1.33823 2.93032i −0.0704334 0.154228i
\(362\) 0 0
\(363\) 3.01745 20.9868i 0.158375 1.10152i
\(364\) 0 0
\(365\) 0.611893 0.706162i 0.0320279 0.0369622i
\(366\) 0 0
\(367\) 7.79349 0.406817 0.203409 0.979094i \(-0.434798\pi\)
0.203409 + 0.979094i \(0.434798\pi\)
\(368\) 0 0
\(369\) 2.70793 0.140969
\(370\) 0 0
\(371\) −0.374693 + 0.432419i −0.0194531 + 0.0224501i
\(372\) 0 0
\(373\) −0.670096 + 4.66062i −0.0346963 + 0.241318i −0.999788 0.0205946i \(-0.993444\pi\)
0.965092 + 0.261912i \(0.0843532\pi\)
\(374\) 0 0
\(375\) 0.804910 + 1.76251i 0.0415654 + 0.0910155i
\(376\) 0 0
\(377\) −0.420866 2.92719i −0.0216757 0.150758i
\(378\) 0 0
\(379\) 30.4775 8.94900i 1.56552 0.459679i 0.619830 0.784736i \(-0.287202\pi\)
0.945694 + 0.325057i \(0.105384\pi\)
\(380\) 0 0
\(381\) −8.04852 + 17.6238i −0.412338 + 0.902895i
\(382\) 0 0
\(383\) −1.54744 1.78584i −0.0790705 0.0912522i 0.714836 0.699292i \(-0.246501\pi\)
−0.793906 + 0.608040i \(0.791956\pi\)
\(384\) 0 0
\(385\) −0.00927233 + 0.00595897i −0.000472562 + 0.000303697i
\(386\) 0 0
\(387\) 3.33379 + 2.14250i 0.169466 + 0.108909i
\(388\) 0 0
\(389\) −26.1000 7.66365i −1.32332 0.388563i −0.457632 0.889142i \(-0.651302\pi\)
−0.865691 + 0.500579i \(0.833120\pi\)
\(390\) 0 0
\(391\) 1.83293 2.86779i 0.0926953 0.145031i
\(392\) 0 0
\(393\) 4.34311 + 1.27525i 0.219081 + 0.0643280i
\(394\) 0 0
\(395\) 8.35556 + 5.36980i 0.420414 + 0.270184i
\(396\) 0 0
\(397\) 8.09079 5.19963i 0.406065 0.260962i −0.321627 0.946867i \(-0.604230\pi\)
0.727692 + 0.685904i \(0.240593\pi\)
\(398\) 0 0
\(399\) 0.232098 + 0.267855i 0.0116194 + 0.0134095i
\(400\) 0 0
\(401\) 9.29488 20.3529i 0.464164 1.01638i −0.522355 0.852728i \(-0.674946\pi\)
0.986519 0.163649i \(-0.0523265\pi\)
\(402\) 0 0
\(403\) 21.2313 6.23408i 1.05761 0.310541i
\(404\) 0 0
\(405\) 1.52191 + 10.5851i 0.0756242 + 0.525978i
\(406\) 0 0
\(407\) 0.242950 + 0.531987i 0.0120426 + 0.0263696i
\(408\) 0 0
\(409\) −1.58012 + 10.9900i −0.0781318 + 0.543419i 0.912733 + 0.408557i \(0.133968\pi\)
−0.990864 + 0.134861i \(0.956941\pi\)
\(410\) 0 0
\(411\) 14.3150 16.5204i 0.706108 0.814892i
\(412\) 0 0
\(413\) −0.225330 −0.0110878
\(414\) 0 0
\(415\) −10.3219 −0.506681
\(416\) 0 0
\(417\) 20.1825 23.2919i 0.988343 1.14061i
\(418\) 0 0
\(419\) −3.49551 + 24.3118i −0.170767 + 1.18771i 0.706503 + 0.707710i \(0.250272\pi\)
−0.877270 + 0.479998i \(0.840637\pi\)
\(420\) 0 0
\(421\) 6.36290 + 13.9328i 0.310109 + 0.679043i 0.998947 0.0458714i \(-0.0146064\pi\)
−0.688839 + 0.724915i \(0.741879\pi\)
\(422\) 0 0
\(423\) 0.00122737 + 0.00853657i 5.96770e−5 + 0.000415062i
\(424\) 0 0
\(425\) 0.680934 0.199940i 0.0330301 0.00969852i
\(426\) 0 0
\(427\) −0.101621 + 0.222518i −0.00491777 + 0.0107684i
\(428\) 0 0
\(429\) −1.27945 1.47656i −0.0617723 0.0712891i
\(430\) 0 0
\(431\) 8.07327 5.18837i 0.388876 0.249915i −0.331564 0.943433i \(-0.607576\pi\)
0.720440 + 0.693517i \(0.243940\pi\)
\(432\) 0 0
\(433\) −12.2942 7.90103i −0.590824 0.379699i 0.210799 0.977529i \(-0.432393\pi\)
−0.801623 + 0.597830i \(0.796030\pi\)
\(434\) 0 0
\(435\) 1.30506 + 0.383201i 0.0625730 + 0.0183731i
\(436\) 0 0
\(437\) 18.8629 + 2.66409i 0.902336 + 0.127441i
\(438\) 0 0
\(439\) 34.7250 + 10.1962i 1.65733 + 0.486637i 0.970685 0.240355i \(-0.0772637\pi\)
0.686647 + 0.726991i \(0.259082\pi\)
\(440\) 0 0
\(441\) −4.44061 2.85381i −0.211458 0.135896i
\(442\) 0 0
\(443\) 29.9543 19.2505i 1.42317 0.914617i 0.423209 0.906032i \(-0.360904\pi\)
0.999963 0.00858525i \(-0.00273280\pi\)
\(444\) 0 0
\(445\) 1.17192 + 1.35246i 0.0555542 + 0.0641130i
\(446\) 0 0
\(447\) −15.7117 + 34.4037i −0.743136 + 1.62724i
\(448\) 0 0
\(449\) 1.05131 0.308693i 0.0496144 0.0145681i −0.256831 0.966456i \(-0.582678\pi\)
0.306446 + 0.951888i \(0.400860\pi\)
\(450\) 0 0
\(451\) 0.122286 + 0.850518i 0.00575823 + 0.0400494i
\(452\) 0 0
\(453\) −2.12512 4.65336i −0.0998467 0.218634i
\(454\) 0 0
\(455\) 0.0276085 0.192021i 0.00129431 0.00900209i
\(456\) 0 0
\(457\) 12.4649 14.3852i 0.583083 0.672913i −0.385182 0.922841i \(-0.625861\pi\)
0.968265 + 0.249927i \(0.0804068\pi\)
\(458\) 0 0
\(459\) 3.08800 0.144136
\(460\) 0 0
\(461\) 32.9352 1.53395 0.766973 0.641679i \(-0.221762\pi\)
0.766973 + 0.641679i \(0.221762\pi\)
\(462\) 0 0
\(463\) −22.0429 + 25.4389i −1.02442 + 1.18225i −0.0413269 + 0.999146i \(0.513158\pi\)
−0.983094 + 0.183099i \(0.941387\pi\)
\(464\) 0 0
\(465\) −1.44838 + 10.0737i −0.0671668 + 0.467155i
\(466\) 0 0
\(467\) 4.89251 + 10.7131i 0.226398 + 0.495743i 0.988408 0.151823i \(-0.0485142\pi\)
−0.762009 + 0.647566i \(0.775787\pi\)
\(468\) 0 0
\(469\) 0.0139418 + 0.0969671i 0.000643771 + 0.00447753i
\(470\) 0 0
\(471\) 35.6820 10.4772i 1.64414 0.482763i
\(472\) 0 0
\(473\) −0.522377 + 1.14385i −0.0240189 + 0.0525941i
\(474\) 0 0
\(475\) 2.60125 + 3.00201i 0.119354 + 0.137741i
\(476\) 0 0
\(477\) 7.88461 5.06713i 0.361012 0.232008i
\(478\) 0 0
\(479\) 27.9522 + 17.9638i 1.27717 + 0.820786i 0.990536 0.137254i \(-0.0438277\pi\)
0.286633 + 0.958041i \(0.407464\pi\)
\(480\) 0 0
\(481\) −9.87659 2.90003i −0.450334 0.132230i
\(482\) 0 0
\(483\) 0.423401 0.0619538i 0.0192654 0.00281900i
\(484\) 0 0
\(485\) −0.471348 0.138400i −0.0214028 0.00628443i
\(486\) 0 0
\(487\) −1.66502 1.07004i −0.0754492 0.0484883i 0.502372 0.864651i \(-0.332461\pi\)
−0.577822 + 0.816163i \(0.696097\pi\)
\(488\) 0 0
\(489\) −27.7394 + 17.8271i −1.25442 + 0.806167i
\(490\) 0 0
\(491\) −17.3781 20.0554i −0.784263 0.905088i 0.213146 0.977020i \(-0.431629\pi\)
−0.997410 + 0.0719324i \(0.977083\pi\)
\(492\) 0 0
\(493\) 0.206952 0.453162i 0.00932065 0.0204094i
\(494\) 0 0
\(495\) 0.173233 0.0508658i 0.00778625 0.00228625i
\(496\) 0 0
\(497\) 0.0479961 + 0.333820i 0.00215292 + 0.0149739i
\(498\) 0 0
\(499\) 13.2525 + 29.0188i 0.593261 + 1.29906i 0.933451 + 0.358704i \(0.116781\pi\)
−0.340190 + 0.940357i \(0.610491\pi\)
\(500\) 0 0
\(501\) 2.65976 18.4990i 0.118829 0.826476i
\(502\) 0 0
\(503\) −11.6418 + 13.4354i −0.519083 + 0.599054i −0.953401 0.301706i \(-0.902444\pi\)
0.434318 + 0.900760i \(0.356989\pi\)
\(504\) 0 0
\(505\) −10.2073 −0.454219
\(506\) 0 0
\(507\) 9.19888 0.408537
\(508\) 0 0
\(509\) 22.9708 26.5097i 1.01816 1.17502i 0.0336968 0.999432i \(-0.489272\pi\)
0.984464 0.175588i \(-0.0561826\pi\)
\(510\) 0 0
\(511\) 0.00612350 0.0425898i 0.000270888 0.00188406i
\(512\) 0 0
\(513\) 7.18011 + 15.7222i 0.317009 + 0.694154i
\(514\) 0 0
\(515\) 0.432717 + 3.00961i 0.0190678 + 0.132619i
\(516\) 0 0
\(517\) −0.00262578 0.000770998i −0.000115482 3.39085e-5i
\(518\) 0 0
\(519\) −17.5756 + 38.4851i −0.771481 + 1.68931i
\(520\) 0 0
\(521\) −12.9674 14.9652i −0.568113 0.655638i 0.396893 0.917865i \(-0.370089\pi\)
−0.965006 + 0.262227i \(0.915543\pi\)
\(522\) 0 0
\(523\) 17.1146 10.9989i 0.748370 0.480948i −0.110030 0.993928i \(-0.535095\pi\)
0.858401 + 0.512980i \(0.171458\pi\)
\(524\) 0 0
\(525\) 0.0750611 + 0.0482388i 0.00327593 + 0.00210532i
\(526\) 0 0
\(527\) 3.57660 + 1.05019i 0.155799 + 0.0457468i
\(528\) 0 0
\(529\) 14.9749 17.4571i 0.651084 0.759006i
\(530\) 0 0
\(531\) 3.54151 + 1.03988i 0.153688 + 0.0451270i
\(532\) 0 0
\(533\) −12.7228 8.17647i −0.551087 0.354162i
\(534\) 0 0
\(535\) −6.79852 + 4.36914i −0.293926 + 0.188895i
\(536\) 0 0
\(537\) −6.65236 7.67724i −0.287071 0.331297i
\(538\) 0 0
\(539\) 0.695806 1.52360i 0.0299705 0.0656262i
\(540\) 0 0
\(541\) −30.4712 + 8.94715i −1.31006 + 0.384668i −0.860895 0.508782i \(-0.830096\pi\)
−0.449163 + 0.893450i \(0.648278\pi\)
\(542\) 0 0
\(543\) −7.16256 49.8167i −0.307375 2.13784i
\(544\) 0 0
\(545\) 3.91666 + 8.57629i 0.167771 + 0.367368i
\(546\) 0 0
\(547\) 5.60991 39.0178i 0.239863 1.66828i −0.412944 0.910757i \(-0.635499\pi\)
0.652806 0.757525i \(-0.273592\pi\)
\(548\) 0 0
\(549\) 2.62407 3.02834i 0.111993 0.129246i
\(550\) 0 0
\(551\) 2.78842 0.118791
\(552\) 0 0
\(553\) 0.457374 0.0194495
\(554\) 0 0
\(555\) 3.10035 3.57799i 0.131602 0.151877i
\(556\) 0 0
\(557\) 2.70975 18.8467i 0.114816 0.798562i −0.848308 0.529503i \(-0.822378\pi\)
0.963124 0.269059i \(-0.0867126\pi\)
\(558\) 0 0
\(559\) −9.19419 20.1325i −0.388873 0.851513i
\(560\) 0 0
\(561\) −0.0468401 0.325780i −0.00197759 0.0137544i
\(562\) 0 0
\(563\) −13.5459 + 3.97742i −0.570890 + 0.167628i −0.554421 0.832236i \(-0.687060\pi\)
−0.0164681 + 0.999864i \(0.505242\pi\)
\(564\) 0 0
\(565\) −1.61651 + 3.53967i −0.0680071 + 0.148915i
\(566\) 0 0
\(567\) 0.322485 + 0.372168i 0.0135431 + 0.0156296i
\(568\) 0 0
\(569\) −38.3375 + 24.6380i −1.60719 + 1.03288i −0.643647 + 0.765322i \(0.722580\pi\)
−0.963542 + 0.267556i \(0.913784\pi\)
\(570\) 0 0
\(571\) −2.38979 1.53583i −0.100010 0.0642724i 0.489680 0.871902i \(-0.337114\pi\)
−0.589690 + 0.807630i \(0.700750\pi\)
\(572\) 0 0
\(573\) −29.4822 8.65674i −1.23164 0.361641i
\(574\) 0 0
\(575\) 4.74530 0.694353i 0.197893 0.0289565i
\(576\) 0 0
\(577\) 11.4077 + 3.34962i 0.474911 + 0.139446i 0.510424 0.859923i \(-0.329488\pi\)
−0.0355134 + 0.999369i \(0.511307\pi\)
\(578\) 0 0
\(579\) 20.3508 + 13.0787i 0.845750 + 0.543531i
\(580\) 0 0
\(581\) −0.399860 + 0.256974i −0.0165890 + 0.0106611i
\(582\) 0 0
\(583\) 1.94757 + 2.24761i 0.0806599 + 0.0930865i
\(584\) 0 0
\(585\) −1.32008 + 2.89058i −0.0545787 + 0.119511i
\(586\) 0 0
\(587\) −44.8430 + 13.1671i −1.85087 + 0.543464i −0.851038 + 0.525103i \(0.824027\pi\)
−0.999831 + 0.0183611i \(0.994155\pi\)
\(588\) 0 0
\(589\) 2.96927 + 20.6517i 0.122347 + 0.850940i
\(590\) 0 0
\(591\) −2.11177 4.62412i −0.0868664 0.190211i
\(592\) 0 0
\(593\) 4.84662 33.7090i 0.199027 1.38426i −0.608089 0.793869i \(-0.708064\pi\)
0.807116 0.590393i \(-0.201027\pi\)
\(594\) 0 0
\(595\) 0.0214010 0.0246981i 0.000877357 0.00101252i
\(596\) 0 0
\(597\) −18.4256 −0.754108
\(598\) 0 0
\(599\) −15.3446 −0.626963 −0.313481 0.949594i \(-0.601495\pi\)
−0.313481 + 0.949594i \(0.601495\pi\)
\(600\) 0 0
\(601\) −16.8981 + 19.5015i −0.689290 + 0.795483i −0.987264 0.159091i \(-0.949144\pi\)
0.297974 + 0.954574i \(0.403689\pi\)
\(602\) 0 0
\(603\) 0.228373 1.58837i 0.00930007 0.0646834i
\(604\) 0 0
\(605\) −4.54577 9.95384i −0.184812 0.404681i
\(606\) 0 0
\(607\) 4.45913 + 31.0140i 0.180991 + 1.25882i 0.854427 + 0.519572i \(0.173909\pi\)
−0.673436 + 0.739246i \(0.735182\pi\)
\(608\) 0 0
\(609\) 0.0600972 0.0176461i 0.00243526 0.000715057i
\(610\) 0 0
\(611\) 0.0200091 0.0438139i 0.000809483 0.00177252i
\(612\) 0 0
\(613\) −9.24200 10.6658i −0.373281 0.430789i 0.537765 0.843095i \(-0.319269\pi\)
−0.911045 + 0.412306i \(0.864723\pi\)
\(614\) 0 0
\(615\) 5.85167 3.76064i 0.235962 0.151644i
\(616\) 0 0
\(617\) −35.2587 22.6594i −1.41946 0.912232i −0.999990 0.00446382i \(-0.998579\pi\)
−0.419471 0.907769i \(-0.637785\pi\)
\(618\) 0 0
\(619\) −42.1529 12.3772i −1.69427 0.497482i −0.714841 0.699287i \(-0.753501\pi\)
−0.979426 + 0.201805i \(0.935319\pi\)
\(620\) 0 0
\(621\) 20.6628 + 2.91830i 0.829171 + 0.117107i
\(622\) 0 0
\(623\) 0.0790702 + 0.0232171i 0.00316788 + 0.000930173i
\(624\) 0 0
\(625\) 0.841254 + 0.540641i 0.0336501 + 0.0216256i
\(626\) 0 0
\(627\) 1.54976 0.995971i 0.0618915 0.0397753i
\(628\) 0 0
\(629\) −1.13555 1.31050i −0.0452775 0.0522530i
\(630\) 0 0
\(631\) −17.1909 + 37.6429i −0.684361 + 1.49854i 0.173595 + 0.984817i \(0.444462\pi\)
−0.857956 + 0.513724i \(0.828266\pi\)
\(632\) 0 0
\(633\) 24.6156 7.22779i 0.978382 0.287279i
\(634\) 0 0
\(635\) 1.42305 + 9.89751i 0.0564719 + 0.392771i
\(636\) 0 0
\(637\) 12.2467 + 26.8165i 0.485231 + 1.06251i
\(638\) 0 0
\(639\) 0.786199 5.46814i 0.0311016 0.216316i
\(640\) 0 0
\(641\) −5.16211 + 5.95739i −0.203891 + 0.235303i −0.848481 0.529225i \(-0.822483\pi\)
0.644590 + 0.764528i \(0.277028\pi\)
\(642\) 0 0
\(643\) 0.901584 0.0355550 0.0177775 0.999842i \(-0.494341\pi\)
0.0177775 + 0.999842i \(0.494341\pi\)
\(644\) 0 0
\(645\) 10.1795 0.400818
\(646\) 0 0
\(647\) −15.6444 + 18.0546i −0.615043 + 0.709798i −0.974758 0.223265i \(-0.928329\pi\)
0.359715 + 0.933062i \(0.382874\pi\)
\(648\) 0 0
\(649\) −0.166681 + 1.15929i −0.00654280 + 0.0455062i
\(650\) 0 0
\(651\) 0.194687 + 0.426304i 0.00763037 + 0.0167082i
\(652\) 0 0
\(653\) −3.70623 25.7774i −0.145036 1.00875i −0.924195 0.381921i \(-0.875263\pi\)
0.779159 0.626826i \(-0.215646\pi\)
\(654\) 0 0
\(655\) 2.24149 0.658159i 0.0875821 0.0257164i
\(656\) 0 0
\(657\) −0.292791 + 0.641124i −0.0114229 + 0.0250126i
\(658\) 0 0
\(659\) 4.71790 + 5.44475i 0.183783 + 0.212097i 0.840164 0.542333i \(-0.182459\pi\)
−0.656380 + 0.754430i \(0.727913\pi\)
\(660\) 0 0
\(661\) −29.2606 + 18.8047i −1.13811 + 0.731417i −0.967237 0.253877i \(-0.918294\pi\)
−0.170870 + 0.985294i \(0.554658\pi\)
\(662\) 0 0
\(663\) 4.87331 + 3.13189i 0.189264 + 0.121632i
\(664\) 0 0
\(665\) 0.175509 + 0.0515340i 0.00680593 + 0.00199840i
\(666\) 0 0
\(667\) 1.81304 2.83667i 0.0702012 0.109836i
\(668\) 0 0
\(669\) 19.4765 + 5.71883i 0.753007 + 0.221103i
\(670\) 0 0
\(671\) 1.06965 + 0.687424i 0.0412935 + 0.0265377i
\(672\) 0 0
\(673\) 35.5143 22.8237i 1.36898 0.879787i 0.370186 0.928958i \(-0.379294\pi\)
0.998790 + 0.0491703i \(0.0156577\pi\)
\(674\) 0 0
\(675\) 2.84947 + 3.28846i 0.109676 + 0.126573i
\(676\) 0 0
\(677\) −6.87037 + 15.0440i −0.264050 + 0.578189i −0.994495 0.104783i \(-0.966585\pi\)
0.730445 + 0.682971i \(0.239313\pi\)
\(678\) 0 0
\(679\) −0.0217052 + 0.00637324i −0.000832971 + 0.000244582i
\(680\) 0 0
\(681\) −4.43602 30.8532i −0.169989 1.18230i
\(682\) 0 0
\(683\) 2.32613 + 5.09352i 0.0890070 + 0.194898i 0.948901 0.315575i \(-0.102197\pi\)
−0.859894 + 0.510473i \(0.829470\pi\)
\(684\) 0 0
\(685\) 1.60557 11.1670i 0.0613456 0.426668i
\(686\) 0 0
\(687\) −5.23249 + 6.03862i −0.199632 + 0.230388i
\(688\) 0 0
\(689\) −52.3447 −1.99418
\(690\) 0 0
\(691\) −43.5246 −1.65575 −0.827876 0.560911i \(-0.810451\pi\)
−0.827876 + 0.560911i \(0.810451\pi\)
\(692\) 0 0
\(693\) 0.00544453 0.00628333i 0.000206821 0.000238684i
\(694\) 0 0
\(695\) 2.26366 15.7441i 0.0858656 0.597209i
\(696\) 0 0
\(697\) −1.05836 2.31748i −0.0400882 0.0877809i
\(698\) 0 0
\(699\) 0.641427 + 4.46123i 0.0242610 + 0.168739i
\(700\) 0 0
\(701\) −26.6193 + 7.81613i −1.00540 + 0.295211i −0.742669 0.669659i \(-0.766440\pi\)
−0.262728 + 0.964870i \(0.584622\pi\)
\(702\) 0 0
\(703\) 4.03192 8.82867i 0.152067 0.332980i
\(704\) 0 0
\(705\) 0.0145074 + 0.0167425i 0.000546382 + 0.000630559i
\(706\) 0 0
\(707\) −0.395422 + 0.254122i −0.0148714 + 0.00955725i
\(708\) 0 0
\(709\) 30.9854 + 19.9131i 1.16368 + 0.747853i 0.972317 0.233666i \(-0.0750723\pi\)
0.191365 + 0.981519i \(0.438709\pi\)
\(710\) 0 0
\(711\) −7.18853 2.11074i −0.269591 0.0791591i
\(712\) 0 0
\(713\) 22.9397 + 10.4072i 0.859100 + 0.389752i
\(714\) 0 0
\(715\) −0.967499 0.284083i −0.0361824 0.0106241i
\(716\) 0 0
\(717\) −22.2585 14.3047i −0.831260 0.534218i
\(718\) 0 0
\(719\) −3.43230 + 2.20580i −0.128003 + 0.0822626i −0.603075 0.797684i \(-0.706058\pi\)
0.475072 + 0.879947i \(0.342422\pi\)
\(720\) 0 0
\(721\) 0.0916907 + 0.105817i 0.00341474 + 0.00394082i
\(722\) 0 0
\(723\) 1.29049 2.82577i 0.0479937 0.105091i
\(724\) 0 0
\(725\) 0.673545 0.197771i 0.0250148 0.00734501i
\(726\) 0 0
\(727\) 0.509197 + 3.54154i 0.0188851 + 0.131348i 0.997083 0.0763270i \(-0.0243193\pi\)
−0.978198 + 0.207675i \(0.933410\pi\)
\(728\) 0 0
\(729\) 7.15615 + 15.6698i 0.265043 + 0.580362i
\(730\) 0 0
\(731\) 0.530610 3.69047i 0.0196253 0.136497i
\(732\) 0 0
\(733\) −28.7430 + 33.1712i −1.06165 + 1.22521i −0.0882450 + 0.996099i \(0.528126\pi\)
−0.973401 + 0.229106i \(0.926420\pi\)
\(734\) 0 0
\(735\) −13.5591 −0.500136
\(736\) 0 0
\(737\) 0.509195 0.0187564
\(738\) 0 0
\(739\) −8.34413 + 9.62964i −0.306944 + 0.354232i −0.888174 0.459507i \(-0.848026\pi\)
0.581230 + 0.813739i \(0.302572\pi\)
\(740\) 0 0
\(741\) −4.61443 + 32.0941i −0.169515 + 1.17901i
\(742\) 0 0
\(743\) 4.84107 + 10.6005i 0.177602 + 0.388893i 0.977407 0.211366i \(-0.0677913\pi\)
−0.799805 + 0.600259i \(0.795064\pi\)
\(744\) 0 0
\(745\) 2.77795 + 19.3211i 0.101776 + 0.707870i
\(746\) 0 0
\(747\) 7.47050 2.19354i 0.273331 0.0802573i
\(748\) 0 0
\(749\) −0.154594 + 0.338514i −0.00564874 + 0.0123690i
\(750\) 0 0
\(751\) −1.92446 2.22094i −0.0702244 0.0810433i 0.719550 0.694440i \(-0.244348\pi\)
−0.789775 + 0.613397i \(0.789803\pi\)
\(752\) 0 0
\(753\) 2.19933 1.41342i 0.0801479 0.0515079i
\(754\) 0 0
\(755\) −2.22107 1.42740i −0.0808330 0.0519482i
\(756\) 0 0
\(757\) 49.8893 + 14.6488i 1.81326 + 0.532421i 0.998853 0.0478768i \(-0.0152455\pi\)
0.814405 + 0.580297i \(0.197064\pi\)
\(758\) 0 0
\(759\) −0.00554614 2.22416i −0.000201312 0.0807321i
\(760\) 0 0
\(761\) 30.7881 + 9.04020i 1.11607 + 0.327707i 0.787218 0.616675i \(-0.211521\pi\)
0.328850 + 0.944382i \(0.393339\pi\)
\(762\) 0 0
\(763\) 0.365244 + 0.234728i 0.0132227 + 0.00849773i
\(764\) 0 0
\(765\) −0.450339 + 0.289415i −0.0162820 + 0.0104638i
\(766\) 0 0
\(767\) −13.4994 15.5791i −0.487435 0.562530i
\(768\) 0 0
\(769\) −0.446350 + 0.977371i −0.0160958 + 0.0352449i −0.917509 0.397715i \(-0.869803\pi\)
0.901413 + 0.432959i \(0.142531\pi\)
\(770\) 0 0
\(771\) 11.5567 3.39334i 0.416203 0.122208i
\(772\) 0 0
\(773\) −6.39658 44.4892i −0.230069 1.60017i −0.697799 0.716294i \(-0.745837\pi\)
0.467729 0.883872i \(-0.345072\pi\)
\(774\) 0 0
\(775\) 2.18197 + 4.77784i 0.0783785 + 0.171625i
\(776\) 0 0
\(777\) 0.0310266 0.215795i 0.00111307 0.00774159i
\(778\) 0 0
\(779\) 9.33835 10.7770i 0.334581 0.386127i
\(780\) 0 0
\(781\) 1.75296 0.0627259
\(782\) 0 0
\(783\) 3.05450 0.109159
\(784\) 0 0
\(785\) 12.5687 14.5051i 0.448597 0.517709i
\(786\) 0 0
\(787\) −6.81375 + 47.3906i −0.242884 + 1.68929i 0.394618 + 0.918845i \(0.370877\pi\)
−0.637502 + 0.770449i \(0.720032\pi\)
\(788\) 0 0
\(789\) −5.36034 11.7375i −0.190833 0.417866i
\(790\) 0 0
\(791\) 0.0255017 + 0.177368i 0.000906737 + 0.00630650i
\(792\) 0 0
\(793\) −21.4728 + 6.30497i −0.762520 + 0.223896i
\(794\) 0 0
\(795\) 10.0012 21.8995i 0.354705 0.776696i
\(796\)