Properties

Label 460.2.m.a.261.2
Level $460$
Weight $2$
Character 460.261
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 261.2
Character \(\chi\) \(=\) 460.261
Dual form 460.2.m.a.141.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.256560 + 0.561788i) q^{3} +(-0.654861 - 0.755750i) q^{5} +(-1.01950 - 0.655191i) q^{7} +(1.71480 - 1.97898i) q^{9} +O(q^{10})\) \(q+(0.256560 + 0.561788i) q^{3} +(-0.654861 - 0.755750i) q^{5} +(-1.01950 - 0.655191i) q^{7} +(1.71480 - 1.97898i) q^{9} +(-0.435403 - 3.02830i) q^{11} +(0.710838 - 0.456828i) q^{13} +(0.256560 - 0.561788i) q^{15} +(6.78397 - 1.99195i) q^{17} +(-2.86659 - 0.841706i) q^{19} +(0.106516 - 0.740837i) q^{21} +(4.79574 + 0.0297844i) q^{23} +(-0.142315 + 0.989821i) q^{25} +(3.32946 + 0.977619i) q^{27} +(-6.26337 + 1.83909i) q^{29} +(1.97917 - 4.33378i) q^{31} +(1.58955 - 1.02154i) q^{33} +(0.172468 + 1.19954i) q^{35} +(1.74486 - 2.01368i) q^{37} +(0.439013 + 0.282136i) q^{39} +(5.64911 + 6.51942i) q^{41} +(-0.718936 - 1.57425i) q^{43} -2.61857 q^{45} -11.7247 q^{47} +(-2.29781 - 5.03149i) q^{49} +(2.85955 + 3.30010i) q^{51} +(6.76575 + 4.34808i) q^{53} +(-2.00351 + 2.31217i) q^{55} +(-0.262591 - 1.82636i) q^{57} +(-5.99582 + 3.85328i) q^{59} +(4.71748 - 10.3298i) q^{61} +(-3.04485 + 0.894047i) q^{63} +(-0.810747 - 0.238057i) q^{65} +(-0.189773 + 1.31990i) q^{67} +(1.21366 + 2.70183i) q^{69} +(-1.49710 + 10.4126i) q^{71} +(4.29580 + 1.26136i) q^{73} +(-0.592582 + 0.173998i) q^{75} +(-1.54022 + 3.37261i) q^{77} +(-8.88784 + 5.71187i) q^{79} +(-0.812992 - 5.65448i) q^{81} +(6.38586 - 7.36968i) q^{83} +(-5.94797 - 3.82253i) q^{85} +(-2.64011 - 3.04685i) q^{87} +(-2.31000 - 5.05820i) q^{89} -1.02401 q^{91} +2.94244 q^{93} +(1.24110 + 2.71762i) q^{95} +(0.650000 + 0.750140i) q^{97} +(-6.73958 - 4.33126i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.256560 + 0.561788i 0.148125 + 0.324348i 0.969121 0.246585i \(-0.0793086\pi\)
−0.820996 + 0.570934i \(0.806581\pi\)
\(4\) 0 0
\(5\) −0.654861 0.755750i −0.292863 0.337981i
\(6\) 0 0
\(7\) −1.01950 0.655191i −0.385334 0.247639i 0.333604 0.942713i \(-0.391735\pi\)
−0.718938 + 0.695074i \(0.755371\pi\)
\(8\) 0 0
\(9\) 1.71480 1.97898i 0.571600 0.659661i
\(10\) 0 0
\(11\) −0.435403 3.02830i −0.131279 0.913066i −0.943890 0.330259i \(-0.892864\pi\)
0.812611 0.582806i \(-0.198045\pi\)
\(12\) 0 0
\(13\) 0.710838 0.456828i 0.197151 0.126701i −0.438341 0.898809i \(-0.644434\pi\)
0.635492 + 0.772108i \(0.280797\pi\)
\(14\) 0 0
\(15\) 0.256560 0.561788i 0.0662435 0.145053i
\(16\) 0 0
\(17\) 6.78397 1.99195i 1.64535 0.483119i 0.677686 0.735351i \(-0.262983\pi\)
0.967667 + 0.252232i \(0.0811645\pi\)
\(18\) 0 0
\(19\) −2.86659 0.841706i −0.657641 0.193101i −0.0641483 0.997940i \(-0.520433\pi\)
−0.593492 + 0.804840i \(0.702251\pi\)
\(20\) 0 0
\(21\) 0.106516 0.740837i 0.0232438 0.161664i
\(22\) 0 0
\(23\) 4.79574 + 0.0297844i 0.999981 + 0.00621048i
\(24\) 0 0
\(25\) −0.142315 + 0.989821i −0.0284630 + 0.197964i
\(26\) 0 0
\(27\) 3.32946 + 0.977619i 0.640756 + 0.188143i
\(28\) 0 0
\(29\) −6.26337 + 1.83909i −1.16308 + 0.341511i −0.805628 0.592421i \(-0.798172\pi\)
−0.357450 + 0.933932i \(0.616354\pi\)
\(30\) 0 0
\(31\) 1.97917 4.33378i 0.355470 0.778370i −0.644436 0.764658i \(-0.722908\pi\)
0.999906 0.0137123i \(-0.00436490\pi\)
\(32\) 0 0
\(33\) 1.58955 1.02154i 0.276706 0.177828i
\(34\) 0 0
\(35\) 0.172468 + 1.19954i 0.0291525 + 0.202760i
\(36\) 0 0
\(37\) 1.74486 2.01368i 0.286853 0.331046i −0.593974 0.804484i \(-0.702442\pi\)
0.880827 + 0.473438i \(0.156987\pi\)
\(38\) 0 0
\(39\) 0.439013 + 0.282136i 0.0702983 + 0.0451780i
\(40\) 0 0
\(41\) 5.64911 + 6.51942i 0.882243 + 1.01816i 0.999685 + 0.0250825i \(0.00798485\pi\)
−0.117443 + 0.993080i \(0.537470\pi\)
\(42\) 0 0
\(43\) −0.718936 1.57425i −0.109637 0.240071i 0.846859 0.531818i \(-0.178491\pi\)
−0.956496 + 0.291747i \(0.905764\pi\)
\(44\) 0 0
\(45\) −2.61857 −0.390354
\(46\) 0 0
\(47\) −11.7247 −1.71022 −0.855110 0.518446i \(-0.826511\pi\)
−0.855110 + 0.518446i \(0.826511\pi\)
\(48\) 0 0
\(49\) −2.29781 5.03149i −0.328258 0.718785i
\(50\) 0 0
\(51\) 2.85955 + 3.30010i 0.400417 + 0.462106i
\(52\) 0 0
\(53\) 6.76575 + 4.34808i 0.929347 + 0.597255i 0.915355 0.402647i \(-0.131910\pi\)
0.0139920 + 0.999902i \(0.495546\pi\)
\(54\) 0 0
\(55\) −2.00351 + 2.31217i −0.270153 + 0.311773i
\(56\) 0 0
\(57\) −0.262591 1.82636i −0.0347811 0.241908i
\(58\) 0 0
\(59\) −5.99582 + 3.85328i −0.780589 + 0.501654i −0.869229 0.494409i \(-0.835384\pi\)
0.0886399 + 0.996064i \(0.471748\pi\)
\(60\) 0 0
\(61\) 4.71748 10.3298i 0.604011 1.32260i −0.322585 0.946541i \(-0.604552\pi\)
0.926596 0.376059i \(-0.122721\pi\)
\(62\) 0 0
\(63\) −3.04485 + 0.894047i −0.383615 + 0.112639i
\(64\) 0 0
\(65\) −0.810747 0.238057i −0.100561 0.0295273i
\(66\) 0 0
\(67\) −0.189773 + 1.31990i −0.0231844 + 0.161251i −0.998125 0.0612163i \(-0.980502\pi\)
0.974940 + 0.222468i \(0.0714111\pi\)
\(68\) 0 0
\(69\) 1.21366 + 2.70183i 0.146108 + 0.325262i
\(70\) 0 0
\(71\) −1.49710 + 10.4126i −0.177673 + 1.23574i 0.684456 + 0.729054i \(0.260040\pi\)
−0.862129 + 0.506689i \(0.830869\pi\)
\(72\) 0 0
\(73\) 4.29580 + 1.26136i 0.502785 + 0.147631i 0.523283 0.852159i \(-0.324707\pi\)
−0.0204980 + 0.999790i \(0.506525\pi\)
\(74\) 0 0
\(75\) −0.592582 + 0.173998i −0.0684255 + 0.0200915i
\(76\) 0 0
\(77\) −1.54022 + 3.37261i −0.175524 + 0.384345i
\(78\) 0 0
\(79\) −8.88784 + 5.71187i −0.999961 + 0.642636i −0.934776 0.355238i \(-0.884400\pi\)
−0.0651846 + 0.997873i \(0.520764\pi\)
\(80\) 0 0
\(81\) −0.812992 5.65448i −0.0903324 0.628276i
\(82\) 0 0
\(83\) 6.38586 7.36968i 0.700940 0.808927i −0.287940 0.957649i \(-0.592970\pi\)
0.988879 + 0.148721i \(0.0475157\pi\)
\(84\) 0 0
\(85\) −5.94797 3.82253i −0.645148 0.414611i
\(86\) 0 0
\(87\) −2.64011 3.04685i −0.283049 0.326657i
\(88\) 0 0
\(89\) −2.31000 5.05820i −0.244860 0.536168i 0.746801 0.665048i \(-0.231589\pi\)
−0.991660 + 0.128880i \(0.958862\pi\)
\(90\) 0 0
\(91\) −1.02401 −0.107345
\(92\) 0 0
\(93\) 2.94244 0.305117
\(94\) 0 0
\(95\) 1.24110 + 2.71762i 0.127334 + 0.278822i
\(96\) 0 0
\(97\) 0.650000 + 0.750140i 0.0659975 + 0.0761652i 0.787788 0.615946i \(-0.211226\pi\)
−0.721791 + 0.692111i \(0.756681\pi\)
\(98\) 0 0
\(99\) −6.73958 4.33126i −0.677353 0.435309i
\(100\) 0 0
\(101\) −11.5677 + 13.3498i −1.15103 + 1.32835i −0.214921 + 0.976631i \(0.568950\pi\)
−0.936104 + 0.351723i \(0.885596\pi\)
\(102\) 0 0
\(103\) 1.78680 + 12.4274i 0.176058 + 1.22451i 0.865775 + 0.500433i \(0.166826\pi\)
−0.689717 + 0.724079i \(0.742265\pi\)
\(104\) 0 0
\(105\) −0.629641 + 0.404646i −0.0614466 + 0.0394894i
\(106\) 0 0
\(107\) −4.54160 + 9.94472i −0.439053 + 0.961392i 0.552718 + 0.833368i \(0.313591\pi\)
−0.991771 + 0.128024i \(0.959137\pi\)
\(108\) 0 0
\(109\) −4.64702 + 1.36449i −0.445104 + 0.130694i −0.496601 0.867979i \(-0.665419\pi\)
0.0514974 + 0.998673i \(0.483601\pi\)
\(110\) 0 0
\(111\) 1.57892 + 0.463613i 0.149864 + 0.0440042i
\(112\) 0 0
\(113\) −0.452318 + 3.14594i −0.0425505 + 0.295945i 0.957423 + 0.288688i \(0.0932191\pi\)
−0.999974 + 0.00725693i \(0.997690\pi\)
\(114\) 0 0
\(115\) −3.11803 3.64388i −0.290758 0.339794i
\(116\) 0 0
\(117\) 0.314890 2.19010i 0.0291115 0.202475i
\(118\) 0 0
\(119\) −8.22134 2.41400i −0.753649 0.221291i
\(120\) 0 0
\(121\) 1.57342 0.461997i 0.143038 0.0419998i
\(122\) 0 0
\(123\) −2.21320 + 4.84622i −0.199557 + 0.436969i
\(124\) 0 0
\(125\) 0.841254 0.540641i 0.0752440 0.0483564i
\(126\) 0 0
\(127\) 1.93979 + 13.4915i 0.172129 + 1.19718i 0.874376 + 0.485248i \(0.161271\pi\)
−0.702248 + 0.711933i \(0.747820\pi\)
\(128\) 0 0
\(129\) 0.699945 0.807779i 0.0616267 0.0711210i
\(130\) 0 0
\(131\) 8.23692 + 5.29355i 0.719663 + 0.462499i 0.848520 0.529164i \(-0.177494\pi\)
−0.128857 + 0.991663i \(0.541131\pi\)
\(132\) 0 0
\(133\) 2.37100 + 2.73628i 0.205592 + 0.237266i
\(134\) 0 0
\(135\) −1.44150 3.15645i −0.124065 0.271664i
\(136\) 0 0
\(137\) 21.6030 1.84567 0.922835 0.385195i \(-0.125866\pi\)
0.922835 + 0.385195i \(0.125866\pi\)
\(138\) 0 0
\(139\) −14.3516 −1.21729 −0.608644 0.793444i \(-0.708286\pi\)
−0.608644 + 0.793444i \(0.708286\pi\)
\(140\) 0 0
\(141\) −3.00808 6.58679i −0.253326 0.554708i
\(142\) 0 0
\(143\) −1.69291 1.95372i −0.141568 0.163379i
\(144\) 0 0
\(145\) 5.49153 + 3.52919i 0.456047 + 0.293083i
\(146\) 0 0
\(147\) 2.23711 2.58176i 0.184514 0.212940i
\(148\) 0 0
\(149\) 0.857215 + 5.96206i 0.0702258 + 0.488431i 0.994334 + 0.106300i \(0.0339005\pi\)
−0.924108 + 0.382131i \(0.875190\pi\)
\(150\) 0 0
\(151\) 4.65000 2.98838i 0.378412 0.243191i −0.337583 0.941296i \(-0.609610\pi\)
0.715995 + 0.698105i \(0.245973\pi\)
\(152\) 0 0
\(153\) 7.69110 16.8412i 0.621789 1.36153i
\(154\) 0 0
\(155\) −4.57134 + 1.34227i −0.367179 + 0.107813i
\(156\) 0 0
\(157\) 6.32614 + 1.85752i 0.504881 + 0.148246i 0.524247 0.851566i \(-0.324347\pi\)
−0.0193665 + 0.999812i \(0.506165\pi\)
\(158\) 0 0
\(159\) −0.706881 + 4.91646i −0.0560593 + 0.389901i
\(160\) 0 0
\(161\) −4.86973 3.17249i −0.383788 0.250027i
\(162\) 0 0
\(163\) 1.31273 9.13023i 0.102821 0.715135i −0.871569 0.490272i \(-0.836897\pi\)
0.974390 0.224863i \(-0.0721935\pi\)
\(164\) 0 0
\(165\) −1.81297 0.532335i −0.141139 0.0414423i
\(166\) 0 0
\(167\) −6.23111 + 1.82962i −0.482178 + 0.141580i −0.513783 0.857920i \(-0.671756\pi\)
0.0316050 + 0.999500i \(0.489938\pi\)
\(168\) 0 0
\(169\) −5.10380 + 11.1758i −0.392600 + 0.859673i
\(170\) 0 0
\(171\) −6.58135 + 4.22958i −0.503288 + 0.323444i
\(172\) 0 0
\(173\) 2.03959 + 14.1856i 0.155067 + 1.07851i 0.907562 + 0.419917i \(0.137941\pi\)
−0.752495 + 0.658597i \(0.771150\pi\)
\(174\) 0 0
\(175\) 0.793612 0.915877i 0.0599914 0.0692338i
\(176\) 0 0
\(177\) −3.70301 2.37978i −0.278336 0.178875i
\(178\) 0 0
\(179\) 4.27083 + 4.92880i 0.319217 + 0.368396i 0.892567 0.450915i \(-0.148902\pi\)
−0.573350 + 0.819310i \(0.694357\pi\)
\(180\) 0 0
\(181\) −5.83875 12.7851i −0.433991 0.950307i −0.992662 0.120918i \(-0.961416\pi\)
0.558672 0.829389i \(-0.311311\pi\)
\(182\) 0 0
\(183\) 7.01349 0.518452
\(184\) 0 0
\(185\) −2.66448 −0.195896
\(186\) 0 0
\(187\) −8.98598 19.6766i −0.657120 1.43889i
\(188\) 0 0
\(189\) −2.75385 3.17812i −0.200313 0.231174i
\(190\) 0 0
\(191\) 17.1253 + 11.0058i 1.23914 + 0.796350i 0.985290 0.170892i \(-0.0546650\pi\)
0.253855 + 0.967242i \(0.418301\pi\)
\(192\) 0 0
\(193\) 13.3701 15.4299i 0.962403 1.11067i −0.0313994 0.999507i \(-0.509996\pi\)
0.993802 0.111165i \(-0.0354581\pi\)
\(194\) 0 0
\(195\) −0.0742678 0.516544i −0.00531843 0.0369905i
\(196\) 0 0
\(197\) −6.32606 + 4.06551i −0.450713 + 0.289656i −0.746238 0.665679i \(-0.768142\pi\)
0.295525 + 0.955335i \(0.404505\pi\)
\(198\) 0 0
\(199\) 10.8960 23.8588i 0.772393 1.69131i 0.0510824 0.998694i \(-0.483733\pi\)
0.721311 0.692611i \(-0.243540\pi\)
\(200\) 0 0
\(201\) −0.790191 + 0.232021i −0.0557358 + 0.0163655i
\(202\) 0 0
\(203\) 7.59044 + 2.22876i 0.532745 + 0.156428i
\(204\) 0 0
\(205\) 1.22767 8.53862i 0.0857441 0.596363i
\(206\) 0 0
\(207\) 8.28267 9.43962i 0.575686 0.656099i
\(208\) 0 0
\(209\) −1.30081 + 9.04736i −0.0899792 + 0.625819i
\(210\) 0 0
\(211\) 14.9359 + 4.38558i 1.02823 + 0.301916i 0.751991 0.659173i \(-0.229094\pi\)
0.276239 + 0.961089i \(0.410912\pi\)
\(212\) 0 0
\(213\) −6.23374 + 1.83039i −0.427129 + 0.125416i
\(214\) 0 0
\(215\) −0.718936 + 1.57425i −0.0490310 + 0.107363i
\(216\) 0 0
\(217\) −4.85722 + 3.12154i −0.329729 + 0.211904i
\(218\) 0 0
\(219\) 0.393513 + 2.73694i 0.0265911 + 0.184945i
\(220\) 0 0
\(221\) 3.91232 4.51506i 0.263171 0.303716i
\(222\) 0 0
\(223\) −7.66069 4.92323i −0.512998 0.329684i 0.258399 0.966038i \(-0.416805\pi\)
−0.771397 + 0.636355i \(0.780442\pi\)
\(224\) 0 0
\(225\) 1.71480 + 1.97898i 0.114320 + 0.131932i
\(226\) 0 0
\(227\) −4.81936 10.5529i −0.319872 0.700423i 0.679577 0.733604i \(-0.262163\pi\)
−0.999449 + 0.0331813i \(0.989436\pi\)
\(228\) 0 0
\(229\) −5.98122 −0.395250 −0.197625 0.980278i \(-0.563323\pi\)
−0.197625 + 0.980278i \(0.563323\pi\)
\(230\) 0 0
\(231\) −2.28985 −0.150661
\(232\) 0 0
\(233\) −1.26385 2.76745i −0.0827977 0.181302i 0.863705 0.503998i \(-0.168138\pi\)
−0.946503 + 0.322696i \(0.895411\pi\)
\(234\) 0 0
\(235\) 7.67803 + 8.86092i 0.500860 + 0.578023i
\(236\) 0 0
\(237\) −5.48913 3.52765i −0.356557 0.229145i
\(238\) 0 0
\(239\) 11.5911 13.3768i 0.749766 0.865276i −0.244780 0.969579i \(-0.578716\pi\)
0.994546 + 0.104303i \(0.0332612\pi\)
\(240\) 0 0
\(241\) −1.32793 9.23598i −0.0855397 0.594941i −0.986834 0.161735i \(-0.948291\pi\)
0.901295 0.433207i \(-0.142618\pi\)
\(242\) 0 0
\(243\) 11.7256 7.53556i 0.752195 0.483406i
\(244\) 0 0
\(245\) −2.29781 + 5.03149i −0.146801 + 0.321450i
\(246\) 0 0
\(247\) −2.42219 + 0.711221i −0.154121 + 0.0452539i
\(248\) 0 0
\(249\) 5.77855 + 1.69674i 0.366201 + 0.107526i
\(250\) 0 0
\(251\) 1.93709 13.4728i 0.122268 0.850394i −0.832708 0.553712i \(-0.813211\pi\)
0.954976 0.296682i \(-0.0958801\pi\)
\(252\) 0 0
\(253\) −1.99788 14.5359i −0.125606 0.913863i
\(254\) 0 0
\(255\) 0.621439 4.32221i 0.0389160 0.270667i
\(256\) 0 0
\(257\) 25.1716 + 7.39105i 1.57016 + 0.461041i 0.947049 0.321090i \(-0.104049\pi\)
0.623114 + 0.782131i \(0.285867\pi\)
\(258\) 0 0
\(259\) −3.09822 + 0.909720i −0.192514 + 0.0565273i
\(260\) 0 0
\(261\) −7.10089 + 15.5488i −0.439534 + 0.962445i
\(262\) 0 0
\(263\) −2.86298 + 1.83993i −0.176539 + 0.113455i −0.625926 0.779883i \(-0.715279\pi\)
0.449387 + 0.893337i \(0.351642\pi\)
\(264\) 0 0
\(265\) −1.14456 7.96060i −0.0703099 0.489016i
\(266\) 0 0
\(267\) 2.24898 2.59546i 0.137635 0.158840i
\(268\) 0 0
\(269\) −3.36186 2.16054i −0.204976 0.131730i 0.434126 0.900852i \(-0.357057\pi\)
−0.639102 + 0.769122i \(0.720694\pi\)
\(270\) 0 0
\(271\) 4.25340 + 4.90869i 0.258376 + 0.298182i 0.870086 0.492901i \(-0.164063\pi\)
−0.611710 + 0.791082i \(0.709518\pi\)
\(272\) 0 0
\(273\) −0.262719 0.575275i −0.0159005 0.0348172i
\(274\) 0 0
\(275\) 3.05944 0.184491
\(276\) 0 0
\(277\) 2.08678 0.125382 0.0626912 0.998033i \(-0.480032\pi\)
0.0626912 + 0.998033i \(0.480032\pi\)
\(278\) 0 0
\(279\) −5.18260 11.3483i −0.310274 0.679406i
\(280\) 0 0
\(281\) 6.36169 + 7.34179i 0.379507 + 0.437974i 0.913081 0.407779i \(-0.133697\pi\)
−0.533574 + 0.845754i \(0.679151\pi\)
\(282\) 0 0
\(283\) 14.7561 + 9.48320i 0.877162 + 0.563718i 0.899936 0.436023i \(-0.143613\pi\)
−0.0227736 + 0.999741i \(0.507250\pi\)
\(284\) 0 0
\(285\) −1.20831 + 1.39447i −0.0715743 + 0.0826011i
\(286\) 0 0
\(287\) −1.48779 10.3478i −0.0878212 0.610810i
\(288\) 0 0
\(289\) 27.7530 17.8358i 1.63253 1.04916i
\(290\) 0 0
\(291\) −0.254656 + 0.557618i −0.0149282 + 0.0326882i
\(292\) 0 0
\(293\) −14.9950 + 4.40293i −0.876017 + 0.257222i −0.688673 0.725072i \(-0.741806\pi\)
−0.187345 + 0.982294i \(0.559988\pi\)
\(294\) 0 0
\(295\) 6.83854 + 2.00798i 0.398155 + 0.116909i
\(296\) 0 0
\(297\) 1.51086 10.5083i 0.0876690 0.609751i
\(298\) 0 0
\(299\) 3.42260 2.16965i 0.197934 0.125474i
\(300\) 0 0
\(301\) −0.298482 + 2.07598i −0.0172042 + 0.119658i
\(302\) 0 0
\(303\) −10.4676 3.07355i −0.601345 0.176571i
\(304\) 0 0
\(305\) −10.8961 + 3.19937i −0.623906 + 0.183195i
\(306\) 0 0
\(307\) −8.54994 + 18.7218i −0.487971 + 1.06851i 0.492223 + 0.870469i \(0.336184\pi\)
−0.980194 + 0.198039i \(0.936543\pi\)
\(308\) 0 0
\(309\) −6.52317 + 4.19219i −0.371090 + 0.238485i
\(310\) 0 0
\(311\) −1.89207 13.1596i −0.107289 0.746213i −0.970453 0.241289i \(-0.922430\pi\)
0.863164 0.504924i \(-0.168479\pi\)
\(312\) 0 0
\(313\) −15.6037 + 18.0076i −0.881973 + 1.01785i 0.117719 + 0.993047i \(0.462442\pi\)
−0.999692 + 0.0248045i \(0.992104\pi\)
\(314\) 0 0
\(315\) 2.66963 + 1.71566i 0.150416 + 0.0966667i
\(316\) 0 0
\(317\) 17.8093 + 20.5531i 1.00027 + 1.15438i 0.988001 + 0.154450i \(0.0493607\pi\)
0.0122713 + 0.999925i \(0.496094\pi\)
\(318\) 0 0
\(319\) 8.29641 + 18.1666i 0.464510 + 1.01713i
\(320\) 0 0
\(321\) −6.75202 −0.376861
\(322\) 0 0
\(323\) −21.1235 −1.17534
\(324\) 0 0
\(325\) 0.351015 + 0.768616i 0.0194708 + 0.0426351i
\(326\) 0 0
\(327\) −1.95879 2.26057i −0.108321 0.125010i
\(328\) 0 0
\(329\) 11.9533 + 7.68191i 0.659006 + 0.423517i
\(330\) 0 0
\(331\) −0.933211 + 1.07698i −0.0512939 + 0.0591964i −0.780817 0.624760i \(-0.785197\pi\)
0.729523 + 0.683957i \(0.239742\pi\)
\(332\) 0 0
\(333\) −0.992947 6.90610i −0.0544132 0.378452i
\(334\) 0 0
\(335\) 1.12179 0.720929i 0.0612898 0.0393885i
\(336\) 0 0
\(337\) −3.08125 + 6.74699i −0.167846 + 0.367532i −0.974799 0.223084i \(-0.928388\pi\)
0.806953 + 0.590616i \(0.201115\pi\)
\(338\) 0 0
\(339\) −1.88340 + 0.553015i −0.102292 + 0.0300357i
\(340\) 0 0
\(341\) −13.9857 4.10658i −0.757369 0.222384i
\(342\) 0 0
\(343\) −2.16126 + 15.0319i −0.116697 + 0.811646i
\(344\) 0 0
\(345\) 1.24713 2.68655i 0.0671431 0.144639i
\(346\) 0 0
\(347\) −0.0296491 + 0.206214i −0.00159165 + 0.0110701i −0.990602 0.136778i \(-0.956325\pi\)
0.989010 + 0.147848i \(0.0472345\pi\)
\(348\) 0 0
\(349\) −10.0837 2.96083i −0.539766 0.158490i 0.000474818 1.00000i \(-0.499849\pi\)
−0.540241 + 0.841510i \(0.681667\pi\)
\(350\) 0 0
\(351\) 2.81331 0.826063i 0.150164 0.0440920i
\(352\) 0 0
\(353\) −5.32325 + 11.6563i −0.283328 + 0.620402i −0.996770 0.0803129i \(-0.974408\pi\)
0.713442 + 0.700715i \(0.247135\pi\)
\(354\) 0 0
\(355\) 8.84967 5.68734i 0.469692 0.301853i
\(356\) 0 0
\(357\) −0.753109 5.23799i −0.0398588 0.277224i
\(358\) 0 0
\(359\) 7.82562 9.03125i 0.413021 0.476651i −0.510678 0.859772i \(-0.670605\pi\)
0.923698 + 0.383121i \(0.125151\pi\)
\(360\) 0 0
\(361\) −8.47495 5.44652i −0.446050 0.286659i
\(362\) 0 0
\(363\) 0.663221 + 0.765398i 0.0348101 + 0.0401730i
\(364\) 0 0
\(365\) −1.85988 4.07256i −0.0973504 0.213168i
\(366\) 0 0
\(367\) −7.38220 −0.385348 −0.192674 0.981263i \(-0.561716\pi\)
−0.192674 + 0.981263i \(0.561716\pi\)
\(368\) 0 0
\(369\) 22.5889 1.17593
\(370\) 0 0
\(371\) −4.04884 8.86572i −0.210205 0.460285i
\(372\) 0 0
\(373\) 4.75481 + 5.48734i 0.246195 + 0.284124i 0.865375 0.501125i \(-0.167080\pi\)
−0.619180 + 0.785249i \(0.712535\pi\)
\(374\) 0 0
\(375\) 0.519558 + 0.333899i 0.0268298 + 0.0172425i
\(376\) 0 0
\(377\) −3.61209 + 4.16858i −0.186032 + 0.214693i
\(378\) 0 0
\(379\) −2.49135 17.3277i −0.127972 0.890065i −0.948120 0.317913i \(-0.897018\pi\)
0.820148 0.572152i \(-0.193891\pi\)
\(380\) 0 0
\(381\) −7.08172 + 4.55114i −0.362807 + 0.233162i
\(382\) 0 0
\(383\) 5.61067 12.2856i 0.286692 0.627767i −0.710415 0.703783i \(-0.751493\pi\)
0.997107 + 0.0760159i \(0.0242200\pi\)
\(384\) 0 0
\(385\) 3.55748 1.04457i 0.181306 0.0532362i
\(386\) 0 0
\(387\) −4.34825 1.27676i −0.221034 0.0649014i
\(388\) 0 0
\(389\) −0.507979 + 3.53307i −0.0257555 + 0.179134i −0.998639 0.0521642i \(-0.983388\pi\)
0.972883 + 0.231298i \(0.0742972\pi\)
\(390\) 0 0
\(391\) 32.5935 9.35083i 1.64832 0.472892i
\(392\) 0 0
\(393\) −0.860587 + 5.98551i −0.0434109 + 0.301929i
\(394\) 0 0
\(395\) 10.1370 + 2.97650i 0.510050 + 0.149764i
\(396\) 0 0
\(397\) −26.0140 + 7.63841i −1.30561 + 0.383361i −0.859279 0.511508i \(-0.829087\pi\)
−0.446329 + 0.894869i \(0.647269\pi\)
\(398\) 0 0
\(399\) −0.928906 + 2.03402i −0.0465035 + 0.101828i
\(400\) 0 0
\(401\) −29.8215 + 19.1651i −1.48922 + 0.957061i −0.493010 + 0.870023i \(0.664104\pi\)
−0.996205 + 0.0870374i \(0.972260\pi\)
\(402\) 0 0
\(403\) −0.572922 3.98476i −0.0285393 0.198495i
\(404\) 0 0
\(405\) −3.74098 + 4.31732i −0.185891 + 0.214529i
\(406\) 0 0
\(407\) −6.85773 4.40719i −0.339925 0.218456i
\(408\) 0 0
\(409\) 16.2509 + 18.7546i 0.803557 + 0.927354i 0.998571 0.0534466i \(-0.0170207\pi\)
−0.195014 + 0.980800i \(0.562475\pi\)
\(410\) 0 0
\(411\) 5.54247 + 12.1363i 0.273390 + 0.598640i
\(412\) 0 0
\(413\) 8.63736 0.425016
\(414\) 0 0
\(415\) −9.75148 −0.478681
\(416\) 0 0
\(417\) −3.68205 8.06256i −0.180311 0.394825i
\(418\) 0 0
\(419\) 14.8931 + 17.1876i 0.727577 + 0.839668i 0.992196 0.124685i \(-0.0397919\pi\)
−0.264620 + 0.964353i \(0.585246\pi\)
\(420\) 0 0
\(421\) −18.3187 11.7727i −0.892798 0.573766i 0.0118482 0.999930i \(-0.496229\pi\)
−0.904646 + 0.426163i \(0.859865\pi\)
\(422\) 0 0
\(423\) −20.1055 + 23.2030i −0.977562 + 1.12817i
\(424\) 0 0
\(425\) 1.00622 + 6.99840i 0.0488087 + 0.339472i
\(426\) 0 0
\(427\) −11.5775 + 7.44039i −0.560273 + 0.360066i
\(428\) 0 0
\(429\) 0.663245 1.45230i 0.0320218 0.0701179i
\(430\) 0 0
\(431\) −8.55900 + 2.51315i −0.412272 + 0.121054i −0.481290 0.876561i \(-0.659832\pi\)
0.0690177 + 0.997615i \(0.478013\pi\)
\(432\) 0 0
\(433\) −23.1810 6.80656i −1.11401 0.327102i −0.327604 0.944815i \(-0.606241\pi\)
−0.786404 + 0.617713i \(0.788059\pi\)
\(434\) 0 0
\(435\) −0.573751 + 3.99052i −0.0275092 + 0.191331i
\(436\) 0 0
\(437\) −13.7223 4.12198i −0.656429 0.197181i
\(438\) 0 0
\(439\) −3.84804 + 26.7637i −0.183657 + 1.27736i 0.664368 + 0.747406i \(0.268701\pi\)
−0.848025 + 0.529957i \(0.822208\pi\)
\(440\) 0 0
\(441\) −13.8975 4.08068i −0.661787 0.194318i
\(442\) 0 0
\(443\) −14.3425 + 4.21135i −0.681434 + 0.200087i −0.604089 0.796917i \(-0.706463\pi\)
−0.0773456 + 0.997004i \(0.524644\pi\)
\(444\) 0 0
\(445\) −2.31000 + 5.05820i −0.109505 + 0.239781i
\(446\) 0 0
\(447\) −3.12949 + 2.01120i −0.148020 + 0.0951265i
\(448\) 0 0
\(449\) 4.37240 + 30.4107i 0.206347 + 1.43517i 0.784948 + 0.619561i \(0.212690\pi\)
−0.578602 + 0.815610i \(0.696401\pi\)
\(450\) 0 0
\(451\) 17.2831 19.9458i 0.813829 0.939209i
\(452\) 0 0
\(453\) 2.87184 + 1.84562i 0.134931 + 0.0867147i
\(454\) 0 0
\(455\) 0.670582 + 0.773893i 0.0314374 + 0.0362806i
\(456\) 0 0
\(457\) −6.76998 14.8242i −0.316686 0.693446i 0.682617 0.730776i \(-0.260842\pi\)
−0.999303 + 0.0373306i \(0.988115\pi\)
\(458\) 0 0
\(459\) 24.5343 1.14517
\(460\) 0 0
\(461\) −24.1616 −1.12532 −0.562660 0.826688i \(-0.690222\pi\)
−0.562660 + 0.826688i \(0.690222\pi\)
\(462\) 0 0
\(463\) −14.9258 32.6829i −0.693659 1.51890i −0.847494 0.530805i \(-0.821890\pi\)
0.153834 0.988097i \(-0.450838\pi\)
\(464\) 0 0
\(465\) −1.92689 2.22375i −0.0893574 0.103124i
\(466\) 0 0
\(467\) 34.4808 + 22.1594i 1.59558 + 1.02542i 0.969320 + 0.245802i \(0.0790512\pi\)
0.626259 + 0.779615i \(0.284585\pi\)
\(468\) 0 0
\(469\) 1.05826 1.22129i 0.0488658 0.0563942i
\(470\) 0 0
\(471\) 0.579500 + 4.03051i 0.0267020 + 0.185716i
\(472\) 0 0
\(473\) −4.45427 + 2.86259i −0.204808 + 0.131622i
\(474\) 0 0
\(475\) 1.24110 2.71762i 0.0569454 0.124693i
\(476\) 0 0
\(477\) 20.2067 5.93322i 0.925201 0.271664i
\(478\) 0 0
\(479\) 1.02681 + 0.301499i 0.0469162 + 0.0137759i 0.305106 0.952318i \(-0.401308\pi\)
−0.258190 + 0.966094i \(0.583126\pi\)
\(480\) 0 0
\(481\) 0.320410 2.22850i 0.0146094 0.101611i
\(482\) 0 0
\(483\) 0.532890 3.54969i 0.0242473 0.161516i
\(484\) 0 0
\(485\) 0.141258 0.982474i 0.00641422 0.0446119i
\(486\) 0 0
\(487\) 19.6254 + 5.76253i 0.889311 + 0.261125i 0.694309 0.719677i \(-0.255710\pi\)
0.195003 + 0.980803i \(0.437528\pi\)
\(488\) 0 0
\(489\) 5.46605 1.60498i 0.247183 0.0725796i
\(490\) 0 0
\(491\) −8.62589 + 18.8881i −0.389281 + 0.852407i 0.608965 + 0.793197i \(0.291585\pi\)
−0.998246 + 0.0592092i \(0.981142\pi\)
\(492\) 0 0
\(493\) −38.8271 + 24.9527i −1.74868 + 1.12381i
\(494\) 0 0
\(495\) 1.14013 + 7.92981i 0.0512452 + 0.356418i
\(496\) 0 0
\(497\) 8.34850 9.63468i 0.374481 0.432175i
\(498\) 0 0
\(499\) −11.8239 7.59878i −0.529312 0.340168i 0.248534 0.968623i \(-0.420051\pi\)
−0.777846 + 0.628455i \(0.783688\pi\)
\(500\) 0 0
\(501\) −2.62651 3.03116i −0.117344 0.135422i
\(502\) 0 0
\(503\) −0.0298848 0.0654387i −0.00133250 0.00291777i 0.908965 0.416873i \(-0.136874\pi\)
−0.910297 + 0.413956i \(0.864147\pi\)
\(504\) 0 0
\(505\) 17.6643 0.786052
\(506\) 0 0
\(507\) −7.58784 −0.336988
\(508\) 0 0
\(509\) −15.8881 34.7900i −0.704226 1.54204i −0.834771 0.550597i \(-0.814400\pi\)
0.130545 0.991442i \(-0.458327\pi\)
\(510\) 0 0
\(511\) −3.55312 4.10052i −0.157181 0.181396i
\(512\) 0 0
\(513\) −8.72134 5.60486i −0.385057 0.247461i
\(514\) 0 0
\(515\) 8.22193 9.48861i 0.362302 0.418118i
\(516\) 0 0
\(517\) 5.10497 + 35.5058i 0.224516 + 1.56154i
\(518\) 0 0
\(519\) −7.44605 + 4.78528i −0.326845 + 0.210051i
\(520\) 0 0
\(521\) 0.0529606 0.115967i 0.00232024 0.00508063i −0.908468 0.417954i \(-0.862747\pi\)
0.910789 + 0.412873i \(0.135475\pi\)
\(522\) 0 0
\(523\) −37.3965 + 10.9806i −1.63524 + 0.480148i −0.965054 0.262049i \(-0.915602\pi\)
−0.670181 + 0.742198i \(0.733784\pi\)
\(524\) 0 0
\(525\) 0.718138 + 0.210864i 0.0313421 + 0.00920287i
\(526\) 0 0
\(527\) 4.79395 33.3427i 0.208828 1.45243i
\(528\) 0 0
\(529\) 22.9982 + 0.285677i 0.999923 + 0.0124207i
\(530\) 0 0
\(531\) −2.65605 + 18.4732i −0.115263 + 0.801670i
\(532\) 0 0
\(533\) 6.99385 + 2.05358i 0.302937 + 0.0889504i
\(534\) 0 0
\(535\) 10.4898 3.08009i 0.453515 0.133164i
\(536\) 0 0
\(537\) −1.67322 + 3.66383i −0.0722046 + 0.158106i
\(538\) 0 0
\(539\) −14.2364 + 9.14917i −0.613204 + 0.394082i
\(540\) 0 0
\(541\) 4.01017 + 27.8914i 0.172411 + 1.19914i 0.873771 + 0.486337i \(0.161667\pi\)
−0.701360 + 0.712807i \(0.747424\pi\)
\(542\) 0 0
\(543\) 5.68451 6.56028i 0.243946 0.281528i
\(544\) 0 0
\(545\) 4.07436 + 2.61843i 0.174526 + 0.112161i
\(546\) 0 0
\(547\) −18.9151 21.8292i −0.808753 0.933351i 0.190074 0.981770i \(-0.439127\pi\)
−0.998827 + 0.0484186i \(0.984582\pi\)
\(548\) 0 0
\(549\) −12.3530 27.0494i −0.527215 1.15444i
\(550\) 0 0
\(551\) 19.5025 0.830834
\(552\) 0 0
\(553\) 12.8035 0.544460
\(554\) 0 0
\(555\) −0.683598 1.49687i −0.0290171 0.0635386i
\(556\) 0 0
\(557\) 15.0480 + 17.3664i 0.637606 + 0.735837i 0.978950 0.204102i \(-0.0654273\pi\)
−0.341343 + 0.939939i \(0.610882\pi\)
\(558\) 0 0
\(559\) −1.23021 0.790607i −0.0520323 0.0334391i
\(560\) 0 0
\(561\) 8.74861 10.0964i 0.369367 0.426272i
\(562\) 0 0
\(563\) −0.943746 6.56390i −0.0397742 0.276635i 0.960222 0.279236i \(-0.0900812\pi\)
−0.999997 + 0.00260076i \(0.999172\pi\)
\(564\) 0 0
\(565\) 2.67375 1.71831i 0.112485 0.0722900i
\(566\) 0 0
\(567\) −2.87592 + 6.29739i −0.120777 + 0.264466i
\(568\) 0 0
\(569\) 28.3182 8.31496i 1.18716 0.348581i 0.372229 0.928141i \(-0.378593\pi\)
0.814930 + 0.579559i \(0.196775\pi\)
\(570\) 0 0
\(571\) 23.8603 + 7.00602i 0.998523 + 0.293193i 0.739850 0.672772i \(-0.234897\pi\)
0.258673 + 0.965965i \(0.416715\pi\)
\(572\) 0 0
\(573\) −1.78924 + 12.4444i −0.0747466 + 0.519874i
\(574\) 0 0
\(575\) −0.711986 + 4.74269i −0.0296919 + 0.197784i
\(576\) 0 0
\(577\) 0.315548 2.19469i 0.0131365 0.0913660i −0.982198 0.187846i \(-0.939849\pi\)
0.995335 + 0.0964802i \(0.0307584\pi\)
\(578\) 0 0
\(579\) 12.0986 + 3.55247i 0.502801 + 0.147636i
\(580\) 0 0
\(581\) −11.3389 + 3.32941i −0.470418 + 0.138127i
\(582\) 0 0
\(583\) 10.2215 22.3819i 0.423330 0.926962i
\(584\) 0 0
\(585\) −1.86138 + 1.19624i −0.0769586 + 0.0494583i
\(586\) 0 0
\(587\) −5.51521 38.3591i −0.227637 1.58325i −0.708020 0.706192i \(-0.750412\pi\)
0.480383 0.877059i \(-0.340498\pi\)
\(588\) 0 0
\(589\) −9.32125 + 10.7573i −0.384075 + 0.443247i
\(590\) 0 0
\(591\) −3.90697 2.51086i −0.160711 0.103283i
\(592\) 0 0
\(593\) −8.63091 9.96061i −0.354429 0.409033i 0.550336 0.834943i \(-0.314499\pi\)
−0.904766 + 0.425910i \(0.859954\pi\)
\(594\) 0 0
\(595\) 3.55945 + 7.79411i 0.145923 + 0.319527i
\(596\) 0 0
\(597\) 16.1991 0.662983
\(598\) 0 0
\(599\) 34.4026 1.40565 0.702826 0.711362i \(-0.251921\pi\)
0.702826 + 0.711362i \(0.251921\pi\)
\(600\) 0 0
\(601\) −15.9961 35.0267i −0.652496 1.42877i −0.889352 0.457222i \(-0.848844\pi\)
0.236857 0.971545i \(-0.423883\pi\)
\(602\) 0 0
\(603\) 2.28663 + 2.63892i 0.0931190 + 0.107465i
\(604\) 0 0
\(605\) −1.37952 0.886567i −0.0560857 0.0360441i
\(606\) 0 0
\(607\) −24.7233 + 28.5322i −1.00349 + 1.15809i −0.0160827 + 0.999871i \(0.505120\pi\)
−0.987405 + 0.158215i \(0.949426\pi\)
\(608\) 0 0
\(609\) 0.695316 + 4.83603i 0.0281756 + 0.195966i
\(610\) 0 0
\(611\) −8.33435 + 5.35616i −0.337172 + 0.216687i
\(612\) 0 0
\(613\) 4.86944 10.6626i 0.196675 0.430658i −0.785441 0.618937i \(-0.787564\pi\)
0.982116 + 0.188279i \(0.0602909\pi\)
\(614\) 0 0
\(615\) 5.11187 1.50098i 0.206130 0.0605253i
\(616\) 0 0
\(617\) −38.8107 11.3958i −1.56246 0.458779i −0.617664 0.786442i \(-0.711921\pi\)
−0.944795 + 0.327663i \(0.893739\pi\)
\(618\) 0 0
\(619\) 2.30203 16.0110i 0.0925265 0.643536i −0.889799 0.456353i \(-0.849155\pi\)
0.982325 0.187183i \(-0.0599356\pi\)
\(620\) 0 0
\(621\) 15.9381 + 4.78757i 0.639575 + 0.192119i
\(622\) 0 0
\(623\) −0.959046 + 6.67031i −0.0384234 + 0.267240i
\(624\) 0 0
\(625\) −0.959493 0.281733i −0.0383797 0.0112693i
\(626\) 0 0
\(627\) −5.41644 + 1.59041i −0.216312 + 0.0635148i
\(628\) 0 0
\(629\) 7.82593 17.1364i 0.312040 0.683272i
\(630\) 0 0
\(631\) 13.2210 8.49661i 0.526319 0.338245i −0.250348 0.968156i \(-0.580545\pi\)
0.776667 + 0.629911i \(0.216909\pi\)
\(632\) 0 0
\(633\) 1.36819 + 9.51598i 0.0543807 + 0.378226i
\(634\) 0 0
\(635\) 8.92594 10.3011i 0.354215 0.408786i
\(636\) 0 0
\(637\) −3.93189 2.52687i −0.155787 0.100118i
\(638\) 0 0
\(639\) 18.0391 + 20.8182i 0.713614 + 0.823554i
\(640\) 0 0
\(641\) 9.02209 + 19.7556i 0.356351 + 0.780300i 0.999889 + 0.0148862i \(0.00473861\pi\)
−0.643538 + 0.765414i \(0.722534\pi\)
\(642\) 0 0
\(643\) 22.7632 0.897693 0.448847 0.893609i \(-0.351835\pi\)
0.448847 + 0.893609i \(0.351835\pi\)
\(644\) 0 0
\(645\) −1.06885 −0.0420857
\(646\) 0 0
\(647\) −5.26761 11.5345i −0.207091 0.453467i 0.777376 0.629037i \(-0.216550\pi\)
−0.984467 + 0.175570i \(0.943823\pi\)
\(648\) 0 0
\(649\) 14.2795 + 16.4794i 0.560518 + 0.646873i
\(650\) 0 0
\(651\) −2.99981 1.92786i −0.117572 0.0755589i
\(652\) 0 0
\(653\) −2.38191 + 2.74887i −0.0932114 + 0.107572i −0.800439 0.599414i \(-0.795400\pi\)
0.707227 + 0.706986i \(0.249946\pi\)
\(654\) 0 0
\(655\) −1.39344 9.69158i −0.0544462 0.378681i
\(656\) 0 0
\(657\) 9.86264 6.33834i 0.384778 0.247282i
\(658\) 0 0
\(659\) 20.1162 44.0483i 0.783615 1.71588i 0.0895296 0.995984i \(-0.471464\pi\)
0.694085 0.719893i \(-0.255809\pi\)
\(660\) 0 0
\(661\) −9.04884 + 2.65698i −0.351959 + 0.103345i −0.452933 0.891545i \(-0.649622\pi\)
0.100974 + 0.994889i \(0.467804\pi\)
\(662\) 0 0
\(663\) 3.54025 + 1.03951i 0.137492 + 0.0403713i
\(664\) 0 0
\(665\) 0.515268 3.58377i 0.0199812 0.138972i
\(666\) 0 0
\(667\) −30.0923 + 8.63325i −1.16518 + 0.334281i
\(668\) 0 0
\(669\) 0.800383 5.56679i 0.0309446 0.215224i
\(670\) 0 0
\(671\) −33.3358 9.78827i −1.28691 0.377872i
\(672\) 0 0
\(673\) 10.7577 3.15875i 0.414679 0.121761i −0.0677365 0.997703i \(-0.521578\pi\)
0.482416 + 0.875942i \(0.339760\pi\)
\(674\) 0 0
\(675\) −1.44150 + 3.15645i −0.0554834 + 0.121492i
\(676\) 0 0
\(677\) −3.32467 + 2.13664i −0.127777 + 0.0821176i −0.602968 0.797765i \(-0.706015\pi\)
0.475191 + 0.879883i \(0.342379\pi\)
\(678\) 0 0
\(679\) −0.171188 1.19064i −0.00656960 0.0456926i
\(680\) 0 0
\(681\) 4.69206 5.41492i 0.179800 0.207500i
\(682\) 0 0
\(683\) −8.00154 5.14228i −0.306171 0.196764i 0.378529 0.925590i \(-0.376430\pi\)
−0.684699 + 0.728826i \(0.740066\pi\)
\(684\) 0 0
\(685\) −14.1470 16.3265i −0.540528 0.623802i
\(686\) 0 0
\(687\) −1.53454 3.36018i −0.0585464 0.128199i
\(688\) 0 0
\(689\) 6.79568 0.258895
\(690\) 0 0
\(691\) −1.41432 −0.0538034 −0.0269017 0.999638i \(-0.508564\pi\)
−0.0269017 + 0.999638i \(0.508564\pi\)
\(692\) 0 0
\(693\) 4.03318 + 8.83143i 0.153208 + 0.335478i
\(694\) 0 0
\(695\) 9.39831 + 10.8462i 0.356498 + 0.411421i
\(696\) 0 0
\(697\) 51.3097 + 32.9748i 1.94349 + 1.24901i
\(698\) 0 0
\(699\) 1.23047 1.42003i 0.0465405 0.0537106i
\(700\) 0 0
\(701\) −1.80525 12.5558i −0.0681832 0.474225i −0.995093 0.0989411i \(-0.968454\pi\)
0.926910 0.375283i \(-0.122455\pi\)
\(702\) 0 0
\(703\) −6.69672 + 4.30372i −0.252572 + 0.162318i
\(704\) 0 0
\(705\) −3.00808 + 6.58679i −0.113291 + 0.248073i
\(706\) 0 0
\(707\) 20.5399 6.03105i 0.772481 0.226821i
\(708\) 0 0
\(709\) 18.5550 + 5.44825i 0.696849 + 0.204613i 0.610925 0.791688i \(-0.290798\pi\)
0.0859238 + 0.996302i \(0.472616\pi\)
\(710\) 0 0
\(711\) −3.93717 + 27.3836i −0.147655 + 1.02697i
\(712\) 0 0
\(713\) 9.62067 20.7247i 0.360297 0.776148i
\(714\) 0 0
\(715\) −0.367905 + 2.55883i −0.0137589 + 0.0956950i
\(716\) 0 0
\(717\) 10.4888 + 3.07978i 0.391710 + 0.115016i
\(718\) 0 0
\(719\) −3.44447 + 1.01139i −0.128457 + 0.0377184i −0.345329 0.938482i \(-0.612233\pi\)
0.216872 + 0.976200i \(0.430415\pi\)
\(720\) 0 0
\(721\) 6.32071 13.8404i 0.235396 0.515445i
\(722\) 0 0
\(723\) 4.84797 3.11560i 0.180298 0.115870i
\(724\) 0 0
\(725\) −0.929002 6.46135i −0.0345023 0.239968i
\(726\) 0 0
\(727\) 3.72872 4.30317i 0.138290 0.159596i −0.682380 0.730998i \(-0.739055\pi\)
0.820670 + 0.571402i \(0.193600\pi\)
\(728\) 0 0
\(729\) −7.17561 4.61149i −0.265763 0.170796i
\(730\) 0 0
\(731\) −8.01307 9.24758i −0.296374 0.342034i
\(732\) 0 0
\(733\) −11.0146 24.1186i −0.406833 0.890840i −0.996531 0.0832166i \(-0.973481\pi\)
0.589698 0.807624i \(-0.299247\pi\)
\(734\) 0 0
\(735\) −3.41616 −0.126007
\(736\) 0 0
\(737\) 4.07967 0.150277
\(738\) 0 0
\(739\) 21.5298 + 47.1436i 0.791985 + 1.73420i 0.670881 + 0.741565i \(0.265916\pi\)
0.121104 + 0.992640i \(0.461357\pi\)
\(740\) 0 0
\(741\) −1.02099 1.17829i −0.0375071 0.0432855i
\(742\) 0 0
\(743\) −4.86465 3.12632i −0.178467 0.114694i 0.448357 0.893854i \(-0.352009\pi\)
−0.626824 + 0.779161i \(0.715646\pi\)
\(744\) 0 0
\(745\) 3.94447 4.55216i 0.144514 0.166778i
\(746\) 0 0
\(747\) −3.63400 25.2750i −0.132961 0.924765i
\(748\) 0 0
\(749\) 11.1458 7.16300i 0.407260 0.261730i
\(750\) 0 0
\(751\) 5.96974 13.0719i 0.217839 0.477001i −0.768889 0.639382i \(-0.779190\pi\)
0.986728 + 0.162381i \(0.0519174\pi\)
\(752\) 0 0
\(753\) 8.06582 2.36834i 0.293935 0.0863071i
\(754\) 0 0
\(755\) −5.30357 1.55727i −0.193017 0.0566748i
\(756\) 0 0
\(757\) 2.65688 18.4790i 0.0965658 0.671630i −0.882832 0.469689i \(-0.844366\pi\)
0.979398 0.201941i \(-0.0647248\pi\)
\(758\) 0 0
\(759\) 7.65351 4.85172i 0.277805 0.176106i
\(760\) 0 0
\(761\) 4.20274 29.2307i 0.152349 1.05961i −0.759919 0.650018i \(-0.774761\pi\)
0.912268 0.409594i \(-0.134329\pi\)
\(762\) 0 0
\(763\) 5.63162 + 1.65359i 0.203878 + 0.0598641i
\(764\) 0 0
\(765\) −17.7643 + 5.21607i −0.642270 + 0.188587i
\(766\) 0 0
\(767\) −2.50177 + 5.47811i −0.0903337 + 0.197803i
\(768\) 0 0
\(769\) 21.1442 13.5886i 0.762480 0.490016i −0.100697 0.994917i \(-0.532107\pi\)
0.863177 + 0.504901i \(0.168471\pi\)
\(770\) 0 0
\(771\) 2.30582 + 16.0374i 0.0830422 + 0.577572i
\(772\) 0 0
\(773\) 25.2081 29.0917i 0.906672 1.04636i −0.0920471 0.995755i \(-0.529341\pi\)
0.998719 0.0506005i \(-0.0161135\pi\)
\(774\) 0 0
\(775\) 4.00801 + 2.57579i 0.143972 + 0.0925251i
\(776\) 0 0
\(777\) −1.30595 1.50715i −0.0468507 0.0540686i
\(778\) 0 0
\(779\) −10.7062 23.4434i −0.383591 0.839946i
\(780\) 0 0
\(781\) 32.1841 1.15164
\(782\) 0 0
\(783\) −22.6516 −0.809502
\(784\) 0 0
\(785\) −2.73892 5.99739i −0.0977562 0.214056i
\(786\) 0 0
\(787\) 29.6775 + 34.2496i 1.05789 + 1.22087i 0.974509 + 0.224349i \(0.0720257\pi\)
0.0833788 + 0.996518i \(0.473429\pi\)
\(788\) 0 0
\(789\) −1.76817 1.13634i −0.0629487 0.0404546i
\(790\) 0 0
\(791\) 2.52233 2.91092i 0.0896837 0.103500i
\(792\) 0 0
\(793\) −1.36559 9.49791i −0.0484936 0.337281i
\(794\) 0 0
\(795\) 4.17852 2.68537i 0.148197 0.0952404i
\(796\) <