Properties

Label 460.2.m.a.141.3
Level $460$
Weight $2$
Character 460.141
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 141.3
Character \(\chi\) \(=\) 460.141
Dual form 460.2.m.a.261.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.830167 - 1.81781i) q^{3} +(-0.654861 + 0.755750i) q^{5} +(2.04574 - 1.31472i) q^{7} +(-0.650684 - 0.750930i) q^{9} +O(q^{10})\) \(q+(0.830167 - 1.81781i) q^{3} +(-0.654861 + 0.755750i) q^{5} +(2.04574 - 1.31472i) q^{7} +(-0.650684 - 0.750930i) q^{9} +(0.564156 - 3.92379i) q^{11} +(-1.16364 - 0.747828i) q^{13} +(0.830167 + 1.81781i) q^{15} +(-1.96996 - 0.578433i) q^{17} +(5.29407 - 1.55448i) q^{19} +(-0.691603 - 4.81020i) q^{21} +(-2.85761 + 3.85150i) q^{23} +(-0.142315 - 0.989821i) q^{25} +(3.84714 - 1.12962i) q^{27} +(1.05491 + 0.309749i) q^{29} +(-2.31515 - 5.06948i) q^{31} +(-6.66437 - 4.28293i) q^{33} +(-0.346077 + 2.40702i) q^{35} +(-0.0422019 - 0.0487036i) q^{37} +(-2.32543 + 1.49446i) q^{39} +(2.21976 - 2.56174i) q^{41} +(-0.959509 + 2.10103i) q^{43} +0.993622 q^{45} -7.68342 q^{47} +(-0.451339 + 0.988295i) q^{49} +(-2.68688 + 3.10083i) q^{51} +(-4.52187 + 2.90603i) q^{53} +(2.59596 + 2.99590i) q^{55} +(1.56921 - 10.9141i) q^{57} +(7.86517 + 5.05464i) q^{59} +(2.66042 + 5.82552i) q^{61} +(-2.31839 - 0.680740i) q^{63} +(1.32719 - 0.389700i) q^{65} +(1.18289 + 8.22716i) q^{67} +(4.62901 + 8.39200i) q^{69} +(0.498794 + 3.46919i) q^{71} +(8.60074 - 2.52541i) q^{73} +(-1.91746 - 0.563016i) q^{75} +(-4.00455 - 8.76875i) q^{77} +(11.4618 + 7.36605i) q^{79} +(1.56455 - 10.8817i) q^{81} +(-0.379654 - 0.438144i) q^{83} +(1.72720 - 1.11001i) q^{85} +(1.43882 - 1.66048i) q^{87} +(-6.38520 + 13.9816i) q^{89} -3.36369 q^{91} -11.1373 q^{93} +(-2.29208 + 5.01896i) q^{95} +(2.97749 - 3.43621i) q^{97} +(-3.31358 + 2.12951i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{8}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.830167 1.81781i 0.479297 1.04951i −0.503359 0.864078i \(-0.667903\pi\)
0.982656 0.185437i \(-0.0593702\pi\)
\(4\) 0 0
\(5\) −0.654861 + 0.755750i −0.292863 + 0.337981i
\(6\) 0 0
\(7\) 2.04574 1.31472i 0.773216 0.496916i −0.0935597 0.995614i \(-0.529825\pi\)
0.866776 + 0.498698i \(0.166188\pi\)
\(8\) 0 0
\(9\) −0.650684 0.750930i −0.216895 0.250310i
\(10\) 0 0
\(11\) 0.564156 3.92379i 0.170099 1.18307i −0.708571 0.705639i \(-0.750660\pi\)
0.878671 0.477428i \(-0.158431\pi\)
\(12\) 0 0
\(13\) −1.16364 0.747828i −0.322736 0.207410i 0.369233 0.929337i \(-0.379620\pi\)
−0.691970 + 0.721927i \(0.743257\pi\)
\(14\) 0 0
\(15\) 0.830167 + 1.81781i 0.214348 + 0.469357i
\(16\) 0 0
\(17\) −1.96996 0.578433i −0.477786 0.140291i 0.0339675 0.999423i \(-0.489186\pi\)
−0.511754 + 0.859132i \(0.671004\pi\)
\(18\) 0 0
\(19\) 5.29407 1.55448i 1.21454 0.356622i 0.389147 0.921176i \(-0.372770\pi\)
0.825397 + 0.564553i \(0.190952\pi\)
\(20\) 0 0
\(21\) −0.691603 4.81020i −0.150920 1.04967i
\(22\) 0 0
\(23\) −2.85761 + 3.85150i −0.595854 + 0.803093i
\(24\) 0 0
\(25\) −0.142315 0.989821i −0.0284630 0.197964i
\(26\) 0 0
\(27\) 3.84714 1.12962i 0.740382 0.217396i
\(28\) 0 0
\(29\) 1.05491 + 0.309749i 0.195892 + 0.0575190i 0.378207 0.925721i \(-0.376541\pi\)
−0.182315 + 0.983240i \(0.558359\pi\)
\(30\) 0 0
\(31\) −2.31515 5.06948i −0.415814 0.910505i −0.995419 0.0956076i \(-0.969521\pi\)
0.579605 0.814897i \(-0.303207\pi\)
\(32\) 0 0
\(33\) −6.66437 4.28293i −1.16012 0.745563i
\(34\) 0 0
\(35\) −0.346077 + 2.40702i −0.0584978 + 0.406861i
\(36\) 0 0
\(37\) −0.0422019 0.0487036i −0.00693795 0.00800682i 0.752270 0.658855i \(-0.228959\pi\)
−0.759208 + 0.650848i \(0.774413\pi\)
\(38\) 0 0
\(39\) −2.32543 + 1.49446i −0.372367 + 0.239306i
\(40\) 0 0
\(41\) 2.21976 2.56174i 0.346669 0.400077i −0.555461 0.831543i \(-0.687458\pi\)
0.902129 + 0.431466i \(0.142004\pi\)
\(42\) 0 0
\(43\) −0.959509 + 2.10103i −0.146324 + 0.320404i −0.968576 0.248720i \(-0.919990\pi\)
0.822252 + 0.569124i \(0.192718\pi\)
\(44\) 0 0
\(45\) 0.993622 0.148120
\(46\) 0 0
\(47\) −7.68342 −1.12074 −0.560371 0.828242i \(-0.689342\pi\)
−0.560371 + 0.828242i \(0.689342\pi\)
\(48\) 0 0
\(49\) −0.451339 + 0.988295i −0.0644770 + 0.141185i
\(50\) 0 0
\(51\) −2.68688 + 3.10083i −0.376239 + 0.434203i
\(52\) 0 0
\(53\) −4.52187 + 2.90603i −0.621126 + 0.399173i −0.813015 0.582243i \(-0.802175\pi\)
0.191889 + 0.981417i \(0.438539\pi\)
\(54\) 0 0
\(55\) 2.59596 + 2.99590i 0.350039 + 0.403967i
\(56\) 0 0
\(57\) 1.56921 10.9141i 0.207847 1.44561i
\(58\) 0 0
\(59\) 7.86517 + 5.05464i 1.02396 + 0.658058i 0.940969 0.338493i \(-0.109917\pi\)
0.0829886 + 0.996550i \(0.473553\pi\)
\(60\) 0 0
\(61\) 2.66042 + 5.82552i 0.340632 + 0.745881i 0.999982 0.00595521i \(-0.00189561\pi\)
−0.659350 + 0.751836i \(0.729168\pi\)
\(62\) 0 0
\(63\) −2.31839 0.680740i −0.292089 0.0857652i
\(64\) 0 0
\(65\) 1.32719 0.389700i 0.164618 0.0483363i
\(66\) 0 0
\(67\) 1.18289 + 8.22716i 0.144513 + 1.00511i 0.925008 + 0.379947i \(0.124058\pi\)
−0.780496 + 0.625161i \(0.785033\pi\)
\(68\) 0 0
\(69\) 4.62901 + 8.39200i 0.557267 + 1.01028i
\(70\) 0 0
\(71\) 0.498794 + 3.46919i 0.0591960 + 0.411717i 0.997776 + 0.0666557i \(0.0212329\pi\)
−0.938580 + 0.345062i \(0.887858\pi\)
\(72\) 0 0
\(73\) 8.60074 2.52541i 1.00664 0.295576i 0.263462 0.964670i \(-0.415136\pi\)
0.743178 + 0.669093i \(0.233317\pi\)
\(74\) 0 0
\(75\) −1.91746 0.563016i −0.221409 0.0650115i
\(76\) 0 0
\(77\) −4.00455 8.76875i −0.456361 0.999292i
\(78\) 0 0
\(79\) 11.4618 + 7.36605i 1.28955 + 0.828745i 0.992034 0.125971i \(-0.0402047\pi\)
0.297518 + 0.954716i \(0.403841\pi\)
\(80\) 0 0
\(81\) 1.56455 10.8817i 0.173839 1.20908i
\(82\) 0 0
\(83\) −0.379654 0.438144i −0.0416725 0.0480926i 0.734531 0.678575i \(-0.237402\pi\)
−0.776203 + 0.630483i \(0.782857\pi\)
\(84\) 0 0
\(85\) 1.72720 1.11001i 0.187341 0.120397i
\(86\) 0 0
\(87\) 1.43882 1.66048i 0.154258 0.178023i
\(88\) 0 0
\(89\) −6.38520 + 13.9816i −0.676829 + 1.48205i 0.189139 + 0.981950i \(0.439430\pi\)
−0.865968 + 0.500099i \(0.833297\pi\)
\(90\) 0 0
\(91\) −3.36369 −0.352610
\(92\) 0 0
\(93\) −11.1373 −1.15489
\(94\) 0 0
\(95\) −2.29208 + 5.01896i −0.235163 + 0.514935i
\(96\) 0 0
\(97\) 2.97749 3.43621i 0.302318 0.348894i −0.584181 0.811623i \(-0.698584\pi\)
0.886500 + 0.462729i \(0.153130\pi\)
\(98\) 0 0
\(99\) −3.31358 + 2.12951i −0.333027 + 0.214023i
\(100\) 0 0
\(101\) 2.73995 + 3.16208i 0.272636 + 0.314638i 0.875512 0.483196i \(-0.160524\pi\)
−0.602876 + 0.797835i \(0.705979\pi\)
\(102\) 0 0
\(103\) −0.163176 + 1.13491i −0.0160782 + 0.111826i −0.996280 0.0861744i \(-0.972536\pi\)
0.980202 + 0.198001i \(0.0634449\pi\)
\(104\) 0 0
\(105\) 4.08821 + 2.62733i 0.398969 + 0.256402i
\(106\) 0 0
\(107\) 7.73575 + 16.9389i 0.747844 + 1.63755i 0.770203 + 0.637799i \(0.220155\pi\)
−0.0223591 + 0.999750i \(0.507118\pi\)
\(108\) 0 0
\(109\) 10.9621 + 3.21878i 1.04998 + 0.308303i 0.760811 0.648974i \(-0.224802\pi\)
0.289173 + 0.957277i \(0.406620\pi\)
\(110\) 0 0
\(111\) −0.123569 + 0.0362830i −0.0117286 + 0.00344383i
\(112\) 0 0
\(113\) −2.06483 14.3612i −0.194243 1.35099i −0.820623 0.571470i \(-0.806373\pi\)
0.626380 0.779518i \(-0.284536\pi\)
\(114\) 0 0
\(115\) −1.03943 4.68184i −0.0969272 0.436583i
\(116\) 0 0
\(117\) 0.195598 + 1.36041i 0.0180830 + 0.125770i
\(118\) 0 0
\(119\) −4.79050 + 1.40662i −0.439145 + 0.128945i
\(120\) 0 0
\(121\) −4.52343 1.32820i −0.411221 0.120745i
\(122\) 0 0
\(123\) −2.81399 6.16179i −0.253729 0.555590i
\(124\) 0 0
\(125\) 0.841254 + 0.540641i 0.0752440 + 0.0483564i
\(126\) 0 0
\(127\) −2.50855 + 17.4474i −0.222598 + 1.54820i 0.505558 + 0.862793i \(0.331287\pi\)
−0.728156 + 0.685412i \(0.759622\pi\)
\(128\) 0 0
\(129\) 3.02273 + 3.48842i 0.266136 + 0.307138i
\(130\) 0 0
\(131\) −10.7424 + 6.90375i −0.938571 + 0.603183i −0.917989 0.396605i \(-0.870188\pi\)
−0.0205819 + 0.999788i \(0.506552\pi\)
\(132\) 0 0
\(133\) 8.78659 10.1403i 0.761894 0.879272i
\(134\) 0 0
\(135\) −1.66563 + 3.64722i −0.143355 + 0.313903i
\(136\) 0 0
\(137\) −15.0353 −1.28456 −0.642278 0.766472i \(-0.722010\pi\)
−0.642278 + 0.766472i \(0.722010\pi\)
\(138\) 0 0
\(139\) −11.3870 −0.965835 −0.482917 0.875666i \(-0.660423\pi\)
−0.482917 + 0.875666i \(0.660423\pi\)
\(140\) 0 0
\(141\) −6.37853 + 13.9670i −0.537169 + 1.17624i
\(142\) 0 0
\(143\) −3.59079 + 4.14400i −0.300277 + 0.346539i
\(144\) 0 0
\(145\) −0.924912 + 0.594405i −0.0768098 + 0.0493626i
\(146\) 0 0
\(147\) 1.42185 + 1.64090i 0.117272 + 0.135339i
\(148\) 0 0
\(149\) −1.46920 + 10.2185i −0.120361 + 0.837132i 0.836786 + 0.547530i \(0.184432\pi\)
−0.957147 + 0.289602i \(0.906477\pi\)
\(150\) 0 0
\(151\) −14.5890 9.37578i −1.18724 0.762990i −0.210533 0.977587i \(-0.567520\pi\)
−0.976703 + 0.214596i \(0.931156\pi\)
\(152\) 0 0
\(153\) 0.847461 + 1.85568i 0.0685132 + 0.150023i
\(154\) 0 0
\(155\) 5.34736 + 1.57013i 0.429510 + 0.126116i
\(156\) 0 0
\(157\) −4.54991 + 1.33597i −0.363122 + 0.106622i −0.458204 0.888847i \(-0.651507\pi\)
0.0950815 + 0.995469i \(0.469689\pi\)
\(158\) 0 0
\(159\) 1.52871 + 10.6324i 0.121234 + 0.843204i
\(160\) 0 0
\(161\) −0.782304 + 11.6361i −0.0616542 + 0.917054i
\(162\) 0 0
\(163\) −3.17166 22.0594i −0.248423 1.72782i −0.607330 0.794449i \(-0.707760\pi\)
0.358907 0.933373i \(-0.383150\pi\)
\(164\) 0 0
\(165\) 7.60106 2.23187i 0.591742 0.173751i
\(166\) 0 0
\(167\) −8.08725 2.37463i −0.625810 0.183754i −0.0465748 0.998915i \(-0.514831\pi\)
−0.579235 + 0.815160i \(0.696649\pi\)
\(168\) 0 0
\(169\) −4.60558 10.0848i −0.354275 0.775754i
\(170\) 0 0
\(171\) −4.61207 2.96400i −0.352694 0.226663i
\(172\) 0 0
\(173\) 0.177194 1.23241i 0.0134718 0.0936985i −0.981976 0.189005i \(-0.939474\pi\)
0.995448 + 0.0953061i \(0.0303830\pi\)
\(174\) 0 0
\(175\) −1.59247 1.83781i −0.120380 0.138926i
\(176\) 0 0
\(177\) 15.7178 10.1012i 1.18142 0.759253i
\(178\) 0 0
\(179\) 16.7959 19.3835i 1.25539 1.44879i 0.412270 0.911062i \(-0.364736\pi\)
0.843116 0.537731i \(-0.180719\pi\)
\(180\) 0 0
\(181\) −0.610014 + 1.33575i −0.0453420 + 0.0992852i −0.930947 0.365153i \(-0.881017\pi\)
0.885605 + 0.464439i \(0.153744\pi\)
\(182\) 0 0
\(183\) 12.7983 0.946078
\(184\) 0 0
\(185\) 0.0644441 0.00473803
\(186\) 0 0
\(187\) −3.38102 + 7.40339i −0.247244 + 0.541390i
\(188\) 0 0
\(189\) 6.38511 7.36881i 0.464448 0.536002i
\(190\) 0 0
\(191\) 7.03671 4.52222i 0.509158 0.327216i −0.260712 0.965417i \(-0.583957\pi\)
0.769870 + 0.638200i \(0.220321\pi\)
\(192\) 0 0
\(193\) −14.8164 17.0990i −1.06651 1.23081i −0.971923 0.235297i \(-0.924394\pi\)
−0.0945831 0.995517i \(-0.530152\pi\)
\(194\) 0 0
\(195\) 0.393393 2.73611i 0.0281714 0.195937i
\(196\) 0 0
\(197\) −1.27617 0.820145i −0.0909234 0.0584329i 0.494389 0.869241i \(-0.335392\pi\)
−0.585313 + 0.810808i \(0.699028\pi\)
\(198\) 0 0
\(199\) 8.88774 + 19.4614i 0.630035 + 1.37958i 0.907991 + 0.418990i \(0.137616\pi\)
−0.277956 + 0.960594i \(0.589657\pi\)
\(200\) 0 0
\(201\) 15.9374 + 4.67965i 1.12414 + 0.330077i
\(202\) 0 0
\(203\) 2.56530 0.753241i 0.180049 0.0528671i
\(204\) 0 0
\(205\) 0.482400 + 3.35517i 0.0336923 + 0.234335i
\(206\) 0 0
\(207\) 4.75161 0.360242i 0.330260 0.0250386i
\(208\) 0 0
\(209\) −3.11277 21.6498i −0.215315 1.49755i
\(210\) 0 0
\(211\) 15.2178 4.46834i 1.04764 0.307613i 0.287774 0.957698i \(-0.407085\pi\)
0.759861 + 0.650085i \(0.225267\pi\)
\(212\) 0 0
\(213\) 6.72043 + 1.97329i 0.460476 + 0.135208i
\(214\) 0 0
\(215\) −0.959509 2.10103i −0.0654380 0.143289i
\(216\) 0 0
\(217\) −11.4011 7.32705i −0.773958 0.497393i
\(218\) 0 0
\(219\) 2.54934 17.7310i 0.172268 1.19815i
\(220\) 0 0
\(221\) 1.85976 + 2.14628i 0.125101 + 0.144375i
\(222\) 0 0
\(223\) 10.6248 6.82814i 0.711489 0.457246i −0.134178 0.990957i \(-0.542839\pi\)
0.845667 + 0.533711i \(0.179203\pi\)
\(224\) 0 0
\(225\) −0.650684 + 0.750930i −0.0433789 + 0.0500620i
\(226\) 0 0
\(227\) 1.64545 3.60303i 0.109212 0.239141i −0.847133 0.531381i \(-0.821673\pi\)
0.956345 + 0.292240i \(0.0944005\pi\)
\(228\) 0 0
\(229\) 9.63550 0.636731 0.318366 0.947968i \(-0.396866\pi\)
0.318366 + 0.947968i \(0.396866\pi\)
\(230\) 0 0
\(231\) −19.2644 −1.26750
\(232\) 0 0
\(233\) −5.41839 + 11.8646i −0.354970 + 0.777277i 0.644944 + 0.764229i \(0.276880\pi\)
−0.999915 + 0.0130473i \(0.995847\pi\)
\(234\) 0 0
\(235\) 5.03157 5.80674i 0.328224 0.378790i
\(236\) 0 0
\(237\) 22.9053 14.7203i 1.48786 0.956189i
\(238\) 0 0
\(239\) 2.99029 + 3.45097i 0.193425 + 0.223225i 0.844175 0.536067i \(-0.180091\pi\)
−0.650750 + 0.759292i \(0.725545\pi\)
\(240\) 0 0
\(241\) 2.32368 16.1615i 0.149681 1.04106i −0.767060 0.641575i \(-0.778281\pi\)
0.916741 0.399481i \(-0.130810\pi\)
\(242\) 0 0
\(243\) −8.36287 5.37449i −0.536478 0.344774i
\(244\) 0 0
\(245\) −0.451339 0.988295i −0.0288350 0.0631399i
\(246\) 0 0
\(247\) −7.32289 2.15020i −0.465945 0.136814i
\(248\) 0 0
\(249\) −1.11164 + 0.326407i −0.0704474 + 0.0206852i
\(250\) 0 0
\(251\) −0.232903 1.61988i −0.0147007 0.102246i 0.981150 0.193248i \(-0.0619021\pi\)
−0.995851 + 0.0910020i \(0.970993\pi\)
\(252\) 0 0
\(253\) 13.5003 + 13.3855i 0.848758 + 0.841541i
\(254\) 0 0
\(255\) −0.583915 4.06122i −0.0365662 0.254323i
\(256\) 0 0
\(257\) −8.58465 + 2.52068i −0.535496 + 0.157236i −0.538289 0.842760i \(-0.680929\pi\)
0.00279306 + 0.999996i \(0.499111\pi\)
\(258\) 0 0
\(259\) −0.150365 0.0441513i −0.00934326 0.00274343i
\(260\) 0 0
\(261\) −0.453813 0.993712i −0.0280903 0.0615092i
\(262\) 0 0
\(263\) −16.8397 10.8222i −1.03838 0.667327i −0.0937954 0.995591i \(-0.529900\pi\)
−0.944586 + 0.328264i \(0.893536\pi\)
\(264\) 0 0
\(265\) 0.764964 5.32044i 0.0469914 0.326832i
\(266\) 0 0
\(267\) 20.1152 + 23.2142i 1.23103 + 1.42069i
\(268\) 0 0
\(269\) −21.3404 + 13.7146i −1.30115 + 0.836196i −0.993336 0.115252i \(-0.963232\pi\)
−0.307810 + 0.951448i \(0.599596\pi\)
\(270\) 0 0
\(271\) 13.7243 15.8387i 0.833694 0.962135i −0.166018 0.986123i \(-0.553091\pi\)
0.999712 + 0.0239882i \(0.00763642\pi\)
\(272\) 0 0
\(273\) −2.79243 + 6.11456i −0.169005 + 0.370070i
\(274\) 0 0
\(275\) −3.96414 −0.239047
\(276\) 0 0
\(277\) −16.6596 −1.00098 −0.500488 0.865744i \(-0.666846\pi\)
−0.500488 + 0.865744i \(0.666846\pi\)
\(278\) 0 0
\(279\) −2.30039 + 5.03714i −0.137721 + 0.301566i
\(280\) 0 0
\(281\) −15.9331 + 18.3877i −0.950486 + 1.09692i 0.0447082 + 0.999000i \(0.485764\pi\)
−0.995194 + 0.0979194i \(0.968781\pi\)
\(282\) 0 0
\(283\) 14.9035 9.57790i 0.885921 0.569347i −0.0166625 0.999861i \(-0.505304\pi\)
0.902584 + 0.430514i \(0.141668\pi\)
\(284\) 0 0
\(285\) 7.22072 + 8.33316i 0.427719 + 0.493614i
\(286\) 0 0
\(287\) 1.17309 8.15901i 0.0692452 0.481611i
\(288\) 0 0
\(289\) −10.7551 6.91191i −0.632655 0.406583i
\(290\) 0 0
\(291\) −3.77456 8.26514i −0.221269 0.484511i
\(292\) 0 0
\(293\) −4.16568 1.22315i −0.243362 0.0714574i 0.157777 0.987475i \(-0.449567\pi\)
−0.401139 + 0.916017i \(0.631385\pi\)
\(294\) 0 0
\(295\) −8.97063 + 2.63401i −0.522290 + 0.153358i
\(296\) 0 0
\(297\) −2.26201 15.7327i −0.131255 0.912901i
\(298\) 0 0
\(299\) 6.20550 2.34477i 0.358873 0.135601i
\(300\) 0 0
\(301\) 0.799356 + 5.55964i 0.0460741 + 0.320452i
\(302\) 0 0
\(303\) 8.02268 2.35567i 0.460891 0.135330i
\(304\) 0 0
\(305\) −6.14484 1.80429i −0.351853 0.103313i
\(306\) 0 0
\(307\) 0.664753 + 1.45561i 0.0379395 + 0.0830759i 0.927653 0.373444i \(-0.121823\pi\)
−0.889713 + 0.456520i \(0.849096\pi\)
\(308\) 0 0
\(309\) 1.92760 + 1.23879i 0.109657 + 0.0704724i
\(310\) 0 0
\(311\) 1.85417 12.8960i 0.105140 0.731266i −0.867245 0.497882i \(-0.834111\pi\)
0.972385 0.233384i \(-0.0749798\pi\)
\(312\) 0 0
\(313\) 12.9467 + 14.9413i 0.731791 + 0.844532i 0.992672 0.120839i \(-0.0385585\pi\)
−0.260881 + 0.965371i \(0.584013\pi\)
\(314\) 0 0
\(315\) 2.03269 1.30633i 0.114529 0.0736034i
\(316\) 0 0
\(317\) −4.53048 + 5.22845i −0.254457 + 0.293659i −0.868578 0.495553i \(-0.834965\pi\)
0.614121 + 0.789212i \(0.289511\pi\)
\(318\) 0 0
\(319\) 1.81053 3.96450i 0.101370 0.221969i
\(320\) 0 0
\(321\) 37.2138 2.07707
\(322\) 0 0
\(323\) −11.3283 −0.630323
\(324\) 0 0
\(325\) −0.574612 + 1.25823i −0.0318738 + 0.0697938i
\(326\) 0 0
\(327\) 14.9516 17.2550i 0.826823 0.954204i
\(328\) 0 0
\(329\) −15.7183 + 10.1015i −0.866576 + 0.556915i
\(330\) 0 0
\(331\) 1.83553 + 2.11831i 0.100890 + 0.116433i 0.803949 0.594698i \(-0.202729\pi\)
−0.703059 + 0.711131i \(0.748183\pi\)
\(332\) 0 0
\(333\) −0.00911286 + 0.0633813i −0.000499382 + 0.00347328i
\(334\) 0 0
\(335\) −6.99230 4.49368i −0.382030 0.245516i
\(336\) 0 0
\(337\) −2.84670 6.23340i −0.155070 0.339555i 0.816113 0.577893i \(-0.196125\pi\)
−0.971182 + 0.238338i \(0.923397\pi\)
\(338\) 0 0
\(339\) −27.8201 8.16872i −1.51098 0.443664i
\(340\) 0 0
\(341\) −21.1977 + 6.22420i −1.14792 + 0.337059i
\(342\) 0 0
\(343\) 2.79855 + 19.4643i 0.151107 + 1.05097i
\(344\) 0 0
\(345\) −9.37360 1.99722i −0.504658 0.107527i
\(346\) 0 0
\(347\) −2.79773 19.4587i −0.150190 1.04460i −0.915899 0.401408i \(-0.868521\pi\)
0.765709 0.643187i \(-0.222388\pi\)
\(348\) 0 0
\(349\) −0.988890 + 0.290364i −0.0529341 + 0.0155429i −0.308092 0.951356i \(-0.599691\pi\)
0.255158 + 0.966899i \(0.417872\pi\)
\(350\) 0 0
\(351\) −5.32146 1.56252i −0.284039 0.0834012i
\(352\) 0 0
\(353\) 5.48906 + 12.0194i 0.292153 + 0.639726i 0.997615 0.0690216i \(-0.0219877\pi\)
−0.705462 + 0.708748i \(0.749260\pi\)
\(354\) 0 0
\(355\) −2.94848 1.89487i −0.156489 0.100569i
\(356\) 0 0
\(357\) −1.41995 + 9.87597i −0.0751517 + 0.522692i
\(358\) 0 0
\(359\) −2.53650 2.92728i −0.133871 0.154496i 0.684856 0.728679i \(-0.259865\pi\)
−0.818727 + 0.574183i \(0.805320\pi\)
\(360\) 0 0
\(361\) 9.62698 6.18689i 0.506683 0.325626i
\(362\) 0 0
\(363\) −6.16962 + 7.12012i −0.323821 + 0.373709i
\(364\) 0 0
\(365\) −3.72371 + 8.15379i −0.194908 + 0.426789i
\(366\) 0 0
\(367\) 5.49251 0.286707 0.143353 0.989672i \(-0.454211\pi\)
0.143353 + 0.989672i \(0.454211\pi\)
\(368\) 0 0
\(369\) −3.36805 −0.175334
\(370\) 0 0
\(371\) −5.42995 + 11.8899i −0.281909 + 0.617295i
\(372\) 0 0
\(373\) −21.5265 + 24.8430i −1.11460 + 1.28632i −0.160435 + 0.987046i \(0.551290\pi\)
−0.954167 + 0.299273i \(0.903256\pi\)
\(374\) 0 0
\(375\) 1.68117 1.08042i 0.0868150 0.0557926i
\(376\) 0 0
\(377\) −0.995899 1.14933i −0.0512914 0.0591934i
\(378\) 0 0
\(379\) −3.72560 + 25.9121i −0.191371 + 1.33102i 0.637011 + 0.770855i \(0.280171\pi\)
−0.828382 + 0.560163i \(0.810739\pi\)
\(380\) 0 0
\(381\) 29.6335 + 19.0443i 1.51817 + 0.975670i
\(382\) 0 0
\(383\) 9.32884 + 20.4273i 0.476682 + 1.04379i 0.983363 + 0.181654i \(0.0581449\pi\)
−0.506681 + 0.862134i \(0.669128\pi\)
\(384\) 0 0
\(385\) 9.24940 + 2.71587i 0.471393 + 0.138414i
\(386\) 0 0
\(387\) 2.20206 0.646584i 0.111937 0.0328677i
\(388\) 0 0
\(389\) −0.0620187 0.431350i −0.00314447 0.0218703i 0.988189 0.153241i \(-0.0489712\pi\)
−0.991333 + 0.131371i \(0.958062\pi\)
\(390\) 0 0
\(391\) 7.85723 5.93437i 0.397357 0.300114i
\(392\) 0 0
\(393\) 3.63170 + 25.2590i 0.183195 + 1.27415i
\(394\) 0 0
\(395\) −13.0728 + 3.83851i −0.657762 + 0.193136i
\(396\) 0 0
\(397\) −11.7881 3.46130i −0.591629 0.173718i −0.0278055 0.999613i \(-0.508852\pi\)
−0.563823 + 0.825895i \(0.690670\pi\)
\(398\) 0 0
\(399\) −11.1388 24.3905i −0.557636 1.22105i
\(400\) 0 0
\(401\) −19.7574 12.6973i −0.986639 0.634074i −0.0553925 0.998465i \(-0.517641\pi\)
−0.931246 + 0.364390i \(0.881277\pi\)
\(402\) 0 0
\(403\) −1.09709 + 7.63040i −0.0546497 + 0.380097i
\(404\) 0 0
\(405\) 7.19926 + 8.30839i 0.357734 + 0.412847i
\(406\) 0 0
\(407\) −0.214911 + 0.138115i −0.0106528 + 0.00684611i
\(408\) 0 0
\(409\) 8.71227 10.0545i 0.430794 0.497163i −0.498301 0.867004i \(-0.666042\pi\)
0.929095 + 0.369841i \(0.120588\pi\)
\(410\) 0 0
\(411\) −12.4818 + 27.3314i −0.615684 + 1.34816i
\(412\) 0 0
\(413\) 22.7355 1.11874
\(414\) 0 0
\(415\) 0.579748 0.0284587
\(416\) 0 0
\(417\) −9.45313 + 20.6995i −0.462922 + 1.01366i
\(418\) 0 0
\(419\) 25.9110 29.9029i 1.26584 1.46085i 0.438921 0.898526i \(-0.355361\pi\)
0.826915 0.562327i \(-0.190094\pi\)
\(420\) 0 0
\(421\) 25.8087 16.5863i 1.25784 0.808365i 0.269853 0.962901i \(-0.413025\pi\)
0.987987 + 0.154536i \(0.0493884\pi\)
\(422\) 0 0
\(423\) 4.99948 + 5.76971i 0.243083 + 0.280533i
\(424\) 0 0
\(425\) −0.292191 + 2.03223i −0.0141733 + 0.0985777i
\(426\) 0 0
\(427\) 13.1014 + 8.41978i 0.634023 + 0.407462i
\(428\) 0 0
\(429\) 4.55205 + 9.96761i 0.219775 + 0.481241i
\(430\) 0 0
\(431\) −31.0455 9.11579i −1.49541 0.439092i −0.571147 0.820848i \(-0.693501\pi\)
−0.924263 + 0.381756i \(0.875320\pi\)
\(432\) 0 0
\(433\) −9.33933 + 2.74227i −0.448820 + 0.131785i −0.498328 0.866988i \(-0.666053\pi\)
0.0495088 + 0.998774i \(0.484234\pi\)
\(434\) 0 0
\(435\) 0.312685 + 2.17477i 0.0149921 + 0.104272i
\(436\) 0 0
\(437\) −9.14134 + 24.8322i −0.437290 + 1.18789i
\(438\) 0 0
\(439\) −4.78758 33.2983i −0.228499 1.58924i −0.704439 0.709765i \(-0.748801\pi\)
0.475940 0.879478i \(-0.342108\pi\)
\(440\) 0 0
\(441\) 1.03582 0.304144i 0.0493247 0.0144830i
\(442\) 0 0
\(443\) 11.5726 + 3.39801i 0.549828 + 0.161444i 0.544835 0.838543i \(-0.316592\pi\)
0.00499356 + 0.999988i \(0.498410\pi\)
\(444\) 0 0
\(445\) −6.38520 13.9816i −0.302687 0.662793i
\(446\) 0 0
\(447\) 17.3556 + 11.1538i 0.820894 + 0.527556i
\(448\) 0 0
\(449\) 2.19719 15.2818i 0.103692 0.721192i −0.869955 0.493131i \(-0.835852\pi\)
0.973647 0.228061i \(-0.0732386\pi\)
\(450\) 0 0
\(451\) −8.79944 10.1551i −0.414350 0.478185i
\(452\) 0 0
\(453\) −29.1547 + 18.7366i −1.36981 + 0.880323i
\(454\) 0 0
\(455\) 2.20275 2.54211i 0.103266 0.119176i
\(456\) 0 0
\(457\) −11.7446 + 25.7171i −0.549390 + 1.20300i 0.407677 + 0.913126i \(0.366339\pi\)
−0.957066 + 0.289869i \(0.906388\pi\)
\(458\) 0 0
\(459\) −8.23213 −0.384243
\(460\) 0 0
\(461\) 31.5443 1.46916 0.734582 0.678520i \(-0.237378\pi\)
0.734582 + 0.678520i \(0.237378\pi\)
\(462\) 0 0
\(463\) −15.7978 + 34.5924i −0.734186 + 1.60764i 0.0587017 + 0.998276i \(0.481304\pi\)
−0.792888 + 0.609368i \(0.791423\pi\)
\(464\) 0 0
\(465\) 7.29340 8.41703i 0.338223 0.390330i
\(466\) 0 0
\(467\) 26.7034 17.1613i 1.23569 0.794129i 0.250921 0.968008i \(-0.419267\pi\)
0.984767 + 0.173879i \(0.0556302\pi\)
\(468\) 0 0
\(469\) 13.2363 + 15.2755i 0.611194 + 0.705355i
\(470\) 0 0
\(471\) −1.34864 + 9.37997i −0.0621419 + 0.432206i
\(472\) 0 0
\(473\) 7.70269 + 4.95022i 0.354170 + 0.227611i
\(474\) 0 0
\(475\) −2.29208 5.01896i −0.105168 0.230286i
\(476\) 0 0
\(477\) 5.12453 + 1.50470i 0.234636 + 0.0688953i
\(478\) 0 0
\(479\) 26.0551 7.65047i 1.19049 0.349559i 0.374279 0.927316i \(-0.377890\pi\)
0.816209 + 0.577757i \(0.196072\pi\)
\(480\) 0 0
\(481\) 0.0126860 + 0.0882334i 0.000578434 + 0.00402310i
\(482\) 0 0
\(483\) 20.5028 + 11.0820i 0.932911 + 0.504248i
\(484\) 0 0
\(485\) 0.647070 + 4.50047i 0.0293819 + 0.204356i
\(486\) 0 0
\(487\) 30.2572 8.88431i 1.37108 0.402587i 0.488427 0.872605i \(-0.337571\pi\)
0.882657 + 0.470018i \(0.155753\pi\)
\(488\) 0 0
\(489\) −42.7328 12.5475i −1.93244 0.567417i
\(490\) 0 0
\(491\) 6.57992 + 14.4080i 0.296948 + 0.650225i 0.998022 0.0628632i \(-0.0200232\pi\)
−0.701074 + 0.713088i \(0.747296\pi\)
\(492\) 0 0
\(493\) −1.89896 1.22039i −0.0855250 0.0549636i
\(494\) 0 0
\(495\) 0.560558 3.89876i 0.0251952 0.175236i
\(496\) 0 0
\(497\) 5.58140 + 6.44128i 0.250360 + 0.288931i
\(498\) 0 0
\(499\) −26.2531 + 16.8719i −1.17525 + 0.755289i −0.974508 0.224355i \(-0.927973\pi\)
−0.200745 + 0.979644i \(0.564336\pi\)
\(500\) 0 0
\(501\) −11.0304 + 12.7298i −0.492802 + 0.568724i
\(502\) 0 0
\(503\) 8.82583 19.3259i 0.393525 0.861699i −0.604361 0.796710i \(-0.706572\pi\)
0.997886 0.0649883i \(-0.0207010\pi\)
\(504\) 0 0
\(505\) −4.18403 −0.186187
\(506\) 0 0
\(507\) −22.1557 −0.983969
\(508\) 0 0
\(509\) 4.99889 10.9460i 0.221572 0.485175i −0.765902 0.642957i \(-0.777707\pi\)
0.987474 + 0.157782i \(0.0504345\pi\)
\(510\) 0 0
\(511\) 14.2747 16.4738i 0.631474 0.728760i
\(512\) 0 0
\(513\) 18.6111 11.9606i 0.821699 0.528074i
\(514\) 0 0
\(515\) −0.750853 0.866531i −0.0330865 0.0381839i
\(516\) 0 0
\(517\) −4.33465 + 30.1481i −0.190638 + 1.32591i
\(518\) 0 0
\(519\) −2.09319 1.34521i −0.0918809 0.0590483i
\(520\) 0 0
\(521\) 17.0912 + 37.4246i 0.748780 + 1.63960i 0.768545 + 0.639796i \(0.220981\pi\)
−0.0197647 + 0.999805i \(0.506292\pi\)
\(522\) 0 0
\(523\) −28.5604 8.38608i −1.24886 0.366697i −0.410521 0.911851i \(-0.634653\pi\)
−0.838336 + 0.545154i \(0.816471\pi\)
\(524\) 0 0
\(525\) −4.66282 + 1.36913i −0.203502 + 0.0597536i
\(526\) 0 0
\(527\) 1.62841 + 11.3258i 0.0709347 + 0.493361i
\(528\) 0 0
\(529\) −6.66808 22.0122i −0.289917 0.957052i
\(530\) 0 0
\(531\) −1.32206 9.19516i −0.0573727 0.399036i
\(532\) 0 0
\(533\) −4.49875 + 1.32095i −0.194863 + 0.0572168i
\(534\) 0 0
\(535\) −17.8674 5.24635i −0.772477 0.226820i
\(536\) 0 0
\(537\) −21.2922 46.6234i −0.918826 2.01195i
\(538\) 0 0
\(539\) 3.62324 + 2.32851i 0.156064 + 0.100296i
\(540\) 0 0
\(541\) 2.45801 17.0958i 0.105678 0.735006i −0.866230 0.499645i \(-0.833464\pi\)
0.971908 0.235361i \(-0.0756273\pi\)
\(542\) 0 0
\(543\) 1.92172 + 2.21778i 0.0824689 + 0.0951742i
\(544\) 0 0
\(545\) −9.61127 + 6.17679i −0.411702 + 0.264585i
\(546\) 0 0
\(547\) −17.8088 + 20.5525i −0.761449 + 0.878759i −0.995625 0.0934348i \(-0.970215\pi\)
0.234176 + 0.972194i \(0.424761\pi\)
\(548\) 0 0
\(549\) 2.64346 5.78836i 0.112820 0.247041i
\(550\) 0 0
\(551\) 6.06627 0.258432
\(552\) 0 0
\(553\) 33.1321 1.40892
\(554\) 0 0
\(555\) 0.0534994 0.117147i 0.00227092 0.00497263i
\(556\) 0 0
\(557\) 8.39493 9.68827i 0.355705 0.410505i −0.549491 0.835499i \(-0.685178\pi\)
0.905196 + 0.424994i \(0.139724\pi\)
\(558\) 0 0
\(559\) 2.68774 1.72730i 0.113679 0.0730571i
\(560\) 0 0
\(561\) 10.6512 + 12.2921i 0.449693 + 0.518973i
\(562\) 0 0
\(563\) −0.519286 + 3.61171i −0.0218853 + 0.152215i −0.997834 0.0657858i \(-0.979045\pi\)
0.975948 + 0.218001i \(0.0699537\pi\)
\(564\) 0 0
\(565\) 12.2056 + 7.84409i 0.513495 + 0.330003i
\(566\) 0 0
\(567\) −11.1057 24.3180i −0.466394 1.02126i
\(568\) 0 0
\(569\) −27.6023 8.10475i −1.15715 0.339769i −0.353823 0.935312i \(-0.615119\pi\)
−0.803323 + 0.595543i \(0.796937\pi\)
\(570\) 0 0
\(571\) 0.0347198 0.0101946i 0.00145298 0.000426633i −0.281006 0.959706i \(-0.590668\pi\)
0.282459 + 0.959279i \(0.408850\pi\)
\(572\) 0 0
\(573\) −2.37890 16.5456i −0.0993800 0.691203i
\(574\) 0 0
\(575\) 4.21898 + 2.28040i 0.175943 + 0.0950994i
\(576\) 0 0
\(577\) 4.09990 + 28.5154i 0.170681 + 1.18711i 0.877450 + 0.479668i \(0.159243\pi\)
−0.706769 + 0.707444i \(0.749848\pi\)
\(578\) 0 0
\(579\) −43.3829 + 12.7384i −1.80293 + 0.529388i
\(580\) 0 0
\(581\) −1.35271 0.397191i −0.0561198 0.0164783i
\(582\) 0 0
\(583\) 8.85160 + 19.3823i 0.366596 + 0.802733i
\(584\) 0 0
\(585\) −1.15622 0.743058i −0.0478039 0.0307217i
\(586\) 0 0
\(587\) −2.43111 + 16.9087i −0.100343 + 0.697898i 0.876101 + 0.482127i \(0.160136\pi\)
−0.976444 + 0.215771i \(0.930773\pi\)
\(588\) 0 0
\(589\) −20.1370 23.2393i −0.829730 0.957559i
\(590\) 0 0
\(591\) −2.55031 + 1.63898i −0.104906 + 0.0674187i
\(592\) 0 0
\(593\) 21.1426 24.3998i 0.868221 1.00198i −0.131722 0.991287i \(-0.542051\pi\)
0.999943 0.0106933i \(-0.00340386\pi\)
\(594\) 0 0
\(595\) 2.07406 4.54156i 0.0850282 0.186186i
\(596\) 0 0
\(597\) 42.7555 1.74987
\(598\) 0 0
\(599\) −12.8678 −0.525763 −0.262881 0.964828i \(-0.584673\pi\)
−0.262881 + 0.964828i \(0.584673\pi\)
\(600\) 0 0
\(601\) −4.13972 + 9.06471i −0.168863 + 0.369757i −0.975077 0.221866i \(-0.928785\pi\)
0.806215 + 0.591623i \(0.201513\pi\)
\(602\) 0 0
\(603\) 5.40833 6.24155i 0.220244 0.254176i
\(604\) 0 0
\(605\) 3.96600 2.54879i 0.161241 0.103623i
\(606\) 0 0
\(607\) −15.3791 17.7484i −0.624218 0.720386i 0.352284 0.935893i \(-0.385405\pi\)
−0.976502 + 0.215507i \(0.930860\pi\)
\(608\) 0 0
\(609\) 0.760379 5.28855i 0.0308121 0.214303i
\(610\) 0 0
\(611\) 8.94076 + 5.74588i 0.361704 + 0.232453i
\(612\) 0 0
\(613\) −1.39823 3.06169i −0.0564738 0.123660i 0.879291 0.476284i \(-0.158017\pi\)
−0.935765 + 0.352624i \(0.885289\pi\)
\(614\) 0 0
\(615\) 6.49954 + 1.90844i 0.262087 + 0.0769556i
\(616\) 0 0
\(617\) 9.99059 2.93350i 0.402206 0.118098i −0.0743718 0.997231i \(-0.523695\pi\)
0.476578 + 0.879132i \(0.341877\pi\)
\(618\) 0 0
\(619\) 5.54344 + 38.5555i 0.222810 + 1.54968i 0.727337 + 0.686281i \(0.240758\pi\)
−0.504527 + 0.863396i \(0.668333\pi\)
\(620\) 0 0
\(621\) −6.64290 + 18.0453i −0.266571 + 0.724132i
\(622\) 0 0
\(623\) 5.31943 + 36.9975i 0.213119 + 1.48227i
\(624\) 0 0
\(625\) −0.959493 + 0.281733i −0.0383797 + 0.0112693i
\(626\) 0 0
\(627\) −41.9394 12.3145i −1.67490 0.491795i
\(628\) 0 0
\(629\) 0.0549644 + 0.120355i 0.00219157 + 0.00479888i
\(630\) 0 0
\(631\) −38.1033 24.4875i −1.51687 0.974832i −0.992353 0.123430i \(-0.960610\pi\)
−0.524515 0.851401i \(-0.675753\pi\)
\(632\) 0 0
\(633\) 4.51069 31.3725i 0.179284 1.24695i
\(634\) 0 0
\(635\) −11.5431 13.3214i −0.458074 0.528645i
\(636\) 0 0
\(637\) 1.26427 0.812499i 0.0500923 0.0321924i
\(638\) 0 0
\(639\) 2.28056 2.63191i 0.0902176 0.104117i
\(640\) 0 0
\(641\) 3.71443 8.13347i 0.146711 0.321253i −0.821982 0.569513i \(-0.807132\pi\)
0.968693 + 0.248261i \(0.0798590\pi\)
\(642\) 0 0
\(643\) −10.0281 −0.395470 −0.197735 0.980256i \(-0.563359\pi\)
−0.197735 + 0.980256i \(0.563359\pi\)
\(644\) 0 0
\(645\) −4.61583 −0.181748
\(646\) 0 0
\(647\) 10.3949 22.7616i 0.408665 0.894851i −0.587653 0.809113i \(-0.699948\pi\)
0.996318 0.0857382i \(-0.0273248\pi\)
\(648\) 0 0
\(649\) 24.2705 28.0097i 0.952701 1.09948i
\(650\) 0 0
\(651\) −22.7840 + 14.6424i −0.892977 + 0.573882i
\(652\) 0 0
\(653\) −15.4884 17.8745i −0.606107 0.699485i 0.366900 0.930260i \(-0.380419\pi\)
−0.973007 + 0.230776i \(0.925874\pi\)
\(654\) 0 0
\(655\) 1.81730 12.6396i 0.0710077 0.493869i
\(656\) 0 0
\(657\) −7.49277 4.81531i −0.292321 0.187863i
\(658\) 0 0
\(659\) 0.187104 + 0.409701i 0.00728855 + 0.0159597i 0.913241 0.407419i \(-0.133571\pi\)
−0.905953 + 0.423379i \(0.860844\pi\)
\(660\) 0 0
\(661\) 3.67355 + 1.07865i 0.142884 + 0.0419547i 0.352393 0.935852i \(-0.385368\pi\)
−0.209508 + 0.977807i \(0.567186\pi\)
\(662\) 0 0
\(663\) 5.44546 1.59893i 0.211484 0.0620973i
\(664\) 0 0
\(665\) 1.90951 + 13.2809i 0.0740475 + 0.515012i
\(666\) 0 0
\(667\) −4.20753 + 3.17784i −0.162916 + 0.123046i
\(668\) 0 0
\(669\) −3.59193 24.9824i −0.138872 0.965875i
\(670\) 0 0
\(671\) 24.3590 7.15245i 0.940369 0.276117i
\(672\) 0 0
\(673\) 1.27743 + 0.375089i 0.0492415 + 0.0144586i 0.306261 0.951948i \(-0.400922\pi\)
−0.257019 + 0.966406i \(0.582740\pi\)
\(674\) 0 0
\(675\) −1.66563 3.64722i −0.0641101 0.140382i
\(676\) 0 0
\(677\) −33.5184 21.5410i −1.28822 0.827886i −0.296339 0.955083i \(-0.595766\pi\)
−0.991878 + 0.127196i \(0.959402\pi\)
\(678\) 0 0
\(679\) 1.57353 10.9441i 0.0603865 0.419997i
\(680\) 0 0
\(681\) −5.18363 5.98223i −0.198637 0.229240i
\(682\) 0 0
\(683\) 31.4203 20.1926i 1.20226 0.772648i 0.222917 0.974837i \(-0.428442\pi\)
0.979346 + 0.202190i \(0.0648058\pi\)
\(684\) 0 0
\(685\) 9.84605 11.3630i 0.376198 0.434156i
\(686\) 0 0
\(687\) 7.99907 17.5155i 0.305184 0.668259i
\(688\) 0 0
\(689\) 7.43504 0.283253
\(690\) 0 0
\(691\) 4.24076 0.161326 0.0806631 0.996741i \(-0.474296\pi\)
0.0806631 + 0.996741i \(0.474296\pi\)
\(692\) 0 0
\(693\) −3.97901 + 8.71282i −0.151150 + 0.330973i
\(694\) 0 0
\(695\) 7.45691 8.60574i 0.282857 0.326434i
\(696\) 0 0
\(697\) −5.85464 + 3.76255i −0.221760 + 0.142517i
\(698\) 0 0
\(699\) 17.0695 + 19.6992i 0.645627 + 0.745093i
\(700\) 0 0
\(701\) −2.98097 + 20.7331i −0.112590 + 0.783080i 0.852794 + 0.522247i \(0.174906\pi\)
−0.965384 + 0.260833i \(0.916003\pi\)
\(702\) 0 0
\(703\) −0.299129 0.192238i −0.0112819 0.00725041i
\(704\) 0 0
\(705\) −6.37853 13.9670i −0.240229 0.526029i
\(706\) 0 0
\(707\) 9.76246 + 2.86652i 0.367155 + 0.107806i
\(708\) 0 0
\(709\) 7.66142 2.24960i 0.287731 0.0844854i −0.134682 0.990889i \(-0.543001\pi\)
0.422413 + 0.906403i \(0.361183\pi\)
\(710\) 0 0
\(711\) −1.92662 13.4000i −0.0722541 0.502538i
\(712\) 0 0
\(713\) 26.1409 + 5.56980i 0.978984 + 0.208591i
\(714\) 0 0
\(715\) −0.780354 5.42748i −0.0291836 0.202976i
\(716\) 0 0
\(717\) 8.75566 2.57089i 0.326986 0.0960118i
\(718\) 0 0
\(719\) 1.22780 + 0.360514i 0.0457891 + 0.0134449i 0.304547 0.952497i \(-0.401495\pi\)
−0.258758 + 0.965942i \(0.583313\pi\)
\(720\) 0 0
\(721\) 1.15827 + 2.53627i 0.0431364 + 0.0944555i
\(722\) 0 0
\(723\) −27.4496 17.6408i −1.02086 0.656068i
\(724\) 0 0
\(725\) 0.156467 1.08825i 0.00581105 0.0404168i
\(726\) 0 0
\(727\) 16.3968 + 18.9229i 0.608122 + 0.701810i 0.973406 0.229086i \(-0.0735737\pi\)
−0.365284 + 0.930896i \(0.619028\pi\)
\(728\) 0 0
\(729\) 11.0328 7.09033i 0.408621 0.262605i
\(730\) 0 0
\(731\) 3.10550 3.58394i 0.114861 0.132557i
\(732\) 0 0
\(733\) 11.4497 25.0713i 0.422903 0.926028i −0.571523 0.820586i \(-0.693647\pi\)
0.994425 0.105442i \(-0.0336256\pi\)
\(734\) 0 0
\(735\) −2.17122 −0.0800868
\(736\) 0 0
\(737\) 32.9490 1.21369
\(738\) 0 0
\(739\) −18.7923 + 41.1494i −0.691286 + 1.51371i 0.158940 + 0.987288i \(0.449192\pi\)
−0.850226 + 0.526417i \(0.823535\pi\)
\(740\) 0 0
\(741\) −9.98788 + 11.5266i −0.366914 + 0.423441i
\(742\) 0 0
\(743\) 28.6357 18.4030i 1.05054 0.675142i 0.102969 0.994685i \(-0.467166\pi\)
0.947572 + 0.319543i \(0.103529\pi\)
\(744\) 0 0
\(745\) −6.76051 7.80204i −0.247686 0.285845i
\(746\) 0 0
\(747\) −0.0819806 + 0.570187i −0.00299951 + 0.0208621i
\(748\) 0 0
\(749\) 38.0952 + 24.4823i 1.39197 + 0.894564i
\(750\) 0 0
\(751\) −6.01594 13.1731i −0.219525 0.480692i 0.767543 0.640998i \(-0.221479\pi\)
−0.987067 + 0.160306i \(0.948752\pi\)
\(752\) 0 0
\(753\) −3.13798 0.921395i −0.114354 0.0335775i
\(754\) 0 0
\(755\) 16.6395 4.88580i 0.605574 0.177812i
\(756\) 0 0
\(757\) 4.01110 + 27.8978i 0.145786 + 1.01396i 0.923020 + 0.384752i \(0.125713\pi\)
−0.777234 + 0.629211i \(0.783378\pi\)
\(758\) 0 0
\(759\) 35.5399 13.4289i 1.29002 0.487436i
\(760\) 0 0
\(761\) 2.60515 + 18.1192i 0.0944367 + 0.656822i 0.980970 + 0.194158i \(0.0621973\pi\)
−0.886534 + 0.462664i \(0.846894\pi\)
\(762\) 0 0
\(763\) 26.6575 7.82734i 0.965065 0.283369i
\(764\) 0 0
\(765\) −1.95740 0.574744i −0.0707699 0.0207799i
\(766\) 0 0
\(767\) −5.37225 11.7636i −0.193981 0.424758i
\(768\) 0 0
\(769\) −43.8623 28.1886i −1.58172 1.01651i −0.975169 0.221460i \(-0.928918\pi\)
−0.606547 0.795048i \(-0.707446\pi\)
\(770\) 0 0
\(771\) −2.54457 + 17.6979i −0.0916405 + 0.637374i
\(772\) 0 0
\(773\) 4.41755 + 5.09813i 0.158888 + 0.183367i 0.829612 0.558341i \(-0.188562\pi\)
−0.670724 + 0.741707i \(0.734016\pi\)
\(774\) 0 0
\(775\) −4.68840 + 3.01305i −0.168412 + 0.108232i
\(776\) 0 0
\(777\) −0.205087 + 0.236683i −0.00735747 + 0.00849097i
\(778\) 0 0
\(779\) 7.76940 17.0126i 0.278368 0.609540i
\(780\) 0 0
\(781\) 13.8938 0.497158
\(782\) 0 0
\(783\) 4.40829 0.157539
\(784\) 0 0
\(785\) 1.96990 4.31347i 0.0703086 0.153954i
\(786\) 0 0
\(787\) 15.6455 18.0559i 0.557702 0.643622i −0.404958 0.914335i \(-0.632714\pi\)
0.962660 + 0.270713i \(0.0872594\pi\)
\(788\) 0 0
\(789\) −33.6526 + 21.6272i −1.19806 + 0.769948i
\(790\) 0 0
\(791\) −23.1050 26.6646i −0.821519 0.948083i
\(792\) 0 0
\(793\) 1.26070 8.76836i 0.0447688 0.311374i
\(794\) 0 0
\(795\) −9.03652 5.80742i −0.320492 0.205968i
\(796\) 0 </