Properties

Label 460.2.m.a.121.2
Level $460$
Weight $2$
Character 460.121
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 121.2
Character \(\chi\) \(=\) 460.121
Dual form 460.2.m.a.441.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0447663 + 0.0131446i) q^{3} +(0.841254 - 0.540641i) q^{5} +(0.423834 - 2.94783i) q^{7} +(-2.52193 - 1.62075i) q^{9} +O(q^{10})\) \(q+(0.0447663 + 0.0131446i) q^{3} +(0.841254 - 0.540641i) q^{5} +(0.423834 - 2.94783i) q^{7} +(-2.52193 - 1.62075i) q^{9} +(0.116050 + 0.254114i) q^{11} +(-0.287174 - 1.99734i) q^{13} +(0.0447663 - 0.0131446i) q^{15} +(1.46880 - 1.69508i) q^{17} +(-2.64237 - 3.04946i) q^{19} +(0.0577214 - 0.126392i) q^{21} +(2.21614 + 4.25308i) q^{23} +(0.415415 - 0.909632i) q^{25} +(-0.183253 - 0.211486i) q^{27} +(4.42317 - 5.10461i) q^{29} +(-3.52347 + 1.03458i) q^{31} +(0.00185491 + 0.0129012i) q^{33} +(-1.23716 - 2.70901i) q^{35} +(5.26609 + 3.38431i) q^{37} +(0.0133984 - 0.0931882i) q^{39} +(7.90965 - 5.08323i) q^{41} +(1.04239 + 0.306072i) q^{43} -2.99782 q^{45} -4.44460 q^{47} +(-1.79360 - 0.526649i) q^{49} +(0.0880338 - 0.0565759i) q^{51} +(-0.0276399 + 0.192240i) q^{53} +(0.235012 + 0.151033i) q^{55} +(-0.0782053 - 0.171246i) q^{57} +(-1.27607 - 8.87523i) q^{59} +(-2.28267 + 0.670253i) q^{61} +(-5.84656 + 6.74729i) q^{63} +(-1.32143 - 1.52501i) q^{65} +(-4.17476 + 9.14146i) q^{67} +(0.0433035 + 0.219525i) q^{69} +(-5.39907 + 11.8223i) q^{71} +(8.19579 + 9.45844i) q^{73} +(0.0305533 - 0.0352604i) q^{75} +(0.798272 - 0.234394i) q^{77} +(-0.917054 - 6.37825i) q^{79} +(3.73060 + 8.16887i) q^{81} +(7.09216 + 4.55785i) q^{83} +(0.319200 - 2.22009i) q^{85} +(0.265107 - 0.170374i) q^{87} +(0.984393 + 0.289044i) q^{89} -6.00952 q^{91} -0.171332 q^{93} +(-3.87156 - 1.13679i) q^{95} +(-10.8010 + 6.94136i) q^{97} +(0.119185 - 0.828946i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0447663 + 0.0131446i 0.0258458 + 0.00758902i 0.294630 0.955611i \(-0.404804\pi\)
−0.268784 + 0.963200i \(0.586622\pi\)
\(4\) 0 0
\(5\) 0.841254 0.540641i 0.376220 0.241782i
\(6\) 0 0
\(7\) 0.423834 2.94783i 0.160194 1.11417i −0.738072 0.674722i \(-0.764264\pi\)
0.898266 0.439452i \(-0.144827\pi\)
\(8\) 0 0
\(9\) −2.52193 1.62075i −0.840643 0.540249i
\(10\) 0 0
\(11\) 0.116050 + 0.254114i 0.0349904 + 0.0766184i 0.926320 0.376737i \(-0.122954\pi\)
−0.891330 + 0.453356i \(0.850227\pi\)
\(12\) 0 0
\(13\) −0.287174 1.99734i −0.0796477 0.553962i −0.990102 0.140352i \(-0.955177\pi\)
0.910454 0.413610i \(-0.135732\pi\)
\(14\) 0 0
\(15\) 0.0447663 0.0131446i 0.0115586 0.00339391i
\(16\) 0 0
\(17\) 1.46880 1.69508i 0.356236 0.411118i −0.549139 0.835731i \(-0.685044\pi\)
0.905375 + 0.424613i \(0.139590\pi\)
\(18\) 0 0
\(19\) −2.64237 3.04946i −0.606201 0.699593i 0.366825 0.930290i \(-0.380445\pi\)
−0.973026 + 0.230697i \(0.925899\pi\)
\(20\) 0 0
\(21\) 0.0577214 0.126392i 0.0125958 0.0275811i
\(22\) 0 0
\(23\) 2.21614 + 4.25308i 0.462097 + 0.886829i
\(24\) 0 0
\(25\) 0.415415 0.909632i 0.0830830 0.181926i
\(26\) 0 0
\(27\) −0.183253 0.211486i −0.0352671 0.0407005i
\(28\) 0 0
\(29\) 4.42317 5.10461i 0.821362 0.947903i −0.177985 0.984033i \(-0.556958\pi\)
0.999347 + 0.0361307i \(0.0115032\pi\)
\(30\) 0 0
\(31\) −3.52347 + 1.03458i −0.632833 + 0.185817i −0.582389 0.812910i \(-0.697882\pi\)
−0.0504442 + 0.998727i \(0.516064\pi\)
\(32\) 0 0
\(33\) 0.00185491 + 0.0129012i 0.000322899 + 0.00224581i
\(34\) 0 0
\(35\) −1.23716 2.70901i −0.209119 0.457907i
\(36\) 0 0
\(37\) 5.26609 + 3.38431i 0.865739 + 0.556377i 0.896447 0.443151i \(-0.146140\pi\)
−0.0307073 + 0.999528i \(0.509776\pi\)
\(38\) 0 0
\(39\) 0.0133984 0.0931882i 0.00214547 0.0149221i
\(40\) 0 0
\(41\) 7.90965 5.08323i 1.23528 0.793866i 0.250575 0.968097i \(-0.419380\pi\)
0.984705 + 0.174231i \(0.0557438\pi\)
\(42\) 0 0
\(43\) 1.04239 + 0.306072i 0.158962 + 0.0466756i 0.360245 0.932858i \(-0.382693\pi\)
−0.201283 + 0.979533i \(0.564511\pi\)
\(44\) 0 0
\(45\) −2.99782 −0.446889
\(46\) 0 0
\(47\) −4.44460 −0.648312 −0.324156 0.946004i \(-0.605080\pi\)
−0.324156 + 0.946004i \(0.605080\pi\)
\(48\) 0 0
\(49\) −1.79360 0.526649i −0.256229 0.0752356i
\(50\) 0 0
\(51\) 0.0880338 0.0565759i 0.0123272 0.00792221i
\(52\) 0 0
\(53\) −0.0276399 + 0.192240i −0.00379663 + 0.0264062i −0.991632 0.129099i \(-0.958791\pi\)
0.987835 + 0.155505i \(0.0497006\pi\)
\(54\) 0 0
\(55\) 0.235012 + 0.151033i 0.0316890 + 0.0203653i
\(56\) 0 0
\(57\) −0.0782053 0.171246i −0.0103585 0.0226821i
\(58\) 0 0
\(59\) −1.27607 8.87523i −0.166130 1.15546i −0.886792 0.462170i \(-0.847071\pi\)
0.720662 0.693287i \(-0.243838\pi\)
\(60\) 0 0
\(61\) −2.28267 + 0.670253i −0.292266 + 0.0858171i −0.424579 0.905391i \(-0.639578\pi\)
0.132313 + 0.991208i \(0.457760\pi\)
\(62\) 0 0
\(63\) −5.84656 + 6.74729i −0.736597 + 0.850078i
\(64\) 0 0
\(65\) −1.32143 1.52501i −0.163903 0.189154i
\(66\) 0 0
\(67\) −4.17476 + 9.14146i −0.510029 + 1.11681i 0.463050 + 0.886332i \(0.346755\pi\)
−0.973078 + 0.230474i \(0.925972\pi\)
\(68\) 0 0
\(69\) 0.0433035 + 0.219525i 0.00521313 + 0.0264277i
\(70\) 0 0
\(71\) −5.39907 + 11.8223i −0.640752 + 1.40305i 0.258668 + 0.965966i \(0.416716\pi\)
−0.899420 + 0.437085i \(0.856011\pi\)
\(72\) 0 0
\(73\) 8.19579 + 9.45844i 0.959244 + 1.10703i 0.994190 + 0.107638i \(0.0343287\pi\)
−0.0349459 + 0.999389i \(0.511126\pi\)
\(74\) 0 0
\(75\) 0.0305533 0.0352604i 0.00352799 0.00407152i
\(76\) 0 0
\(77\) 0.798272 0.234394i 0.0909715 0.0267116i
\(78\) 0 0
\(79\) −0.917054 6.37825i −0.103177 0.717610i −0.974088 0.226169i \(-0.927380\pi\)
0.870911 0.491440i \(-0.163529\pi\)
\(80\) 0 0
\(81\) 3.73060 + 8.16887i 0.414511 + 0.907652i
\(82\) 0 0
\(83\) 7.09216 + 4.55785i 0.778465 + 0.500289i 0.868524 0.495647i \(-0.165069\pi\)
−0.0900587 + 0.995936i \(0.528705\pi\)
\(84\) 0 0
\(85\) 0.319200 2.22009i 0.0346221 0.240802i
\(86\) 0 0
\(87\) 0.265107 0.170374i 0.0284225 0.0182660i
\(88\) 0 0
\(89\) 0.984393 + 0.289044i 0.104345 + 0.0306386i 0.333488 0.942754i \(-0.391774\pi\)
−0.229143 + 0.973393i \(0.573592\pi\)
\(90\) 0 0
\(91\) −6.00952 −0.629969
\(92\) 0 0
\(93\) −0.171332 −0.0177663
\(94\) 0 0
\(95\) −3.87156 1.13679i −0.397214 0.116633i
\(96\) 0 0
\(97\) −10.8010 + 6.94136i −1.09667 + 0.704788i −0.958349 0.285599i \(-0.907807\pi\)
−0.138322 + 0.990387i \(0.544171\pi\)
\(98\) 0 0
\(99\) 0.119185 0.828946i 0.0119785 0.0833123i
\(100\) 0 0
\(101\) 2.85238 + 1.83311i 0.283823 + 0.182402i 0.674804 0.737997i \(-0.264228\pi\)
−0.390982 + 0.920398i \(0.627864\pi\)
\(102\) 0 0
\(103\) 5.77460 + 12.6446i 0.568988 + 1.24591i 0.947335 + 0.320246i \(0.103765\pi\)
−0.378347 + 0.925664i \(0.623507\pi\)
\(104\) 0 0
\(105\) −0.0197745 0.137534i −0.00192979 0.0134220i
\(106\) 0 0
\(107\) 4.58015 1.34485i 0.442780 0.130012i −0.0527406 0.998608i \(-0.516796\pi\)
0.495520 + 0.868596i \(0.334977\pi\)
\(108\) 0 0
\(109\) −2.32042 + 2.67790i −0.222256 + 0.256497i −0.855916 0.517115i \(-0.827006\pi\)
0.633661 + 0.773611i \(0.281552\pi\)
\(110\) 0 0
\(111\) 0.191258 + 0.220724i 0.0181534 + 0.0209501i
\(112\) 0 0
\(113\) 1.30443 2.85631i 0.122711 0.268699i −0.838301 0.545208i \(-0.816451\pi\)
0.961011 + 0.276510i \(0.0891778\pi\)
\(114\) 0 0
\(115\) 4.16373 + 2.37978i 0.388270 + 0.221916i
\(116\) 0 0
\(117\) −2.51294 + 5.50258i −0.232322 + 0.508714i
\(118\) 0 0
\(119\) −4.37429 5.04819i −0.400990 0.462767i
\(120\) 0 0
\(121\) 7.15236 8.25427i 0.650215 0.750388i
\(122\) 0 0
\(123\) 0.420903 0.123588i 0.0379515 0.0111436i
\(124\) 0 0
\(125\) −0.142315 0.989821i −0.0127290 0.0885323i
\(126\) 0 0
\(127\) −0.437510 0.958013i −0.0388227 0.0850099i 0.889227 0.457466i \(-0.151243\pi\)
−0.928050 + 0.372456i \(0.878516\pi\)
\(128\) 0 0
\(129\) 0.0426406 + 0.0274034i 0.00375429 + 0.00241274i
\(130\) 0 0
\(131\) −1.78544 + 12.4180i −0.155995 + 1.08497i 0.749926 + 0.661522i \(0.230089\pi\)
−0.905921 + 0.423447i \(0.860820\pi\)
\(132\) 0 0
\(133\) −10.1092 + 6.49679i −0.876579 + 0.563343i
\(134\) 0 0
\(135\) −0.268500 0.0788388i −0.0231088 0.00678537i
\(136\) 0 0
\(137\) 8.45078 0.721999 0.360999 0.932566i \(-0.382436\pi\)
0.360999 + 0.932566i \(0.382436\pi\)
\(138\) 0 0
\(139\) −13.6424 −1.15713 −0.578566 0.815636i \(-0.696387\pi\)
−0.578566 + 0.815636i \(0.696387\pi\)
\(140\) 0 0
\(141\) −0.198968 0.0584224i −0.0167562 0.00492005i
\(142\) 0 0
\(143\) 0.474226 0.304766i 0.0396568 0.0254858i
\(144\) 0 0
\(145\) 0.961247 6.68562i 0.0798272 0.555210i
\(146\) 0 0
\(147\) −0.0733704 0.0471523i −0.00605149 0.00388905i
\(148\) 0 0
\(149\) −7.61559 16.6758i −0.623893 1.36614i −0.912654 0.408734i \(-0.865970\pi\)
0.288761 0.957401i \(-0.406757\pi\)
\(150\) 0 0
\(151\) 1.91145 + 13.2944i 0.155551 + 1.08188i 0.906708 + 0.421759i \(0.138587\pi\)
−0.751157 + 0.660124i \(0.770504\pi\)
\(152\) 0 0
\(153\) −6.45150 + 1.89433i −0.521573 + 0.153148i
\(154\) 0 0
\(155\) −2.40479 + 2.77528i −0.193157 + 0.222916i
\(156\) 0 0
\(157\) −1.36233 1.57221i −0.108726 0.125476i 0.698778 0.715338i \(-0.253727\pi\)
−0.807504 + 0.589862i \(0.799182\pi\)
\(158\) 0 0
\(159\) −0.00376425 + 0.00824255i −0.000298524 + 0.000653677i
\(160\) 0 0
\(161\) 13.4766 4.73020i 1.06211 0.372792i
\(162\) 0 0
\(163\) −4.10288 + 8.98406i −0.321363 + 0.703686i −0.999512 0.0312380i \(-0.990055\pi\)
0.678149 + 0.734924i \(0.262782\pi\)
\(164\) 0 0
\(165\) 0.00853537 + 0.00985034i 0.000664477 + 0.000766848i
\(166\) 0 0
\(167\) 10.9281 12.6117i 0.845640 0.975921i −0.154286 0.988026i \(-0.549308\pi\)
0.999927 + 0.0121052i \(0.00385331\pi\)
\(168\) 0 0
\(169\) 8.56652 2.51536i 0.658963 0.193489i
\(170\) 0 0
\(171\) 1.72147 + 11.9731i 0.131644 + 0.915607i
\(172\) 0 0
\(173\) 0.354550 + 0.776357i 0.0269560 + 0.0590253i 0.922631 0.385684i \(-0.126034\pi\)
−0.895675 + 0.444709i \(0.853307\pi\)
\(174\) 0 0
\(175\) −2.50537 1.61010i −0.189388 0.121712i
\(176\) 0 0
\(177\) 0.0595364 0.414085i 0.00447503 0.0311245i
\(178\) 0 0
\(179\) 1.61378 1.03711i 0.120619 0.0775174i −0.478940 0.877848i \(-0.658979\pi\)
0.599559 + 0.800330i \(0.295342\pi\)
\(180\) 0 0
\(181\) −6.01911 1.76737i −0.447397 0.131368i 0.0502701 0.998736i \(-0.483992\pi\)
−0.497667 + 0.867368i \(0.665810\pi\)
\(182\) 0 0
\(183\) −0.110997 −0.00820514
\(184\) 0 0
\(185\) 6.25981 0.460230
\(186\) 0 0
\(187\) 0.601199 + 0.176528i 0.0439640 + 0.0129090i
\(188\) 0 0
\(189\) −0.701093 + 0.450565i −0.0509970 + 0.0327738i
\(190\) 0 0
\(191\) 2.52104 17.5342i 0.182416 1.26873i −0.668611 0.743612i \(-0.733111\pi\)
0.851028 0.525121i \(-0.175980\pi\)
\(192\) 0 0
\(193\) 19.7149 + 12.6700i 1.41911 + 0.912005i 0.999992 + 0.00407167i \(0.00129606\pi\)
0.419115 + 0.907933i \(0.362340\pi\)
\(194\) 0 0
\(195\) −0.0391099 0.0856387i −0.00280072 0.00613271i
\(196\) 0 0
\(197\) −1.88432 13.1057i −0.134252 0.933744i −0.939925 0.341382i \(-0.889105\pi\)
0.805672 0.592361i \(-0.201804\pi\)
\(198\) 0 0
\(199\) −6.21074 + 1.82364i −0.440268 + 0.129274i −0.494351 0.869262i \(-0.664594\pi\)
0.0540838 + 0.998536i \(0.482776\pi\)
\(200\) 0 0
\(201\) −0.307049 + 0.354354i −0.0216576 + 0.0249942i
\(202\) 0 0
\(203\) −13.1728 15.2023i −0.924551 1.06699i
\(204\) 0 0
\(205\) 3.90582 8.55256i 0.272795 0.597337i
\(206\) 0 0
\(207\) 1.30421 14.3178i 0.0906491 0.995154i
\(208\) 0 0
\(209\) 0.468264 1.02535i 0.0323905 0.0709252i
\(210\) 0 0
\(211\) −6.23790 7.19892i −0.429435 0.495594i 0.499253 0.866456i \(-0.333608\pi\)
−0.928688 + 0.370862i \(0.879062\pi\)
\(212\) 0 0
\(213\) −0.397096 + 0.458273i −0.0272086 + 0.0314004i
\(214\) 0 0
\(215\) 1.04239 0.306072i 0.0710901 0.0208739i
\(216\) 0 0
\(217\) 1.55641 + 10.8251i 0.105656 + 0.734853i
\(218\) 0 0
\(219\) 0.242568 + 0.531150i 0.0163912 + 0.0358918i
\(220\) 0 0
\(221\) −3.80745 2.44690i −0.256117 0.164596i
\(222\) 0 0
\(223\) 3.66703 25.5048i 0.245562 1.70792i −0.377713 0.925923i \(-0.623290\pi\)
0.623276 0.782002i \(-0.285801\pi\)
\(224\) 0 0
\(225\) −2.52193 + 1.62075i −0.168129 + 0.108050i
\(226\) 0 0
\(227\) 8.56609 + 2.51523i 0.568551 + 0.166942i 0.553359 0.832943i \(-0.313346\pi\)
0.0151924 + 0.999885i \(0.495164\pi\)
\(228\) 0 0
\(229\) −16.1261 −1.06564 −0.532821 0.846228i \(-0.678868\pi\)
−0.532821 + 0.846228i \(0.678868\pi\)
\(230\) 0 0
\(231\) 0.0388167 0.00255395
\(232\) 0 0
\(233\) 10.6789 + 3.13561i 0.699599 + 0.205421i 0.612143 0.790747i \(-0.290308\pi\)
0.0874569 + 0.996168i \(0.472126\pi\)
\(234\) 0 0
\(235\) −3.73904 + 2.40293i −0.243908 + 0.156750i
\(236\) 0 0
\(237\) 0.0427863 0.297585i 0.00277927 0.0193302i
\(238\) 0 0
\(239\) 16.2462 + 10.4408i 1.05088 + 0.675359i 0.947654 0.319299i \(-0.103447\pi\)
0.103225 + 0.994658i \(0.467084\pi\)
\(240\) 0 0
\(241\) −9.55704 20.9270i −0.615623 1.34803i −0.918661 0.395048i \(-0.870728\pi\)
0.303038 0.952979i \(-0.401999\pi\)
\(242\) 0 0
\(243\) 0.179103 + 1.24569i 0.0114895 + 0.0799110i
\(244\) 0 0
\(245\) −1.79360 + 0.526649i −0.114589 + 0.0336464i
\(246\) 0 0
\(247\) −5.33198 + 6.15343i −0.339265 + 0.391533i
\(248\) 0 0
\(249\) 0.257579 + 0.297262i 0.0163234 + 0.0188382i
\(250\) 0 0
\(251\) 3.15836 6.91583i 0.199354 0.436524i −0.783382 0.621541i \(-0.786507\pi\)
0.982735 + 0.185017i \(0.0592342\pi\)
\(252\) 0 0
\(253\) −0.823586 + 1.05672i −0.0517784 + 0.0664357i
\(254\) 0 0
\(255\) 0.0434715 0.0951893i 0.00272229 0.00596099i
\(256\) 0 0
\(257\) 18.4932 + 21.3423i 1.15358 + 1.33130i 0.934656 + 0.355555i \(0.115708\pi\)
0.218920 + 0.975743i \(0.429747\pi\)
\(258\) 0 0
\(259\) 12.2083 14.0891i 0.758587 0.875456i
\(260\) 0 0
\(261\) −19.4282 + 5.70463i −1.20258 + 0.353108i
\(262\) 0 0
\(263\) −0.220540 1.53389i −0.0135991 0.0945835i 0.981892 0.189444i \(-0.0606686\pi\)
−0.995491 + 0.0948605i \(0.969759\pi\)
\(264\) 0 0
\(265\) 0.0806805 + 0.176666i 0.00495617 + 0.0108525i
\(266\) 0 0
\(267\) 0.0402683 + 0.0258789i 0.00246438 + 0.00158376i
\(268\) 0 0
\(269\) 3.16608 22.0206i 0.193039 1.34262i −0.630867 0.775891i \(-0.717300\pi\)
0.823906 0.566727i \(-0.191790\pi\)
\(270\) 0 0
\(271\) −4.20783 + 2.70421i −0.255607 + 0.164269i −0.662169 0.749354i \(-0.730364\pi\)
0.406562 + 0.913623i \(0.366728\pi\)
\(272\) 0 0
\(273\) −0.269024 0.0789926i −0.0162821 0.00478085i
\(274\) 0 0
\(275\) 0.279360 0.0168460
\(276\) 0 0
\(277\) −24.2911 −1.45951 −0.729756 0.683708i \(-0.760366\pi\)
−0.729756 + 0.683708i \(0.760366\pi\)
\(278\) 0 0
\(279\) 10.5627 + 3.10150i 0.632374 + 0.185682i
\(280\) 0 0
\(281\) 16.4389 10.5647i 0.980665 0.630235i 0.0510225 0.998698i \(-0.483752\pi\)
0.929643 + 0.368462i \(0.120116\pi\)
\(282\) 0 0
\(283\) 1.50374 10.4587i 0.0893881 0.621708i −0.895049 0.445969i \(-0.852859\pi\)
0.984437 0.175739i \(-0.0562316\pi\)
\(284\) 0 0
\(285\) −0.158373 0.101780i −0.00938120 0.00602893i
\(286\) 0 0
\(287\) −11.6321 25.4707i −0.686621 1.50349i
\(288\) 0 0
\(289\) 1.70341 + 11.8475i 0.100201 + 0.696912i
\(290\) 0 0
\(291\) −0.574760 + 0.168765i −0.0336931 + 0.00989317i
\(292\) 0 0
\(293\) 3.04354 3.51243i 0.177805 0.205198i −0.659850 0.751397i \(-0.729380\pi\)
0.837656 + 0.546199i \(0.183926\pi\)
\(294\) 0 0
\(295\) −5.87180 6.77642i −0.341870 0.394539i
\(296\) 0 0
\(297\) 0.0324750 0.0711103i 0.00188439 0.00412624i
\(298\) 0 0
\(299\) 7.85843 5.64776i 0.454464 0.326618i
\(300\) 0 0
\(301\) 1.34405 2.94305i 0.0774695 0.169635i
\(302\) 0 0
\(303\) 0.103595 + 0.119555i 0.00595138 + 0.00686826i
\(304\) 0 0
\(305\) −1.55794 + 1.79796i −0.0892074 + 0.102951i
\(306\) 0 0
\(307\) 24.9718 7.33238i 1.42521 0.418481i 0.523950 0.851749i \(-0.324458\pi\)
0.901265 + 0.433268i \(0.142640\pi\)
\(308\) 0 0
\(309\) 0.0922995 + 0.641957i 0.00525073 + 0.0365196i
\(310\) 0 0
\(311\) 5.31445 + 11.6370i 0.301355 + 0.659876i 0.998363 0.0571874i \(-0.0182133\pi\)
−0.697008 + 0.717063i \(0.745486\pi\)
\(312\) 0 0
\(313\) −0.493249 0.316992i −0.0278801 0.0179175i 0.526627 0.850097i \(-0.323457\pi\)
−0.554507 + 0.832179i \(0.687093\pi\)
\(314\) 0 0
\(315\) −1.27058 + 8.83707i −0.0715890 + 0.497912i
\(316\) 0 0
\(317\) −12.8061 + 8.22995i −0.719260 + 0.462240i −0.848379 0.529389i \(-0.822421\pi\)
0.129120 + 0.991629i \(0.458785\pi\)
\(318\) 0 0
\(319\) 1.81047 + 0.531601i 0.101367 + 0.0297639i
\(320\) 0 0
\(321\) 0.222714 0.0124307
\(322\) 0 0
\(323\) −9.05018 −0.503566
\(324\) 0 0
\(325\) −1.93614 0.568502i −0.107398 0.0315348i
\(326\) 0 0
\(327\) −0.139076 + 0.0893789i −0.00769094 + 0.00494267i
\(328\) 0 0
\(329\) −1.88377 + 13.1019i −0.103856 + 0.722332i
\(330\) 0 0
\(331\) 11.9894 + 7.70510i 0.658996 + 0.423511i 0.826943 0.562285i \(-0.190078\pi\)
−0.167948 + 0.985796i \(0.553714\pi\)
\(332\) 0 0
\(333\) −7.79560 17.0700i −0.427196 0.935429i
\(334\) 0 0
\(335\) 1.43021 + 9.94733i 0.0781407 + 0.543481i
\(336\) 0 0
\(337\) −30.6673 + 9.00472i −1.67055 + 0.490518i −0.973916 0.226907i \(-0.927139\pi\)
−0.696635 + 0.717425i \(0.745320\pi\)
\(338\) 0 0
\(339\) 0.0959396 0.110720i 0.00521072 0.00601349i
\(340\) 0 0
\(341\) −0.671801 0.775300i −0.0363801 0.0419848i
\(342\) 0 0
\(343\) 6.34749 13.8991i 0.342732 0.750479i
\(344\) 0 0
\(345\) 0.155113 + 0.161265i 0.00835103 + 0.00868219i
\(346\) 0 0
\(347\) −2.48941 + 5.45105i −0.133639 + 0.292628i −0.964607 0.263692i \(-0.915060\pi\)
0.830968 + 0.556320i \(0.187787\pi\)
\(348\) 0 0
\(349\) 19.1292 + 22.0763i 1.02396 + 1.18172i 0.983197 + 0.182549i \(0.0584347\pi\)
0.0407670 + 0.999169i \(0.487020\pi\)
\(350\) 0 0
\(351\) −0.369783 + 0.426752i −0.0197376 + 0.0227783i
\(352\) 0 0
\(353\) 20.6487 6.06300i 1.09902 0.322701i 0.318556 0.947904i \(-0.396802\pi\)
0.780462 + 0.625203i \(0.214984\pi\)
\(354\) 0 0
\(355\) 1.84964 + 12.8645i 0.0981687 + 0.682778i
\(356\) 0 0
\(357\) −0.129464 0.283487i −0.00685197 0.0150037i
\(358\) 0 0
\(359\) 7.81442 + 5.02203i 0.412430 + 0.265052i 0.730361 0.683061i \(-0.239352\pi\)
−0.317932 + 0.948114i \(0.602988\pi\)
\(360\) 0 0
\(361\) 0.386912 2.69103i 0.0203638 0.141633i
\(362\) 0 0
\(363\) 0.428684 0.275498i 0.0225001 0.0144599i
\(364\) 0 0
\(365\) 12.0084 + 3.52597i 0.628546 + 0.184558i
\(366\) 0 0
\(367\) 16.9124 0.882821 0.441411 0.897305i \(-0.354478\pi\)
0.441411 + 0.897305i \(0.354478\pi\)
\(368\) 0 0
\(369\) −28.1862 −1.46732
\(370\) 0 0
\(371\) 0.554975 + 0.162955i 0.0288129 + 0.00846022i
\(372\) 0 0
\(373\) −25.3642 + 16.3006i −1.31331 + 0.844011i −0.994594 0.103841i \(-0.966887\pi\)
−0.318712 + 0.947852i \(0.603250\pi\)
\(374\) 0 0
\(375\) 0.00663987 0.0461813i 0.000342882 0.00238479i
\(376\) 0 0
\(377\) −11.4659 7.36866i −0.590521 0.379505i
\(378\) 0 0
\(379\) 4.57823 + 10.0249i 0.235168 + 0.514946i 0.990016 0.140954i \(-0.0450168\pi\)
−0.754848 + 0.655899i \(0.772290\pi\)
\(380\) 0 0
\(381\) −0.00699303 0.0486376i −0.000358264 0.00249178i
\(382\) 0 0
\(383\) −13.5374 + 3.97493i −0.691727 + 0.203109i −0.608656 0.793434i \(-0.708291\pi\)
−0.0830709 + 0.996544i \(0.526473\pi\)
\(384\) 0 0
\(385\) 0.544826 0.628763i 0.0277669 0.0320447i
\(386\) 0 0
\(387\) −2.13276 2.46133i −0.108414 0.125117i
\(388\) 0 0
\(389\) −12.5461 + 27.4720i −0.636111 + 1.39289i 0.267091 + 0.963671i \(0.413938\pi\)
−0.903202 + 0.429217i \(0.858790\pi\)
\(390\) 0 0
\(391\) 10.4644 + 2.49037i 0.529207 + 0.125944i
\(392\) 0 0
\(393\) −0.243157 + 0.532440i −0.0122657 + 0.0268581i
\(394\) 0 0
\(395\) −4.21982 4.86993i −0.212322 0.245033i
\(396\) 0 0
\(397\) −14.1431 + 16.3220i −0.709823 + 0.819179i −0.990044 0.140756i \(-0.955047\pi\)
0.280221 + 0.959935i \(0.409592\pi\)
\(398\) 0 0
\(399\) −0.537949 + 0.157956i −0.0269311 + 0.00790769i
\(400\) 0 0
\(401\) 2.44544 + 17.0084i 0.122119 + 0.849358i 0.955148 + 0.296129i \(0.0956957\pi\)
−0.833029 + 0.553230i \(0.813395\pi\)
\(402\) 0 0
\(403\) 3.07826 + 6.74045i 0.153339 + 0.335766i
\(404\) 0 0
\(405\) 7.55480 + 4.85518i 0.375401 + 0.241256i
\(406\) 0 0
\(407\) −0.248871 + 1.73094i −0.0123361 + 0.0857994i
\(408\) 0 0
\(409\) −14.6990 + 9.44646i −0.726818 + 0.467097i −0.851002 0.525162i \(-0.824005\pi\)
0.124185 + 0.992259i \(0.460368\pi\)
\(410\) 0 0
\(411\) 0.378310 + 0.111082i 0.0186607 + 0.00547927i
\(412\) 0 0
\(413\) −26.7035 −1.31399
\(414\) 0 0
\(415\) 8.43046 0.413835
\(416\) 0 0
\(417\) −0.610719 0.179323i −0.0299070 0.00878150i
\(418\) 0 0
\(419\) 12.1199 7.78900i 0.592097 0.380518i −0.210009 0.977699i \(-0.567349\pi\)
0.802106 + 0.597182i \(0.203713\pi\)
\(420\) 0 0
\(421\) 5.30471 36.8951i 0.258536 1.79816i −0.284743 0.958604i \(-0.591908\pi\)
0.543279 0.839552i \(-0.317183\pi\)
\(422\) 0 0
\(423\) 11.2090 + 7.20357i 0.544999 + 0.350249i
\(424\) 0 0
\(425\) −0.931741 2.04023i −0.0451961 0.0989656i
\(426\) 0 0
\(427\) 1.00832 + 7.01300i 0.0487959 + 0.339383i
\(428\) 0 0
\(429\) 0.0252354 0.00740977i 0.00121837 0.000357747i
\(430\) 0 0
\(431\) −24.7585 + 28.5728i −1.19258 + 1.37631i −0.283873 + 0.958862i \(0.591619\pi\)
−0.908703 + 0.417444i \(0.862926\pi\)
\(432\) 0 0
\(433\) −13.0595 15.0714i −0.627598 0.724287i 0.349533 0.936924i \(-0.386340\pi\)
−0.977131 + 0.212637i \(0.931795\pi\)
\(434\) 0 0
\(435\) 0.130911 0.286655i 0.00627671 0.0137441i
\(436\) 0 0
\(437\) 7.11373 17.9962i 0.340296 0.860877i
\(438\) 0 0
\(439\) −8.76405 + 19.1906i −0.418285 + 0.915917i 0.576799 + 0.816886i \(0.304302\pi\)
−0.995084 + 0.0990311i \(0.968426\pi\)
\(440\) 0 0
\(441\) 3.66977 + 4.23514i 0.174751 + 0.201674i
\(442\) 0 0
\(443\) 11.7673 13.5802i 0.559081 0.645214i −0.403893 0.914806i \(-0.632343\pi\)
0.962975 + 0.269592i \(0.0868888\pi\)
\(444\) 0 0
\(445\) 0.984393 0.289044i 0.0466647 0.0137020i
\(446\) 0 0
\(447\) −0.121725 0.846618i −0.00575741 0.0400437i
\(448\) 0 0
\(449\) 11.9826 + 26.2382i 0.565493 + 1.23826i 0.949162 + 0.314787i \(0.101933\pi\)
−0.383669 + 0.923471i \(0.625340\pi\)
\(450\) 0 0
\(451\) 2.20964 + 1.42005i 0.104048 + 0.0668674i
\(452\) 0 0
\(453\) −0.0891809 + 0.620267i −0.00419008 + 0.0291427i
\(454\) 0 0
\(455\) −5.05553 + 3.24899i −0.237007 + 0.152315i
\(456\) 0 0
\(457\) 18.9640 + 5.56832i 0.887097 + 0.260475i 0.693371 0.720580i \(-0.256125\pi\)
0.193726 + 0.981056i \(0.437943\pi\)
\(458\) 0 0
\(459\) −0.627648 −0.0292961
\(460\) 0 0
\(461\) −28.7215 −1.33769 −0.668846 0.743401i \(-0.733212\pi\)
−0.668846 + 0.743401i \(0.733212\pi\)
\(462\) 0 0
\(463\) −9.45598 2.77653i −0.439457 0.129036i 0.0545173 0.998513i \(-0.482638\pi\)
−0.493974 + 0.869477i \(0.664456\pi\)
\(464\) 0 0
\(465\) −0.144133 + 0.0926289i −0.00668403 + 0.00429556i
\(466\) 0 0
\(467\) 4.94738 34.4098i 0.228938 1.59230i −0.473659 0.880708i \(-0.657067\pi\)
0.702597 0.711588i \(-0.252024\pi\)
\(468\) 0 0
\(469\) 25.1780 + 16.1809i 1.16261 + 0.747166i
\(470\) 0 0
\(471\) −0.0403204 0.0882893i −0.00185786 0.00406816i
\(472\) 0 0
\(473\) 0.0431917 + 0.300405i 0.00198596 + 0.0138126i
\(474\) 0 0
\(475\) −3.87156 + 1.13679i −0.177639 + 0.0521597i
\(476\) 0 0
\(477\) 0.381278 0.440018i 0.0174575 0.0201470i
\(478\) 0 0
\(479\) −3.07644 3.55040i −0.140566 0.162222i 0.681101 0.732189i \(-0.261501\pi\)
−0.821667 + 0.569967i \(0.806956\pi\)
\(480\) 0 0
\(481\) 5.24733 11.4900i 0.239257 0.523901i
\(482\) 0 0
\(483\) 0.665476 0.0346092i 0.0302802 0.00157477i
\(484\) 0 0
\(485\) −5.33357 + 11.6789i −0.242185 + 0.530311i
\(486\) 0 0
\(487\) 10.5225 + 12.1436i 0.476820 + 0.550280i 0.942296 0.334781i \(-0.108662\pi\)
−0.465476 + 0.885060i \(0.654117\pi\)
\(488\) 0 0
\(489\) −0.301763 + 0.348253i −0.0136462 + 0.0157485i
\(490\) 0 0
\(491\) −18.3137 + 5.37739i −0.826486 + 0.242678i −0.667507 0.744604i \(-0.732639\pi\)
−0.158979 + 0.987282i \(0.550820\pi\)
\(492\) 0 0
\(493\) −2.15600 14.9953i −0.0971012 0.675353i
\(494\) 0 0
\(495\) −0.347898 0.761790i −0.0156368 0.0342399i
\(496\) 0 0
\(497\) 32.5619 + 20.9262i 1.46060 + 0.938670i
\(498\) 0 0
\(499\) −3.64675 + 25.3637i −0.163251 + 1.13544i 0.729203 + 0.684298i \(0.239891\pi\)
−0.892454 + 0.451139i \(0.851018\pi\)
\(500\) 0 0
\(501\) 0.654985 0.420933i 0.0292626 0.0188059i
\(502\) 0 0
\(503\) 8.34924 + 2.45156i 0.372274 + 0.109310i 0.462517 0.886610i \(-0.346946\pi\)
−0.0902432 + 0.995920i \(0.528764\pi\)
\(504\) 0 0
\(505\) 3.39063 0.150881
\(506\) 0 0
\(507\) 0.416555 0.0184998
\(508\) 0 0
\(509\) 11.2681 + 3.30861i 0.499450 + 0.146652i 0.521748 0.853100i \(-0.325280\pi\)
−0.0222980 + 0.999751i \(0.507098\pi\)
\(510\) 0 0
\(511\) 31.3555 20.1510i 1.38709 0.891426i
\(512\) 0 0
\(513\) −0.160693 + 1.11765i −0.00709478 + 0.0493453i
\(514\) 0 0
\(515\) 11.6941 + 7.51533i 0.515303 + 0.331165i
\(516\) 0 0
\(517\) −0.515797 1.12944i −0.0226847 0.0496726i
\(518\) 0 0
\(519\) 0.00566703 + 0.0394150i 0.000248755 + 0.00173013i
\(520\) 0 0
\(521\) 1.42515 0.418463i 0.0624371 0.0183332i −0.250365 0.968152i \(-0.580551\pi\)
0.312802 + 0.949818i \(0.398732\pi\)
\(522\) 0 0
\(523\) 0.404488 0.466804i 0.0176870 0.0204119i −0.746837 0.665007i \(-0.768429\pi\)
0.764524 + 0.644595i \(0.222974\pi\)
\(524\) 0 0
\(525\) −0.0909921 0.105010i −0.00397122 0.00458303i
\(526\) 0 0
\(527\) −3.42155 + 7.49216i −0.149045 + 0.326363i
\(528\) 0 0
\(529\) −13.1774 + 18.8509i −0.572932 + 0.819603i
\(530\) 0 0
\(531\) −11.1663 + 24.4509i −0.484578 + 1.06108i
\(532\) 0 0
\(533\) −12.4244 14.3385i −0.538159 0.621069i
\(534\) 0 0
\(535\) 3.12598 3.60758i 0.135148 0.155969i
\(536\) 0 0
\(537\) 0.0858753 0.0252153i 0.00370579 0.00108812i
\(538\) 0 0
\(539\) −0.0743187 0.516898i −0.00320113 0.0222644i
\(540\) 0 0
\(541\) −6.56383 14.3728i −0.282201 0.617934i 0.714452 0.699685i \(-0.246676\pi\)
−0.996653 + 0.0817507i \(0.973949\pi\)
\(542\) 0 0
\(543\) −0.246222 0.158237i −0.0105664 0.00679062i
\(544\) 0 0
\(545\) −0.504275 + 3.50731i −0.0216007 + 0.150236i
\(546\) 0 0
\(547\) −2.40938 + 1.54842i −0.103018 + 0.0662055i −0.591135 0.806572i \(-0.701320\pi\)
0.488118 + 0.872778i \(0.337684\pi\)
\(548\) 0 0
\(549\) 6.84305 + 2.00930i 0.292054 + 0.0857548i
\(550\) 0 0
\(551\) −27.2539 −1.16106
\(552\) 0 0
\(553\) −19.1907 −0.816070
\(554\) 0 0
\(555\) 0.280229 + 0.0822825i 0.0118950 + 0.00349270i
\(556\) 0 0
\(557\) −25.6497 + 16.4841i −1.08681 + 0.698453i −0.956122 0.292970i \(-0.905356\pi\)
−0.130692 + 0.991423i \(0.541720\pi\)
\(558\) 0 0
\(559\) 0.311983 2.16989i 0.0131955 0.0917767i
\(560\) 0 0
\(561\) 0.0245931 + 0.0158050i 0.00103832 + 0.000667288i
\(562\) 0 0
\(563\) −7.17373 15.7083i −0.302337 0.662025i 0.696099 0.717946i \(-0.254918\pi\)
−0.998435 + 0.0559214i \(0.982190\pi\)
\(564\) 0 0
\(565\) −0.446878 3.10811i −0.0188003 0.130759i
\(566\) 0 0
\(567\) 25.6616 7.53492i 1.07768 0.316437i
\(568\) 0 0
\(569\) −20.5908 + 23.7630i −0.863211 + 0.996199i 0.136773 + 0.990602i \(0.456327\pi\)
−0.999984 + 0.00559615i \(0.998219\pi\)
\(570\) 0 0
\(571\) −26.3971 30.4638i −1.10468 1.27487i −0.958338 0.285638i \(-0.907794\pi\)
−0.146345 0.989234i \(-0.546751\pi\)
\(572\) 0 0
\(573\) 0.343338 0.751805i 0.0143431 0.0314071i
\(574\) 0 0
\(575\) 4.78936 0.249079i 0.199730 0.0103873i
\(576\) 0 0
\(577\) −6.15706 + 13.4821i −0.256322 + 0.561267i −0.993421 0.114518i \(-0.963468\pi\)
0.737099 + 0.675784i \(0.236195\pi\)
\(578\) 0 0
\(579\) 0.716020 + 0.826332i 0.0297568 + 0.0343412i
\(580\) 0 0
\(581\) 16.4417 18.9747i 0.682115 0.787202i
\(582\) 0 0
\(583\) −0.0520585 + 0.0152858i −0.00215604 + 0.000633072i
\(584\) 0 0
\(585\) 0.860896 + 5.98767i 0.0355937 + 0.247560i
\(586\) 0 0
\(587\) −15.8070 34.6125i −0.652424 1.42861i −0.889416 0.457098i \(-0.848889\pi\)
0.236992 0.971512i \(-0.423838\pi\)
\(588\) 0 0
\(589\) 12.4652 + 8.01091i 0.513620 + 0.330084i
\(590\) 0 0
\(591\) 0.0879151 0.611463i 0.00361635 0.0251522i
\(592\) 0 0
\(593\) 23.0636 14.8221i 0.947110 0.608670i 0.0267075 0.999643i \(-0.491498\pi\)
0.920402 + 0.390973i \(0.127861\pi\)
\(594\) 0 0
\(595\) −6.40914 1.88189i −0.262749 0.0771501i
\(596\) 0 0
\(597\) −0.302003 −0.0123602
\(598\) 0 0
\(599\) −14.9351 −0.610232 −0.305116 0.952315i \(-0.598695\pi\)
−0.305116 + 0.952315i \(0.598695\pi\)
\(600\) 0 0
\(601\) 10.0034 + 2.93726i 0.408047 + 0.119813i 0.479313 0.877644i \(-0.340886\pi\)
−0.0712664 + 0.997457i \(0.522704\pi\)
\(602\) 0 0
\(603\) 25.3444 16.2879i 1.03211 0.663294i
\(604\) 0 0
\(605\) 1.55436 10.8108i 0.0631936 0.439521i
\(606\) 0 0
\(607\) −3.51535 2.25918i −0.142684 0.0916971i 0.467351 0.884072i \(-0.345208\pi\)
−0.610035 + 0.792374i \(0.708845\pi\)
\(608\) 0 0
\(609\) −0.389872 0.853700i −0.0157984 0.0345937i
\(610\) 0 0
\(611\) 1.27637 + 8.87737i 0.0516365 + 0.359140i
\(612\) 0 0
\(613\) −22.3386 + 6.55921i −0.902248 + 0.264924i −0.699775 0.714364i \(-0.746716\pi\)
−0.202474 + 0.979288i \(0.564898\pi\)
\(614\) 0 0
\(615\) 0.287269 0.331526i 0.0115838 0.0133684i
\(616\) 0 0
\(617\) 1.56566 + 1.80687i 0.0630310 + 0.0727417i 0.786389 0.617731i \(-0.211948\pi\)
−0.723358 + 0.690473i \(0.757403\pi\)
\(618\) 0 0
\(619\) 16.0811 35.2128i 0.646356 1.41532i −0.248352 0.968670i \(-0.579889\pi\)
0.894708 0.446652i \(-0.147384\pi\)
\(620\) 0 0
\(621\) 0.493351 1.24807i 0.0197975 0.0500835i
\(622\) 0 0
\(623\) 1.26927 2.77931i 0.0508522 0.111351i
\(624\) 0 0
\(625\) −0.654861 0.755750i −0.0261944 0.0302300i
\(626\) 0 0
\(627\) 0.0344403 0.0397462i 0.00137541 0.00158731i
\(628\) 0 0
\(629\) 13.4715 3.95559i 0.537144 0.157720i
\(630\) 0 0
\(631\) −3.76199 26.1652i −0.149763 1.04162i −0.916607 0.399789i \(-0.869083\pi\)
0.766844 0.641833i \(-0.221826\pi\)
\(632\) 0 0
\(633\) −0.184621 0.404263i −0.00733802 0.0160680i
\(634\) 0 0
\(635\) −0.885998 0.569396i −0.0351597 0.0225958i
\(636\) 0 0
\(637\) −0.536821 + 3.73367i −0.0212696 + 0.147933i
\(638\) 0 0
\(639\) 32.7771 21.0645i 1.29664 0.833300i
\(640\) 0 0
\(641\) 6.23851 + 1.83179i 0.246406 + 0.0723514i 0.402603 0.915374i \(-0.368105\pi\)
−0.156197 + 0.987726i \(0.549924\pi\)
\(642\) 0 0
\(643\) −11.0497 −0.435757 −0.217879 0.975976i \(-0.569914\pi\)
−0.217879 + 0.975976i \(0.569914\pi\)
\(644\) 0 0
\(645\) 0.0506870 0.00199580
\(646\) 0 0
\(647\) −39.4465 11.5825i −1.55080 0.455356i −0.609461 0.792816i \(-0.708614\pi\)
−0.941340 + 0.337459i \(0.890432\pi\)
\(648\) 0 0
\(649\) 2.10724 1.35424i 0.0827163 0.0531585i
\(650\) 0 0
\(651\) −0.0726161 + 0.505056i −0.00284605 + 0.0197947i
\(652\) 0 0
\(653\) 10.1759 + 6.53968i 0.398215 + 0.255918i 0.724388 0.689393i \(-0.242123\pi\)
−0.326172 + 0.945310i \(0.605759\pi\)
\(654\) 0 0
\(655\) 5.21168 + 11.4120i 0.203637 + 0.445903i
\(656\) 0 0
\(657\) −5.33947 37.1368i −0.208312 1.44884i
\(658\) 0 0
\(659\) −20.0814 + 5.89644i −0.782262 + 0.229693i −0.648392 0.761306i \(-0.724558\pi\)
−0.133869 + 0.990999i \(0.542740\pi\)
\(660\) 0 0
\(661\) 14.1761 16.3601i 0.551387 0.636335i −0.409818 0.912167i \(-0.634408\pi\)
0.961206 + 0.275832i \(0.0889534\pi\)
\(662\) 0 0
\(663\) −0.138282 0.159586i −0.00537043 0.00619781i
\(664\) 0 0
\(665\) −4.99197 + 10.9309i −0.193580 + 0.423882i
\(666\) 0 0
\(667\) 31.5127 + 7.49957i 1.22018 + 0.290385i
\(668\) 0 0
\(669\) 0.499409 1.09355i 0.0193083 0.0422792i
\(670\) 0 0
\(671\) −0.435226 0.502277i −0.0168017 0.0193902i
\(672\) 0 0
\(673\) 32.9869 38.0689i 1.27155 1.46745i 0.454653 0.890669i \(-0.349763\pi\)
0.816899 0.576781i \(-0.195691\pi\)
\(674\) 0 0
\(675\) −0.268500 + 0.0788388i −0.0103346 + 0.00303451i
\(676\) 0 0
\(677\) 1.11800 + 7.77585i 0.0429682 + 0.298850i 0.999962 + 0.00874126i \(0.00278246\pi\)
−0.956994 + 0.290109i \(0.906308\pi\)
\(678\) 0 0
\(679\) 15.8841 + 34.7814i 0.609576 + 1.33479i
\(680\) 0 0
\(681\) 0.350411 + 0.225195i 0.0134278 + 0.00862950i
\(682\) 0 0
\(683\) −2.42284 + 16.8513i −0.0927076 + 0.644795i 0.889491 + 0.456952i \(0.151059\pi\)
−0.982199 + 0.187843i \(0.939850\pi\)
\(684\) 0 0
\(685\) 7.10925 4.56884i 0.271630 0.174566i
\(686\) 0 0
\(687\) −0.721905 0.211971i −0.0275424 0.00808718i
\(688\) 0 0
\(689\) 0.391905 0.0149304
\(690\) 0 0
\(691\) 20.1063 0.764879 0.382439 0.923981i \(-0.375084\pi\)
0.382439 + 0.923981i \(0.375084\pi\)
\(692\) 0 0
\(693\) −2.39308 0.702671i −0.0909055 0.0266923i
\(694\) 0 0
\(695\) −11.4767 + 7.37563i −0.435336 + 0.279774i
\(696\) 0 0
\(697\) 3.00119 20.8737i 0.113678 0.790649i
\(698\) 0 0
\(699\) 0.436840 + 0.280740i 0.0165228 + 0.0106186i
\(700\) 0 0
\(701\) 1.77020 + 3.87619i 0.0668595 + 0.146402i 0.940112 0.340867i \(-0.110721\pi\)
−0.873252 + 0.487269i \(0.837993\pi\)
\(702\) 0 0
\(703\) −3.59464 25.0013i −0.135575 0.942942i
\(704\) 0 0
\(705\) −0.198968 + 0.0584224i −0.00749358 + 0.00220031i
\(706\) 0 0
\(707\) 6.61264 7.63139i 0.248694 0.287008i
\(708\) 0 0
\(709\) −2.18654 2.52340i −0.0821172 0.0947683i 0.713204 0.700956i \(-0.247243\pi\)
−0.795321 + 0.606188i \(0.792698\pi\)
\(710\) 0 0
\(711\) −8.02478 + 17.5718i −0.300953 + 0.658995i
\(712\) 0 0
\(713\) −12.2087 12.6928i −0.457218 0.475349i
\(714\) 0 0
\(715\) 0.234175 0.512772i 0.00875765 0.0191766i
\(716\) 0 0
\(717\) 0.590042 + 0.680945i 0.0220355 + 0.0254304i
\(718\) 0 0
\(719\) 9.53735 11.0067i 0.355683 0.410480i −0.549506 0.835490i \(-0.685184\pi\)
0.905189 + 0.425010i \(0.139729\pi\)
\(720\) 0 0
\(721\) 39.7216 11.6633i 1.47931 0.434364i
\(722\) 0 0
\(723\) −0.152757 1.06245i −0.00568109 0.0395129i
\(724\) 0 0
\(725\) −2.80587 6.14399i −0.104207 0.228182i
\(726\) 0 0
\(727\) 20.9525 + 13.4654i 0.777087 + 0.499403i 0.868066 0.496449i \(-0.165363\pi\)
−0.0909789 + 0.995853i \(0.529000\pi\)
\(728\) 0 0
\(729\) 3.82578 26.6089i 0.141696 0.985515i
\(730\) 0 0
\(731\) 2.04987 1.31737i 0.0758172 0.0487248i
\(732\) 0 0
\(733\) −32.2166 9.45965i −1.18995 0.349400i −0.373947 0.927450i \(-0.621996\pi\)
−0.816001 + 0.578050i \(0.803814\pi\)
\(734\) 0 0
\(735\) −0.0872155 −0.00321699
\(736\) 0 0
\(737\) −2.80746 −0.103414
\(738\) 0 0
\(739\) 30.0785 + 8.83184i 1.10645 + 0.324884i 0.783414 0.621501i \(-0.213477\pi\)
0.323041 + 0.946385i \(0.395295\pi\)
\(740\) 0 0
\(741\) −0.319577 + 0.205380i −0.0117400 + 0.00754481i
\(742\) 0 0
\(743\) 1.06080 7.37806i 0.0389171 0.270675i −0.961067 0.276316i \(-0.910886\pi\)
0.999984 + 0.00564092i \(0.00179557\pi\)
\(744\) 0 0
\(745\) −15.4223 9.91128i −0.565028 0.363121i
\(746\) 0 0
\(747\) −10.4988 22.9892i −0.384131 0.841129i
\(748\) 0 0
\(749\) −2.02317 14.0715i −0.0739251 0.514161i
\(750\) 0 0
\(751\) −24.1440 + 7.08932i −0.881028 + 0.258693i −0.690799 0.723047i \(-0.742741\pi\)
−0.190229 + 0.981740i \(0.560923\pi\)
\(752\) 0 0
\(753\) 0.232294 0.268081i 0.00846525 0.00976942i
\(754\) 0 0
\(755\) 8.79551 + 10.1506i 0.320101 + 0.369417i
\(756\) 0 0
\(757\) −7.65858 + 16.7699i −0.278356 + 0.609514i −0.996239 0.0866495i \(-0.972384\pi\)
0.717883 + 0.696164i \(0.245111\pi\)
\(758\) 0 0
\(759\) −0.0507591 + 0.0364800i −0.00184244 + 0.00132414i
\(760\) 0 0
\(761\) −1.42209 + 3.11394i −0.0515507 + 0.112880i −0.933655 0.358174i \(-0.883399\pi\)
0.882104 + 0.471055i \(0.156127\pi\)
\(762\) 0 0
\(763\) 6.91052 + 7.97517i 0.250178 + 0.288721i
\(764\) 0 0
\(765\) −4.40319 + 5.08156i −0.159198 + 0.183724i
\(766\) 0 0
\(767\) −17.3604 + 5.09747i −0.626847 + 0.184059i
\(768\) 0 0
\(769\) −6.13693 42.6833i −0.221303 1.53920i −0.733118 0.680102i \(-0.761936\pi\)
0.511815 0.859096i \(-0.328973\pi\)
\(770\) 0 0
\(771\) 0.547338 + 1.19850i 0.0197119 + 0.0431630i
\(772\) 0 0
\(773\) 23.3071 + 14.9786i 0.838297 + 0.538741i 0.887905 0.460028i \(-0.152161\pi\)
−0.0496071 + 0.998769i \(0.515797\pi\)
\(774\) 0 0
\(775\) −0.522611 + 3.63484i −0.0187727 + 0.130567i
\(776\) 0 0
\(777\) 0.731716 0.470246i 0.0262502 0.0168700i
\(778\) 0 0
\(779\) −36.4013 10.6884i −1.30421 0.382951i
\(780\) 0 0
\(781\) −3.63079 −0.129920
\(782\) 0 0
\(783\) −1.89011 −0.0675472
\(784\) 0 0
\(785\) −1.99606 0.586097i −0.0712426 0.0209187i
\(786\) 0 0
\(787\) −40.1813 + 25.8229i −1.43231 + 0.920489i −0.432486 + 0.901641i \(0.642363\pi\)
−0.999822 + 0.0188479i \(0.994000\pi\)
\(788\) 0 0
\(789\) 0.0102895 0.0715654i 0.000366318 0.00254779i
\(790\) 0 0
\(791\) −7.86704 5.05584i −0.279720 0.179765i
\(792\) 0 0
\(793\) 1.99425 + 4.36679i 0.0708177 + 0.155069i
\(794\) 0 0
\(795\) 0.00128957 + 0.00896918i 4.57365e−5 + 0.000318104i