Properties

Label 460.2.m.a.121.1
Level $460$
Weight $2$
Character 460.121
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 121.1
Character \(\chi\) \(=\) 460.121
Dual form 460.2.m.a.441.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.73464 - 0.802964i) q^{3} +(0.841254 - 0.540641i) q^{5} +(-0.359196 + 2.49826i) q^{7} +(4.30976 + 2.76972i) q^{9} +O(q^{10})\) \(q+(-2.73464 - 0.802964i) q^{3} +(0.841254 - 0.540641i) q^{5} +(-0.359196 + 2.49826i) q^{7} +(4.30976 + 2.76972i) q^{9} +(-1.78965 - 3.91878i) q^{11} +(0.846960 + 5.89073i) q^{13} +(-2.73464 + 0.802964i) q^{15} +(3.87167 - 4.46815i) q^{17} +(-0.652347 - 0.752849i) q^{19} +(2.98828 - 6.54343i) q^{21} +(4.71276 + 0.888766i) q^{23} +(0.415415 - 0.909632i) q^{25} +(-3.96244 - 4.57291i) q^{27} +(6.29992 - 7.27049i) q^{29} +(10.1637 - 2.98432i) q^{31} +(1.74741 + 12.1535i) q^{33} +(1.04849 + 2.29587i) q^{35} +(-2.30670 - 1.48242i) q^{37} +(2.41391 - 16.7891i) q^{39} +(-2.00858 + 1.29084i) q^{41} +(-5.14130 - 1.50962i) q^{43} +5.12303 q^{45} +6.36077 q^{47} +(0.604167 + 0.177399i) q^{49} +(-14.1754 + 9.10998i) q^{51} +(-1.21938 + 8.48099i) q^{53} +(-3.62420 - 2.32913i) q^{55} +(1.17943 + 2.58258i) q^{57} +(0.0744314 + 0.517682i) q^{59} +(4.06103 - 1.19243i) q^{61} +(-8.46752 + 9.77204i) q^{63} +(3.89728 + 4.49770i) q^{65} +(2.62149 - 5.74027i) q^{67} +(-12.1741 - 6.21463i) q^{69} +(-4.27655 + 9.36433i) q^{71} +(-1.27081 - 1.46660i) q^{73} +(-1.86641 + 2.15396i) q^{75} +(10.4330 - 3.06339i) q^{77} +(2.19285 + 15.2516i) q^{79} +(0.779451 + 1.70676i) q^{81} +(2.04411 + 1.31367i) q^{83} +(0.841395 - 5.85203i) q^{85} +(-23.0660 + 14.8236i) q^{87} +(-7.32967 - 2.15219i) q^{89} -15.0208 q^{91} -30.1903 q^{93} +(-0.955810 - 0.280651i) q^{95} +(9.48807 - 6.09761i) q^{97} +(3.14095 - 21.8458i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.73464 0.802964i −1.57885 0.463591i −0.629286 0.777174i \(-0.716653\pi\)
−0.949561 + 0.313582i \(0.898471\pi\)
\(4\) 0 0
\(5\) 0.841254 0.540641i 0.376220 0.241782i
\(6\) 0 0
\(7\) −0.359196 + 2.49826i −0.135763 + 0.944254i 0.802085 + 0.597209i \(0.203724\pi\)
−0.937849 + 0.347044i \(0.887185\pi\)
\(8\) 0 0
\(9\) 4.30976 + 2.76972i 1.43659 + 0.923239i
\(10\) 0 0
\(11\) −1.78965 3.91878i −0.539598 1.18156i −0.961473 0.274901i \(-0.911355\pi\)
0.421874 0.906654i \(-0.361372\pi\)
\(12\) 0 0
\(13\) 0.846960 + 5.89073i 0.234904 + 1.63380i 0.676402 + 0.736533i \(0.263538\pi\)
−0.441497 + 0.897263i \(0.645553\pi\)
\(14\) 0 0
\(15\) −2.73464 + 0.802964i −0.706082 + 0.207324i
\(16\) 0 0
\(17\) 3.87167 4.46815i 0.939018 1.08369i −0.0573343 0.998355i \(-0.518260\pi\)
0.996353 0.0853300i \(-0.0271945\pi\)
\(18\) 0 0
\(19\) −0.652347 0.752849i −0.149659 0.172715i 0.675970 0.736929i \(-0.263725\pi\)
−0.825629 + 0.564214i \(0.809179\pi\)
\(20\) 0 0
\(21\) 2.98828 6.54343i 0.652097 1.42789i
\(22\) 0 0
\(23\) 4.71276 + 0.888766i 0.982678 + 0.185321i
\(24\) 0 0
\(25\) 0.415415 0.909632i 0.0830830 0.181926i
\(26\) 0 0
\(27\) −3.96244 4.57291i −0.762573 0.880056i
\(28\) 0 0
\(29\) 6.29992 7.27049i 1.16986 1.35010i 0.245127 0.969491i \(-0.421170\pi\)
0.924738 0.380605i \(-0.124284\pi\)
\(30\) 0 0
\(31\) 10.1637 2.98432i 1.82545 0.535999i 0.825836 0.563911i \(-0.190704\pi\)
0.999610 + 0.0279113i \(0.00888559\pi\)
\(32\) 0 0
\(33\) 1.74741 + 12.1535i 0.304184 + 2.11565i
\(34\) 0 0
\(35\) 1.04849 + 2.29587i 0.177227 + 0.388072i
\(36\) 0 0
\(37\) −2.30670 1.48242i −0.379218 0.243709i 0.337120 0.941462i \(-0.390547\pi\)
−0.716339 + 0.697753i \(0.754183\pi\)
\(38\) 0 0
\(39\) 2.41391 16.7891i 0.386535 2.68841i
\(40\) 0 0
\(41\) −2.00858 + 1.29084i −0.313688 + 0.201595i −0.688005 0.725706i \(-0.741513\pi\)
0.374317 + 0.927301i \(0.377877\pi\)
\(42\) 0 0
\(43\) −5.14130 1.50962i −0.784040 0.230215i −0.134875 0.990863i \(-0.543063\pi\)
−0.649165 + 0.760648i \(0.724882\pi\)
\(44\) 0 0
\(45\) 5.12303 0.763696
\(46\) 0 0
\(47\) 6.36077 0.927814 0.463907 0.885884i \(-0.346447\pi\)
0.463907 + 0.885884i \(0.346447\pi\)
\(48\) 0 0
\(49\) 0.604167 + 0.177399i 0.0863096 + 0.0253428i
\(50\) 0 0
\(51\) −14.1754 + 9.10998i −1.98495 + 1.27565i
\(52\) 0 0
\(53\) −1.21938 + 8.48099i −0.167495 + 1.16495i 0.716544 + 0.697542i \(0.245723\pi\)
−0.884039 + 0.467413i \(0.845186\pi\)
\(54\) 0 0
\(55\) −3.62420 2.32913i −0.488686 0.314060i
\(56\) 0 0
\(57\) 1.17943 + 2.58258i 0.156219 + 0.342072i
\(58\) 0 0
\(59\) 0.0744314 + 0.517682i 0.00969014 + 0.0673964i 0.994093 0.108534i \(-0.0346157\pi\)
−0.984403 + 0.175931i \(0.943707\pi\)
\(60\) 0 0
\(61\) 4.06103 1.19243i 0.519962 0.152675i −0.0112123 0.999937i \(-0.503569\pi\)
0.531174 + 0.847262i \(0.321751\pi\)
\(62\) 0 0
\(63\) −8.46752 + 9.77204i −1.06681 + 1.23116i
\(64\) 0 0
\(65\) 3.89728 + 4.49770i 0.483398 + 0.557871i
\(66\) 0 0
\(67\) 2.62149 5.74027i 0.320266 0.701285i −0.679200 0.733953i \(-0.737673\pi\)
0.999466 + 0.0326681i \(0.0104004\pi\)
\(68\) 0 0
\(69\) −12.1741 6.21463i −1.46559 0.748154i
\(70\) 0 0
\(71\) −4.27655 + 9.36433i −0.507533 + 1.11134i 0.466414 + 0.884566i \(0.345546\pi\)
−0.973947 + 0.226775i \(0.927182\pi\)
\(72\) 0 0
\(73\) −1.27081 1.46660i −0.148737 0.171652i 0.676492 0.736450i \(-0.263499\pi\)
−0.825229 + 0.564798i \(0.808954\pi\)
\(74\) 0 0
\(75\) −1.86641 + 2.15396i −0.215515 + 0.248717i
\(76\) 0 0
\(77\) 10.4330 3.06339i 1.18895 0.349106i
\(78\) 0 0
\(79\) 2.19285 + 15.2516i 0.246714 + 1.71594i 0.616953 + 0.787000i \(0.288367\pi\)
−0.370239 + 0.928937i \(0.620724\pi\)
\(80\) 0 0
\(81\) 0.779451 + 1.70676i 0.0866057 + 0.189640i
\(82\) 0 0
\(83\) 2.04411 + 1.31367i 0.224370 + 0.144194i 0.647997 0.761643i \(-0.275607\pi\)
−0.423627 + 0.905837i \(0.639243\pi\)
\(84\) 0 0
\(85\) 0.841395 5.85203i 0.0912621 0.634742i
\(86\) 0 0
\(87\) −23.0660 + 14.8236i −2.47293 + 1.58926i
\(88\) 0 0
\(89\) −7.32967 2.15219i −0.776944 0.228131i −0.130863 0.991400i \(-0.541775\pi\)
−0.646081 + 0.763269i \(0.723593\pi\)
\(90\) 0 0
\(91\) −15.0208 −1.57461
\(92\) 0 0
\(93\) −30.1903 −3.13059
\(94\) 0 0
\(95\) −0.955810 0.280651i −0.0980640 0.0287942i
\(96\) 0 0
\(97\) 9.48807 6.09761i 0.963368 0.619119i 0.0384396 0.999261i \(-0.487761\pi\)
0.924928 + 0.380142i \(0.124125\pi\)
\(98\) 0 0
\(99\) 3.14095 21.8458i 0.315678 2.19559i
\(100\) 0 0
\(101\) 9.77275 + 6.28056i 0.972425 + 0.624939i 0.927410 0.374047i \(-0.122030\pi\)
0.0450150 + 0.998986i \(0.485666\pi\)
\(102\) 0 0
\(103\) −5.18038 11.3435i −0.510438 1.11770i −0.972934 0.231082i \(-0.925773\pi\)
0.462496 0.886621i \(-0.346954\pi\)
\(104\) 0 0
\(105\) −1.02374 7.12027i −0.0999069 0.694867i
\(106\) 0 0
\(107\) −7.67466 + 2.25348i −0.741937 + 0.217853i −0.630792 0.775952i \(-0.717270\pi\)
−0.111145 + 0.993804i \(0.535452\pi\)
\(108\) 0 0
\(109\) 0.298283 0.344237i 0.0285703 0.0329719i −0.741285 0.671191i \(-0.765783\pi\)
0.769855 + 0.638219i \(0.220329\pi\)
\(110\) 0 0
\(111\) 5.11766 + 5.90609i 0.485747 + 0.560581i
\(112\) 0 0
\(113\) −2.93900 + 6.43552i −0.276478 + 0.605403i −0.996028 0.0890378i \(-0.971621\pi\)
0.719550 + 0.694441i \(0.244348\pi\)
\(114\) 0 0
\(115\) 4.44513 1.80023i 0.414510 0.167872i
\(116\) 0 0
\(117\) −12.6655 + 27.7335i −1.17092 + 2.56396i
\(118\) 0 0
\(119\) 9.77191 + 11.2774i 0.895789 + 1.03380i
\(120\) 0 0
\(121\) −4.95051 + 5.71319i −0.450046 + 0.519381i
\(122\) 0 0
\(123\) 6.52925 1.91716i 0.588723 0.172865i
\(124\) 0 0
\(125\) −0.142315 0.989821i −0.0127290 0.0885323i
\(126\) 0 0
\(127\) 3.74377 + 8.19770i 0.332205 + 0.727428i 0.999855 0.0170475i \(-0.00542666\pi\)
−0.667649 + 0.744476i \(0.732699\pi\)
\(128\) 0 0
\(129\) 12.8474 + 8.25655i 1.13115 + 0.726949i
\(130\) 0 0
\(131\) 2.45265 17.0585i 0.214289 1.49041i −0.544328 0.838873i \(-0.683215\pi\)
0.758616 0.651538i \(-0.225876\pi\)
\(132\) 0 0
\(133\) 2.11513 1.35931i 0.183405 0.117867i
\(134\) 0 0
\(135\) −5.80572 1.70471i −0.499677 0.146718i
\(136\) 0 0
\(137\) 3.51894 0.300644 0.150322 0.988637i \(-0.451969\pi\)
0.150322 + 0.988637i \(0.451969\pi\)
\(138\) 0 0
\(139\) 10.5068 0.891172 0.445586 0.895239i \(-0.352995\pi\)
0.445586 + 0.895239i \(0.352995\pi\)
\(140\) 0 0
\(141\) −17.3944 5.10747i −1.46488 0.430126i
\(142\) 0 0
\(143\) 21.5687 13.8614i 1.80367 1.15915i
\(144\) 0 0
\(145\) 1.36910 9.52232i 0.113698 0.790785i
\(146\) 0 0
\(147\) −1.50974 0.970248i −0.124521 0.0800247i
\(148\) 0 0
\(149\) −0.297445 0.651314i −0.0243676 0.0533577i 0.897057 0.441915i \(-0.145701\pi\)
−0.921424 + 0.388557i \(0.872974\pi\)
\(150\) 0 0
\(151\) 0.532949 + 3.70674i 0.0433708 + 0.301650i 0.999948 + 0.0101722i \(0.00323796\pi\)
−0.956578 + 0.291478i \(0.905853\pi\)
\(152\) 0 0
\(153\) 29.0615 8.53323i 2.34948 0.689870i
\(154\) 0 0
\(155\) 6.93677 8.00545i 0.557174 0.643014i
\(156\) 0 0
\(157\) −9.25327 10.6788i −0.738491 0.852264i 0.254909 0.966965i \(-0.417955\pi\)
−0.993400 + 0.114701i \(0.963409\pi\)
\(158\) 0 0
\(159\) 10.1445 22.2134i 0.804512 1.76164i
\(160\) 0 0
\(161\) −3.91317 + 11.4545i −0.308401 + 0.902738i
\(162\) 0 0
\(163\) −6.40239 + 14.0193i −0.501474 + 1.09808i 0.474513 + 0.880248i \(0.342624\pi\)
−0.975987 + 0.217827i \(0.930103\pi\)
\(164\) 0 0
\(165\) 8.04068 + 9.27944i 0.625966 + 0.722403i
\(166\) 0 0
\(167\) 10.2414 11.8192i 0.792503 0.914598i −0.205442 0.978669i \(-0.565863\pi\)
0.997945 + 0.0640716i \(0.0204086\pi\)
\(168\) 0 0
\(169\) −21.5100 + 6.31590i −1.65461 + 0.485839i
\(170\) 0 0
\(171\) −0.726284 5.05142i −0.0555403 0.386291i
\(172\) 0 0
\(173\) −0.840143 1.83966i −0.0638749 0.139867i 0.875002 0.484119i \(-0.160860\pi\)
−0.938877 + 0.344252i \(0.888132\pi\)
\(174\) 0 0
\(175\) 2.12328 + 1.36455i 0.160505 + 0.103150i
\(176\) 0 0
\(177\) 0.212136 1.47544i 0.0159451 0.110901i
\(178\) 0 0
\(179\) 10.2359 6.57819i 0.765064 0.491677i −0.0989822 0.995089i \(-0.531559\pi\)
0.864046 + 0.503412i \(0.167922\pi\)
\(180\) 0 0
\(181\) 6.60417 + 1.93916i 0.490884 + 0.144137i 0.517801 0.855501i \(-0.326751\pi\)
−0.0269168 + 0.999638i \(0.508569\pi\)
\(182\) 0 0
\(183\) −12.0630 −0.891719
\(184\) 0 0
\(185\) −2.74197 −0.201594
\(186\) 0 0
\(187\) −24.4386 7.17582i −1.78713 0.524748i
\(188\) 0 0
\(189\) 12.8476 8.25665i 0.934525 0.600583i
\(190\) 0 0
\(191\) −2.31848 + 16.1254i −0.167759 + 1.16679i 0.715743 + 0.698364i \(0.246088\pi\)
−0.883502 + 0.468427i \(0.844821\pi\)
\(192\) 0 0
\(193\) −20.1002 12.9176i −1.44684 0.929830i −0.999368 0.0355345i \(-0.988687\pi\)
−0.447476 0.894296i \(-0.647677\pi\)
\(194\) 0 0
\(195\) −7.04618 15.4290i −0.504587 1.10489i
\(196\) 0 0
\(197\) −0.423581 2.94607i −0.0301789 0.209899i 0.969152 0.246462i \(-0.0792681\pi\)
−0.999331 + 0.0365631i \(0.988359\pi\)
\(198\) 0 0
\(199\) −2.92191 + 0.857950i −0.207129 + 0.0608184i −0.383651 0.923478i \(-0.625333\pi\)
0.176522 + 0.984297i \(0.443515\pi\)
\(200\) 0 0
\(201\) −11.7781 + 13.5926i −0.830761 + 0.958749i
\(202\) 0 0
\(203\) 15.9007 + 18.3504i 1.11601 + 1.28794i
\(204\) 0 0
\(205\) −0.991848 + 2.17184i −0.0692737 + 0.151688i
\(206\) 0 0
\(207\) 17.8492 + 16.8834i 1.24061 + 1.17348i
\(208\) 0 0
\(209\) −1.78278 + 3.90373i −0.123317 + 0.270027i
\(210\) 0 0
\(211\) 7.86926 + 9.08161i 0.541742 + 0.625203i 0.958939 0.283613i \(-0.0915330\pi\)
−0.417197 + 0.908816i \(0.636988\pi\)
\(212\) 0 0
\(213\) 19.2140 22.1742i 1.31652 1.51935i
\(214\) 0 0
\(215\) −5.14130 + 1.50962i −0.350633 + 0.102955i
\(216\) 0 0
\(217\) 3.80486 + 26.4634i 0.258291 + 1.79645i
\(218\) 0 0
\(219\) 2.29760 + 5.03103i 0.155257 + 0.339966i
\(220\) 0 0
\(221\) 29.5998 + 19.0226i 1.99110 + 1.27960i
\(222\) 0 0
\(223\) −2.79550 + 19.4431i −0.187200 + 1.30201i 0.652014 + 0.758207i \(0.273924\pi\)
−0.839215 + 0.543800i \(0.816985\pi\)
\(224\) 0 0
\(225\) 4.30976 2.76972i 0.287318 0.184648i
\(226\) 0 0
\(227\) 8.06079 + 2.36686i 0.535014 + 0.157094i 0.538068 0.842901i \(-0.319154\pi\)
−0.00305477 + 0.999995i \(0.500972\pi\)
\(228\) 0 0
\(229\) −24.9867 −1.65117 −0.825583 0.564281i \(-0.809154\pi\)
−0.825583 + 0.564281i \(0.809154\pi\)
\(230\) 0 0
\(231\) −30.9902 −2.03901
\(232\) 0 0
\(233\) −16.3254 4.79357i −1.06951 0.314038i −0.300837 0.953675i \(-0.597266\pi\)
−0.768676 + 0.639638i \(0.779084\pi\)
\(234\) 0 0
\(235\) 5.35102 3.43889i 0.349062 0.224329i
\(236\) 0 0
\(237\) 6.24981 43.4684i 0.405969 2.82358i
\(238\) 0 0
\(239\) −13.6137 8.74898i −0.880596 0.565925i 0.0203806 0.999792i \(-0.493512\pi\)
−0.900977 + 0.433868i \(0.857149\pi\)
\(240\) 0 0
\(241\) 1.34248 + 2.93963i 0.0864770 + 0.189358i 0.947930 0.318480i \(-0.103172\pi\)
−0.861453 + 0.507838i \(0.830445\pi\)
\(242\) 0 0
\(243\) 1.82231 + 12.6744i 0.116901 + 0.813066i
\(244\) 0 0
\(245\) 0.604167 0.177399i 0.0385988 0.0113336i
\(246\) 0 0
\(247\) 3.88232 4.48043i 0.247026 0.285083i
\(248\) 0 0
\(249\) −4.53508 5.23376i −0.287399 0.331676i
\(250\) 0 0
\(251\) 2.37409 5.19853i 0.149851 0.328128i −0.819789 0.572666i \(-0.805909\pi\)
0.969640 + 0.244538i \(0.0786364\pi\)
\(252\) 0 0
\(253\) −4.95129 20.0588i −0.311285 1.26109i
\(254\) 0 0
\(255\) −6.99988 + 15.3276i −0.438350 + 0.959852i
\(256\) 0 0
\(257\) −4.98673 5.75499i −0.311064 0.358987i 0.578593 0.815616i \(-0.303602\pi\)
−0.889657 + 0.456630i \(0.849056\pi\)
\(258\) 0 0
\(259\) 4.53203 5.23025i 0.281607 0.324992i
\(260\) 0 0
\(261\) 47.2883 13.8851i 2.92708 0.859467i
\(262\) 0 0
\(263\) −3.23528 22.5019i −0.199496 1.38752i −0.805751 0.592254i \(-0.798238\pi\)
0.606255 0.795270i \(-0.292671\pi\)
\(264\) 0 0
\(265\) 3.55936 + 7.79392i 0.218650 + 0.478776i
\(266\) 0 0
\(267\) 18.3159 + 11.7709i 1.12092 + 0.720369i
\(268\) 0 0
\(269\) 1.60197 11.1420i 0.0976739 0.679337i −0.880879 0.473341i \(-0.843048\pi\)
0.978553 0.205995i \(-0.0660432\pi\)
\(270\) 0 0
\(271\) 7.29099 4.68563i 0.442896 0.284632i −0.300125 0.953900i \(-0.597028\pi\)
0.743021 + 0.669268i \(0.233392\pi\)
\(272\) 0 0
\(273\) 41.0766 + 12.0612i 2.48607 + 0.729975i
\(274\) 0 0
\(275\) −4.30809 −0.259788
\(276\) 0 0
\(277\) −16.8841 −1.01447 −0.507234 0.861809i \(-0.669332\pi\)
−0.507234 + 0.861809i \(0.669332\pi\)
\(278\) 0 0
\(279\) 52.0687 + 15.2887i 3.11727 + 0.915313i
\(280\) 0 0
\(281\) −3.26322 + 2.09715i −0.194668 + 0.125105i −0.634344 0.773051i \(-0.718730\pi\)
0.439676 + 0.898156i \(0.355093\pi\)
\(282\) 0 0
\(283\) 3.68462 25.6271i 0.219028 1.52337i −0.522611 0.852571i \(-0.675042\pi\)
0.741639 0.670800i \(-0.234049\pi\)
\(284\) 0 0
\(285\) 2.38845 + 1.53496i 0.141479 + 0.0909233i
\(286\) 0 0
\(287\) −2.50337 5.48163i −0.147770 0.323570i
\(288\) 0 0
\(289\) −2.55515 17.7714i −0.150303 1.04538i
\(290\) 0 0
\(291\) −30.8427 + 9.05622i −1.80803 + 0.530885i
\(292\) 0 0
\(293\) −19.1221 + 22.0681i −1.11713 + 1.28923i −0.164069 + 0.986449i \(0.552462\pi\)
−0.953059 + 0.302785i \(0.902083\pi\)
\(294\) 0 0
\(295\) 0.342495 + 0.395261i 0.0199409 + 0.0230130i
\(296\) 0 0
\(297\) −10.8288 + 23.7118i −0.628352 + 1.37590i
\(298\) 0 0
\(299\) −1.24397 + 28.5144i −0.0719406 + 1.64903i
\(300\) 0 0
\(301\) 5.61816 12.3020i 0.323825 0.709078i
\(302\) 0 0
\(303\) −21.6819 25.0223i −1.24559 1.43749i
\(304\) 0 0
\(305\) 2.77168 3.19869i 0.158706 0.183157i
\(306\) 0 0
\(307\) 16.5861 4.87013i 0.946621 0.277953i 0.228242 0.973604i \(-0.426702\pi\)
0.718380 + 0.695651i \(0.244884\pi\)
\(308\) 0 0
\(309\) 5.05811 + 35.1800i 0.287746 + 2.00132i
\(310\) 0 0
\(311\) −1.89650 4.15276i −0.107541 0.235481i 0.848209 0.529661i \(-0.177681\pi\)
−0.955750 + 0.294180i \(0.904954\pi\)
\(312\) 0 0
\(313\) 15.2531 + 9.80257i 0.862156 + 0.554074i 0.895344 0.445375i \(-0.146930\pi\)
−0.0331879 + 0.999449i \(0.510566\pi\)
\(314\) 0 0
\(315\) −1.84017 + 12.7987i −0.103682 + 0.721122i
\(316\) 0 0
\(317\) 21.7737 13.9931i 1.22293 0.785932i 0.240159 0.970734i \(-0.422801\pi\)
0.982776 + 0.184801i \(0.0591642\pi\)
\(318\) 0 0
\(319\) −39.7660 11.6764i −2.22647 0.653751i
\(320\) 0 0
\(321\) 22.7969 1.27240
\(322\) 0 0
\(323\) −5.88951 −0.327701
\(324\) 0 0
\(325\) 5.71024 + 1.67668i 0.316747 + 0.0930053i
\(326\) 0 0
\(327\) −1.09211 + 0.701855i −0.0603937 + 0.0388127i
\(328\) 0 0
\(329\) −2.28476 + 15.8909i −0.125963 + 0.876091i
\(330\) 0 0
\(331\) −5.26161 3.38143i −0.289204 0.185860i 0.387992 0.921663i \(-0.373169\pi\)
−0.677196 + 0.735802i \(0.736805\pi\)
\(332\) 0 0
\(333\) −5.83542 12.7778i −0.319779 0.700219i
\(334\) 0 0
\(335\) −0.898083 6.24630i −0.0490675 0.341272i
\(336\) 0 0
\(337\) −1.29345 + 0.379790i −0.0704585 + 0.0206885i −0.316772 0.948502i \(-0.602599\pi\)
0.246313 + 0.969190i \(0.420781\pi\)
\(338\) 0 0
\(339\) 13.2046 15.2389i 0.717176 0.827666i
\(340\) 0 0
\(341\) −29.8842 34.4882i −1.61832 1.86764i
\(342\) 0 0
\(343\) −7.99961 + 17.5167i −0.431939 + 0.945813i
\(344\) 0 0
\(345\) −13.6014 + 1.35372i −0.732273 + 0.0728816i
\(346\) 0 0
\(347\) 0.450329 0.986082i 0.0241749 0.0529357i −0.897159 0.441707i \(-0.854373\pi\)
0.921334 + 0.388771i \(0.127100\pi\)
\(348\) 0 0
\(349\) 5.43401 + 6.27118i 0.290876 + 0.335689i 0.882314 0.470662i \(-0.155985\pi\)
−0.591438 + 0.806351i \(0.701439\pi\)
\(350\) 0 0
\(351\) 23.5817 27.2148i 1.25870 1.45262i
\(352\) 0 0
\(353\) 0.0215042 0.00631419i 0.00114455 0.000336070i −0.281160 0.959661i \(-0.590719\pi\)
0.282305 + 0.959325i \(0.408901\pi\)
\(354\) 0 0
\(355\) 1.46508 + 10.1899i 0.0777583 + 0.540821i
\(356\) 0 0
\(357\) −17.6674 38.6861i −0.935056 2.04749i
\(358\) 0 0
\(359\) 12.0248 + 7.72790i 0.634647 + 0.407863i 0.818027 0.575179i \(-0.195068\pi\)
−0.183380 + 0.983042i \(0.558704\pi\)
\(360\) 0 0
\(361\) 2.56276 17.8244i 0.134882 0.938125i
\(362\) 0 0
\(363\) 18.1254 11.6485i 0.951335 0.611386i
\(364\) 0 0
\(365\) −1.86198 0.546726i −0.0974603 0.0286169i
\(366\) 0 0
\(367\) 12.5788 0.656608 0.328304 0.944572i \(-0.393523\pi\)
0.328304 + 0.944572i \(0.393523\pi\)
\(368\) 0 0
\(369\) −12.2318 −0.636761
\(370\) 0 0
\(371\) −20.7497 6.09267i −1.07727 0.316316i
\(372\) 0 0
\(373\) −13.3586 + 8.58507i −0.691683 + 0.444518i −0.838684 0.544619i \(-0.816674\pi\)
0.147001 + 0.989136i \(0.453038\pi\)
\(374\) 0 0
\(375\) −0.405610 + 2.82108i −0.0209456 + 0.145680i
\(376\) 0 0
\(377\) 48.1643 + 30.9533i 2.48059 + 1.59418i
\(378\) 0 0
\(379\) −4.46936 9.78653i −0.229575 0.502700i 0.759428 0.650591i \(-0.225479\pi\)
−0.989004 + 0.147891i \(0.952752\pi\)
\(380\) 0 0
\(381\) −3.65541 25.4239i −0.187272 1.30251i
\(382\) 0 0
\(383\) −8.41345 + 2.47041i −0.429907 + 0.126232i −0.489525 0.871989i \(-0.662830\pi\)
0.0596180 + 0.998221i \(0.481012\pi\)
\(384\) 0 0
\(385\) 7.12057 8.21757i 0.362898 0.418806i
\(386\) 0 0
\(387\) −17.9765 20.7460i −0.913799 1.05458i
\(388\) 0 0
\(389\) 0.949609 2.07935i 0.0481471 0.105427i −0.884030 0.467431i \(-0.845180\pi\)
0.932177 + 0.362003i \(0.117907\pi\)
\(390\) 0 0
\(391\) 22.2174 17.6163i 1.12358 0.890894i
\(392\) 0 0
\(393\) −20.4045 + 44.6796i −1.02927 + 2.25379i
\(394\) 0 0
\(395\) 10.0904 + 11.6449i 0.507701 + 0.585919i
\(396\) 0 0
\(397\) −22.3229 + 25.7621i −1.12036 + 1.29296i −0.168744 + 0.985660i \(0.553971\pi\)
−0.951613 + 0.307300i \(0.900574\pi\)
\(398\) 0 0
\(399\) −6.87561 + 2.01886i −0.344211 + 0.101069i
\(400\) 0 0
\(401\) −3.12632 21.7441i −0.156121 1.08585i −0.905696 0.423927i \(-0.860651\pi\)
0.749575 0.661919i \(-0.230258\pi\)
\(402\) 0 0
\(403\) 26.1880 + 57.3438i 1.30452 + 2.85650i
\(404\) 0 0
\(405\) 1.57846 + 1.01441i 0.0784343 + 0.0504067i
\(406\) 0 0
\(407\) −1.68112 + 11.6924i −0.0833299 + 0.579573i
\(408\) 0 0
\(409\) −18.3242 + 11.7762i −0.906073 + 0.582298i −0.908585 0.417699i \(-0.862837\pi\)
0.00251252 + 0.999997i \(0.499200\pi\)
\(410\) 0 0
\(411\) −9.62305 2.82558i −0.474670 0.139376i
\(412\) 0 0
\(413\) −1.32004 −0.0649549
\(414\) 0 0
\(415\) 2.42984 0.119276
\(416\) 0 0
\(417\) −28.7323 8.43655i −1.40702 0.413140i
\(418\) 0 0
\(419\) −23.2579 + 14.9469i −1.13622 + 0.730205i −0.966849 0.255347i \(-0.917810\pi\)
−0.169372 + 0.985552i \(0.554174\pi\)
\(420\) 0 0
\(421\) −1.78053 + 12.3838i −0.0867776 + 0.603551i 0.899308 + 0.437315i \(0.144071\pi\)
−0.986086 + 0.166236i \(0.946839\pi\)
\(422\) 0 0
\(423\) 27.4134 + 17.6175i 1.33289 + 0.856594i
\(424\) 0 0
\(425\) −2.45602 5.37793i −0.119134 0.260868i
\(426\) 0 0
\(427\) 1.52029 + 10.5738i 0.0735719 + 0.511704i
\(428\) 0 0
\(429\) −70.1129 + 20.5870i −3.38508 + 0.993950i
\(430\) 0 0
\(431\) −0.744842 + 0.859593i −0.0358778 + 0.0414051i −0.773405 0.633912i \(-0.781448\pi\)
0.737527 + 0.675318i \(0.235993\pi\)
\(432\) 0 0
\(433\) −2.89387 3.33971i −0.139071 0.160496i 0.681942 0.731407i \(-0.261136\pi\)
−0.821012 + 0.570911i \(0.806590\pi\)
\(434\) 0 0
\(435\) −11.3901 + 24.9408i −0.546113 + 1.19582i
\(436\) 0 0
\(437\) −2.40525 4.12778i −0.115059 0.197458i
\(438\) 0 0
\(439\) −7.65250 + 16.7566i −0.365234 + 0.799751i 0.634408 + 0.772998i \(0.281244\pi\)
−0.999642 + 0.0267524i \(0.991483\pi\)
\(440\) 0 0
\(441\) 2.11247 + 2.43792i 0.100594 + 0.116091i
\(442\) 0 0
\(443\) 6.54692 7.55555i 0.311054 0.358975i −0.578600 0.815612i \(-0.696401\pi\)
0.889653 + 0.456637i \(0.150946\pi\)
\(444\) 0 0
\(445\) −7.32967 + 2.15219i −0.347460 + 0.102023i
\(446\) 0 0
\(447\) 0.290425 + 2.01995i 0.0137366 + 0.0955403i
\(448\) 0 0
\(449\) 6.85481 + 15.0099i 0.323498 + 0.708363i 0.999595 0.0284502i \(-0.00905719\pi\)
−0.676097 + 0.736813i \(0.736330\pi\)
\(450\) 0 0
\(451\) 8.65316 + 5.56105i 0.407461 + 0.261859i
\(452\) 0 0
\(453\) 1.51895 10.5646i 0.0713667 0.496366i
\(454\) 0 0
\(455\) −12.6363 + 8.12086i −0.592399 + 0.380712i
\(456\) 0 0
\(457\) −18.4917 5.42965i −0.865005 0.253988i −0.181015 0.983480i \(-0.557938\pi\)
−0.683989 + 0.729492i \(0.739757\pi\)
\(458\) 0 0
\(459\) −35.7737 −1.66977
\(460\) 0 0
\(461\) 1.31102 0.0610605 0.0305302 0.999534i \(-0.490280\pi\)
0.0305302 + 0.999534i \(0.490280\pi\)
\(462\) 0 0
\(463\) −2.97821 0.874481i −0.138409 0.0406406i 0.211794 0.977314i \(-0.432069\pi\)
−0.350203 + 0.936674i \(0.613888\pi\)
\(464\) 0 0
\(465\) −25.3977 + 16.3221i −1.17779 + 0.756919i
\(466\) 0 0
\(467\) 2.26175 15.7308i 0.104661 0.727934i −0.868144 0.496312i \(-0.834687\pi\)
0.972806 0.231623i \(-0.0744035\pi\)
\(468\) 0 0
\(469\) 13.3990 + 8.61105i 0.618711 + 0.397621i
\(470\) 0 0
\(471\) 16.7297 + 36.6329i 0.770862 + 1.68795i
\(472\) 0 0
\(473\) 3.28523 + 22.8493i 0.151055 + 1.05061i
\(474\) 0 0
\(475\) −0.955810 + 0.280651i −0.0438556 + 0.0128772i
\(476\) 0 0
\(477\) −28.7452 + 33.1737i −1.31615 + 1.51892i
\(478\) 0 0
\(479\) −10.2099 11.7829i −0.466504 0.538374i 0.472932 0.881099i \(-0.343196\pi\)
−0.939436 + 0.342725i \(0.888650\pi\)
\(480\) 0 0
\(481\) 6.77888 14.8437i 0.309090 0.676814i
\(482\) 0 0
\(483\) 19.8986 28.1817i 0.905420 1.28231i
\(484\) 0 0
\(485\) 4.68526 10.2593i 0.212746 0.465850i
\(486\) 0 0
\(487\) 4.30456 + 4.96773i 0.195058 + 0.225109i 0.844850 0.535003i \(-0.179689\pi\)
−0.649792 + 0.760112i \(0.725144\pi\)
\(488\) 0 0
\(489\) 28.7652 33.1969i 1.30081 1.50121i
\(490\) 0 0
\(491\) −19.9337 + 5.85306i −0.899595 + 0.264145i −0.698655 0.715459i \(-0.746218\pi\)
−0.200940 + 0.979604i \(0.564400\pi\)
\(492\) 0 0
\(493\) −8.09442 56.2979i −0.364554 2.53553i
\(494\) 0 0
\(495\) −9.16840 20.0760i −0.412089 0.902349i
\(496\) 0 0
\(497\) −21.8584 14.0476i −0.980484 0.630119i
\(498\) 0 0
\(499\) −4.62825 + 32.1902i −0.207189 + 1.44103i 0.575083 + 0.818095i \(0.304970\pi\)
−0.782272 + 0.622937i \(0.785939\pi\)
\(500\) 0 0
\(501\) −37.4970 + 24.0978i −1.67524 + 1.07661i
\(502\) 0 0
\(503\) −26.8301 7.87802i −1.19629 0.351264i −0.377859 0.925863i \(-0.623340\pi\)
−0.818435 + 0.574600i \(0.805158\pi\)
\(504\) 0 0
\(505\) 11.6169 0.516945
\(506\) 0 0
\(507\) 63.8936 2.83761
\(508\) 0 0
\(509\) 40.9302 + 12.0182i 1.81420 + 0.532697i 0.998924 0.0463746i \(-0.0147668\pi\)
0.815276 + 0.579072i \(0.196585\pi\)
\(510\) 0 0
\(511\) 4.12041 2.64803i 0.182276 0.117142i
\(512\) 0 0
\(513\) −0.857816 + 5.96624i −0.0378735 + 0.263416i
\(514\) 0 0
\(515\) −10.4907 6.74199i −0.462277 0.297088i
\(516\) 0 0
\(517\) −11.3835 24.9264i −0.500647 1.09626i
\(518\) 0 0
\(519\) 0.820314 + 5.70541i 0.0360078 + 0.250440i
\(520\) 0 0
\(521\) 16.9679 4.98221i 0.743376 0.218275i 0.111953 0.993714i \(-0.464289\pi\)
0.631423 + 0.775439i \(0.282471\pi\)
\(522\) 0 0
\(523\) −5.40427 + 6.23687i −0.236312 + 0.272719i −0.861502 0.507754i \(-0.830476\pi\)
0.625190 + 0.780473i \(0.285022\pi\)
\(524\) 0 0
\(525\) −4.71074 5.43648i −0.205593 0.237267i
\(526\) 0 0
\(527\) 26.0160 56.9670i 1.13327 2.48152i
\(528\) 0 0
\(529\) 21.4202 + 8.37708i 0.931313 + 0.364221i
\(530\) 0 0
\(531\) −1.11305 + 2.43724i −0.0483022 + 0.105767i
\(532\) 0 0
\(533\) −9.30517 10.7387i −0.403052 0.465146i
\(534\) 0 0
\(535\) −5.23801 + 6.04499i −0.226459 + 0.261348i
\(536\) 0 0
\(537\) −33.2735 + 9.76997i −1.43586 + 0.421605i
\(538\) 0 0
\(539\) −0.386056 2.68508i −0.0166286 0.115654i
\(540\) 0 0
\(541\) −11.8613 25.9725i −0.509955 1.11665i −0.973104 0.230366i \(-0.926008\pi\)
0.463149 0.886280i \(-0.346719\pi\)
\(542\) 0 0
\(543\) −16.5030 10.6058i −0.708211 0.455139i
\(544\) 0 0
\(545\) 0.0648231 0.450855i 0.00277672 0.0193125i
\(546\) 0 0
\(547\) 7.06543 4.54067i 0.302096 0.194145i −0.380807 0.924655i \(-0.624354\pi\)
0.682903 + 0.730509i \(0.260717\pi\)
\(548\) 0 0
\(549\) 20.8048 + 6.10884i 0.887927 + 0.260719i
\(550\) 0 0
\(551\) −9.58331 −0.408263
\(552\) 0 0
\(553\) −38.8901 −1.65377
\(554\) 0 0
\(555\) 7.49832 + 2.20171i 0.318286 + 0.0934572i
\(556\) 0 0
\(557\) −32.3703 + 20.8031i −1.37157 + 0.881457i −0.998918 0.0465128i \(-0.985189\pi\)
−0.372656 + 0.927970i \(0.621553\pi\)
\(558\) 0 0
\(559\) 4.53830 31.5646i 0.191950 1.33504i
\(560\) 0 0
\(561\) 61.0689 + 39.2466i 2.57833 + 1.65699i
\(562\) 0 0
\(563\) 11.0602 + 24.2184i 0.466130 + 1.02068i 0.986047 + 0.166466i \(0.0532355\pi\)
−0.519917 + 0.854217i \(0.674037\pi\)
\(564\) 0 0
\(565\) 1.00686 + 7.00285i 0.0423588 + 0.294612i
\(566\) 0 0
\(567\) −4.54391 + 1.33421i −0.190826 + 0.0560316i
\(568\) 0 0
\(569\) −7.76867 + 8.96552i −0.325680 + 0.375854i −0.894851 0.446364i \(-0.852719\pi\)
0.569172 + 0.822219i \(0.307264\pi\)
\(570\) 0 0
\(571\) 5.34023 + 6.16295i 0.223482 + 0.257912i 0.856407 0.516301i \(-0.172691\pi\)
−0.632925 + 0.774213i \(0.718146\pi\)
\(572\) 0 0
\(573\) 19.2883 42.2355i 0.805781 1.76441i
\(574\) 0 0
\(575\) 2.76620 3.91767i 0.115359 0.163378i
\(576\) 0 0
\(577\) 5.37599 11.7718i 0.223805 0.490065i −0.764105 0.645092i \(-0.776819\pi\)
0.987910 + 0.155027i \(0.0495463\pi\)
\(578\) 0 0
\(579\) 44.5945 + 51.4648i 1.85328 + 2.13880i
\(580\) 0 0
\(581\) −4.01612 + 4.63485i −0.166617 + 0.192286i
\(582\) 0 0
\(583\) 35.4174 10.3995i 1.46684 0.430703i
\(584\) 0 0
\(585\) 4.33900 + 30.1784i 0.179395 + 1.24772i
\(586\) 0 0
\(587\) −1.51413 3.31548i −0.0624948 0.136844i 0.875808 0.482660i \(-0.160329\pi\)
−0.938302 + 0.345816i \(0.887602\pi\)
\(588\) 0 0
\(589\) −8.87697 5.70488i −0.365769 0.235066i
\(590\) 0 0
\(591\) −1.20725 + 8.39658i −0.0496595 + 0.345389i
\(592\) 0 0
\(593\) 23.0056 14.7848i 0.944726 0.607138i 0.0249948 0.999688i \(-0.492043\pi\)
0.919731 + 0.392549i \(0.128407\pi\)
\(594\) 0 0
\(595\) 14.3177 + 4.20405i 0.586967 + 0.172349i
\(596\) 0 0
\(597\) 8.67928 0.355219
\(598\) 0 0
\(599\) 4.04978 0.165469 0.0827347 0.996572i \(-0.473635\pi\)
0.0827347 + 0.996572i \(0.473635\pi\)
\(600\) 0 0
\(601\) 42.7518 + 12.5531i 1.74388 + 0.512050i 0.989518 0.144407i \(-0.0461275\pi\)
0.754363 + 0.656457i \(0.227946\pi\)
\(602\) 0 0
\(603\) 27.1969 17.4784i 1.10754 0.711775i
\(604\) 0 0
\(605\) −1.07585 + 7.48269i −0.0437395 + 0.304215i
\(606\) 0 0
\(607\) −8.68163 5.57934i −0.352376 0.226459i 0.352463 0.935826i \(-0.385344\pi\)
−0.704839 + 0.709367i \(0.748981\pi\)
\(608\) 0 0
\(609\) −28.7480 62.9494i −1.16493 2.55084i
\(610\) 0 0
\(611\) 5.38731 + 37.4696i 0.217947 + 1.51586i
\(612\) 0 0
\(613\) 14.1452 4.15340i 0.571318 0.167754i 0.0167021 0.999861i \(-0.494683\pi\)
0.554616 + 0.832106i \(0.312865\pi\)
\(614\) 0 0
\(615\) 4.45626 5.14280i 0.179694 0.207378i
\(616\) 0 0
\(617\) 13.6829 + 15.7909i 0.550852 + 0.635717i 0.961081 0.276265i \(-0.0890968\pi\)
−0.410229 + 0.911982i \(0.634551\pi\)
\(618\) 0 0
\(619\) −13.9305 + 30.5034i −0.559912 + 1.22604i 0.392085 + 0.919929i \(0.371754\pi\)
−0.951997 + 0.306108i \(0.900973\pi\)
\(620\) 0 0
\(621\) −14.6098 25.0727i −0.586271 1.00613i
\(622\) 0 0
\(623\) 8.00951 17.5384i 0.320894 0.702660i
\(624\) 0 0
\(625\) −0.654861 0.755750i −0.0261944 0.0302300i
\(626\) 0 0
\(627\) 8.00981 9.24382i 0.319881 0.369162i
\(628\) 0 0
\(629\) −15.5545 + 4.56720i −0.620197 + 0.182106i
\(630\) 0 0
\(631\) −4.61882 32.1246i −0.183872 1.27886i −0.847499 0.530797i \(-0.821893\pi\)
0.663627 0.748064i \(-0.269016\pi\)
\(632\) 0 0
\(633\) −14.2274 31.1537i −0.565489 1.23825i
\(634\) 0 0
\(635\) 7.58147 + 4.87231i 0.300861 + 0.193352i
\(636\) 0 0
\(637\) −0.533308 + 3.70924i −0.0211304 + 0.146965i
\(638\) 0 0
\(639\) −44.3675 + 28.5132i −1.75515 + 1.12797i
\(640\) 0 0
\(641\) 27.3217 + 8.02236i 1.07914 + 0.316864i 0.772535 0.634972i \(-0.218989\pi\)
0.306606 + 0.951837i \(0.400807\pi\)
\(642\) 0 0
\(643\) 44.2359 1.74449 0.872246 0.489067i \(-0.162663\pi\)
0.872246 + 0.489067i \(0.162663\pi\)
\(644\) 0 0
\(645\) 15.2718 0.601326
\(646\) 0 0
\(647\) 26.3320 + 7.73178i 1.03522 + 0.303968i 0.754831 0.655919i \(-0.227719\pi\)
0.280388 + 0.959887i \(0.409537\pi\)
\(648\) 0 0
\(649\) 1.89547 1.21815i 0.0744038 0.0478164i
\(650\) 0 0
\(651\) 10.8442 75.4232i 0.425018 2.95607i
\(652\) 0 0
\(653\) 23.4318 + 15.0587i 0.916959 + 0.589294i 0.911774 0.410693i \(-0.134713\pi\)
0.00518514 + 0.999987i \(0.498350\pi\)
\(654\) 0 0
\(655\) −7.15924 15.6765i −0.279735 0.612533i
\(656\) 0 0
\(657\) −1.41485 9.84047i −0.0551984 0.383913i
\(658\) 0 0
\(659\) −38.5542 + 11.3205i −1.50186 + 0.440986i −0.926304 0.376777i \(-0.877032\pi\)
−0.575555 + 0.817763i \(0.695214\pi\)
\(660\) 0 0
\(661\) −23.9822 + 27.6770i −0.932801 + 1.07651i 0.0641078 + 0.997943i \(0.479580\pi\)
−0.996909 + 0.0785668i \(0.974966\pi\)
\(662\) 0 0
\(663\) −65.6704 75.7877i −2.55043 2.94335i
\(664\) 0 0
\(665\) 1.04446 2.28705i 0.0405025 0.0886881i
\(666\) 0 0
\(667\) 36.1517 28.6649i 1.39980 1.10991i
\(668\) 0 0
\(669\) 23.2568 50.9253i 0.899160 1.96889i
\(670\) 0 0
\(671\) −11.9407 13.7803i −0.460964 0.531981i
\(672\) 0 0
\(673\) −12.5437 + 14.4762i −0.483525 + 0.558018i −0.944124 0.329591i \(-0.893089\pi\)
0.460599 + 0.887608i \(0.347635\pi\)
\(674\) 0 0
\(675\) −5.80572 + 1.70471i −0.223462 + 0.0656144i
\(676\) 0 0
\(677\) −0.0112740 0.0784126i −0.000433296 0.00301364i 0.989604 0.143821i \(-0.0459391\pi\)
−0.990037 + 0.140808i \(0.955030\pi\)
\(678\) 0 0
\(679\) 11.8254 + 25.8939i 0.453815 + 0.993717i
\(680\) 0 0
\(681\) −20.1429 12.9451i −0.771877 0.496055i
\(682\) 0 0
\(683\) 2.22974 15.5082i 0.0853186 0.593404i −0.901647 0.432473i \(-0.857641\pi\)
0.986966 0.160931i \(-0.0514497\pi\)
\(684\) 0 0
\(685\) 2.96032 1.90248i 0.113108 0.0726902i
\(686\) 0 0
\(687\) 68.3296 + 20.0634i 2.60694 + 0.765466i
\(688\) 0 0
\(689\) −50.9920 −1.94264
\(690\) 0 0
\(691\) −29.8601 −1.13593 −0.567966 0.823052i \(-0.692270\pi\)
−0.567966 + 0.823052i \(0.692270\pi\)
\(692\) 0 0
\(693\) 53.4483 + 15.6938i 2.03033 + 0.596160i
\(694\) 0 0
\(695\) 8.83885 5.68039i 0.335277 0.215469i
\(696\) 0 0
\(697\) −2.00892 + 13.9723i −0.0760933 + 0.529240i
\(698\) 0 0
\(699\) 40.7951 + 26.2174i 1.54301 + 0.991635i
\(700\) 0 0
\(701\) −10.3160 22.5890i −0.389632 0.853174i −0.998217 0.0596859i \(-0.980990\pi\)
0.608586 0.793488i \(-0.291737\pi\)
\(702\) 0 0
\(703\) 0.388726 + 2.70365i 0.0146611 + 0.101970i
\(704\) 0 0
\(705\) −17.3944 + 5.10747i −0.655112 + 0.192358i
\(706\) 0 0
\(707\) −19.2008 + 22.1589i −0.722121 + 0.833372i
\(708\) 0 0
\(709\) 34.3029 + 39.5876i 1.28827 + 1.48674i 0.780355 + 0.625337i \(0.215038\pi\)
0.507916 + 0.861407i \(0.330416\pi\)
\(710\) 0 0
\(711\) −32.7919 + 71.8043i −1.22979 + 2.69287i
\(712\) 0 0
\(713\) 50.5512 5.03126i 1.89316 0.188422i
\(714\) 0 0
\(715\) 10.6507 23.3218i 0.398315 0.872188i
\(716\) 0 0
\(717\) 30.2035 + 34.8567i 1.12797 + 1.30175i
\(718\) 0 0
\(719\) 12.4012 14.3118i 0.462487 0.533739i −0.475820 0.879543i \(-0.657848\pi\)
0.938307 + 0.345804i \(0.112394\pi\)
\(720\) 0 0
\(721\) 30.1997 8.86742i 1.12469 0.330240i
\(722\) 0 0
\(723\) −1.31080 9.11681i −0.0487491 0.339058i
\(724\) 0 0
\(725\) −3.99639 8.75088i −0.148422 0.324999i
\(726\) 0 0
\(727\) −8.42152 5.41218i −0.312337 0.200727i 0.375075 0.926994i \(-0.377617\pi\)
−0.687412 + 0.726268i \(0.741253\pi\)
\(728\) 0 0
\(729\) 5.99484 41.6950i 0.222031 1.54426i
\(730\) 0 0
\(731\) −26.6506 + 17.1273i −0.985709 + 0.633477i
\(732\) 0 0
\(733\) 3.31626 + 0.973743i 0.122489 + 0.0359660i 0.342403 0.939553i \(-0.388759\pi\)
−0.219914 + 0.975519i \(0.570578\pi\)
\(734\) 0 0
\(735\) −1.79463 −0.0661958
\(736\) 0 0
\(737\) −27.1864 −1.00142
\(738\) 0 0
\(739\) −18.7827 5.51509i −0.690931 0.202876i −0.0826280 0.996580i \(-0.526331\pi\)
−0.608303 + 0.793705i \(0.708150\pi\)
\(740\) 0 0
\(741\) −14.2144 + 9.13503i −0.522178 + 0.335584i
\(742\) 0 0
\(743\) 2.43995 16.9702i 0.0895131 0.622577i −0.894842 0.446382i \(-0.852712\pi\)
0.984355 0.176195i \(-0.0563788\pi\)
\(744\) 0 0
\(745\) −0.602354 0.387109i −0.0220685 0.0141826i
\(746\) 0 0
\(747\) 5.17113 + 11.3232i 0.189202 + 0.414294i
\(748\) 0 0
\(749\) −2.87308 19.9827i −0.104980 0.730154i
\(750\) 0 0
\(751\) 37.5922 11.0381i 1.37176 0.402785i 0.488867 0.872358i \(-0.337410\pi\)
0.882894 + 0.469573i \(0.155592\pi\)
\(752\) 0 0
\(753\) −10.6665 + 12.3098i −0.388709 + 0.448594i
\(754\) 0 0
\(755\) 2.45236 + 2.83017i 0.0892505 + 0.103001i
\(756\) 0 0
\(757\) −14.2688 + 31.2443i −0.518608 + 1.13559i 0.451355 + 0.892344i \(0.350941\pi\)
−0.969964 + 0.243249i \(0.921787\pi\)
\(758\) 0 0
\(759\) −2.56650 + 58.8294i −0.0931580 + 2.13537i
\(760\) 0 0
\(761\) −15.7823 + 34.5584i −0.572108 + 1.25274i 0.373559 + 0.927606i \(0.378137\pi\)
−0.945667 + 0.325136i \(0.894590\pi\)
\(762\) 0 0
\(763\) 0.752852 + 0.868837i 0.0272551 + 0.0314540i
\(764\) 0 0
\(765\) 19.8347 22.8904i 0.717124 0.827606i
\(766\) 0 0
\(767\) −2.98648 + 0.876911i −0.107836 + 0.0316634i
\(768\) 0 0
\(769\) −5.10605 35.5134i −0.184129 1.28064i −0.846872 0.531797i \(-0.821517\pi\)
0.662743 0.748847i \(-0.269392\pi\)
\(770\) 0 0
\(771\) 9.01588 + 19.7420i 0.324699 + 0.710991i
\(772\) 0 0
\(773\) −20.8921 13.4266i −0.751438 0.482920i 0.108006 0.994150i \(-0.465553\pi\)
−0.859444 + 0.511231i \(0.829190\pi\)
\(774\) 0 0
\(775\) 1.50750 10.4849i 0.0541511 0.376629i
\(776\) 0 0
\(777\) −16.5932 + 10.6638i −0.595278 + 0.382562i
\(778\) 0 0
\(779\) 2.28210 + 0.670085i 0.0817647 + 0.0240083i
\(780\) 0 0
\(781\) 44.3502 1.58698
\(782\) 0 0
\(783\) −58.2103 −2.08027
\(784\) 0 0
\(785\) −13.5578 3.98092i −0.483897 0.142085i
\(786\) 0 0
\(787\) −29.1132 + 18.7099i −1.03777 + 0.666937i −0.944435 0.328697i \(-0.893390\pi\)
−0.0933391 + 0.995634i \(0.529754\pi\)
\(788\) 0 0
\(789\) −9.22084 + 64.1324i −0.328271 + 2.28317i
\(790\) 0 0
\(791\) −15.0219 9.65401i −0.534118 0.343257i
\(792\) 0 0
\(793\) 10.4638 + 22.9125i 0.371580 + 0.813648i
\(794\) 0 0
\(795\) −3.47535 24.1716i −0.123258 0.857279i
\(796\) 0 0