Properties

Label 460.2.m.a.101.3
Level $460$
Weight $2$
Character 460.101
Analytic conductor $3.673$
Analytic rank $0$
Dimension $30$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 460 = 2^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 460.m (of order \(11\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.67311849298\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 101.3
Character \(\chi\) \(=\) 460.101
Dual form 460.2.m.a.41.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.939578 + 1.08433i) q^{3} +(-0.142315 - 0.989821i) q^{5} +(2.04060 - 4.46829i) q^{7} +(0.133978 - 0.931838i) q^{9} +O(q^{10})\) \(q+(0.939578 + 1.08433i) q^{3} +(-0.142315 - 0.989821i) q^{5} +(2.04060 - 4.46829i) q^{7} +(0.133978 - 0.931838i) q^{9} +(-1.32995 - 0.390508i) q^{11} +(-1.48189 - 3.24489i) q^{13} +(0.939578 - 1.08433i) q^{15} +(-0.499590 - 0.321067i) q^{17} +(-3.22610 + 2.07329i) q^{19} +(6.76240 - 1.98562i) q^{21} +(0.607574 + 4.75719i) q^{23} +(-0.959493 + 0.281733i) q^{25} +(4.75733 - 3.05735i) q^{27} +(3.59036 + 2.30739i) q^{29} +(4.36493 - 5.03739i) q^{31} +(-0.826150 - 1.80902i) q^{33} +(-4.71321 - 1.38392i) q^{35} +(-0.914003 + 6.35703i) q^{37} +(2.12618 - 4.65569i) q^{39} +(1.61198 + 11.2116i) q^{41} +(6.29004 + 7.25910i) q^{43} -0.941420 q^{45} +10.3743 q^{47} +(-11.2175 - 12.9457i) q^{49} +(-0.121261 - 0.843388i) q^{51} +(-3.64954 + 7.99137i) q^{53} +(-0.197262 + 1.37199i) q^{55} +(-5.27930 - 1.55014i) q^{57} +(-3.29047 - 7.20513i) q^{59} +(-1.06322 + 1.22702i) q^{61} +(-3.89032 - 2.50016i) q^{63} +(-3.00097 + 1.92861i) q^{65} +(-10.7510 + 3.15677i) q^{67} +(-4.58750 + 5.12856i) q^{69} +(7.56643 - 2.22170i) q^{71} +(5.94562 - 3.82102i) q^{73} +(-1.20701 - 0.775698i) q^{75} +(-4.45879 + 5.14572i) q^{77} +(-5.03366 - 11.0222i) q^{79} +(5.07521 + 1.49022i) q^{81} +(0.930302 - 6.47039i) q^{83} +(-0.246700 + 0.540197i) q^{85} +(0.871456 + 6.06111i) q^{87} +(-2.15781 - 2.49024i) q^{89} -17.5231 q^{91} +9.56339 q^{93} +(2.51131 + 2.89820i) q^{95} +(2.53238 + 17.6131i) q^{97} +(-0.542074 + 1.18698i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30q - 3q^{5} + q^{7} + 21q^{9} + O(q^{10}) \) \( 30q - 3q^{5} + q^{7} + 21q^{9} + 2q^{13} + 10q^{17} + 3q^{19} + 39q^{21} + 10q^{23} - 3q^{25} + 21q^{27} + 14q^{29} - 2q^{31} - 50q^{33} - 10q^{35} + 9q^{37} + 38q^{39} - 3q^{41} - 50q^{43} + 10q^{45} - 6q^{47} - 36q^{49} - 36q^{51} - 5q^{53} - 11q^{55} + 23q^{57} + 14q^{59} - 16q^{61} - 52q^{63} + 2q^{65} + 27q^{67} + 42q^{69} + 19q^{71} + 24q^{73} - 10q^{77} - 22q^{79} + 35q^{81} + 36q^{83} + 10q^{85} - 3q^{87} - 28q^{89} - 98q^{91} - 60q^{93} - 19q^{95} - 2q^{97} - 14q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/460\mathbb{Z}\right)^\times\).

\(n\) \(231\) \(277\) \(281\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.939578 + 1.08433i 0.542466 + 0.626039i 0.959111 0.283030i \(-0.0913397\pi\)
−0.416645 + 0.909069i \(0.636794\pi\)
\(4\) 0 0
\(5\) −0.142315 0.989821i −0.0636451 0.442662i
\(6\) 0 0
\(7\) 2.04060 4.46829i 0.771274 1.68885i 0.0474449 0.998874i \(-0.484892\pi\)
0.723829 0.689980i \(-0.242381\pi\)
\(8\) 0 0
\(9\) 0.133978 0.931838i 0.0446593 0.310613i
\(10\) 0 0
\(11\) −1.32995 0.390508i −0.400994 0.117743i 0.0750159 0.997182i \(-0.476099\pi\)
−0.476010 + 0.879440i \(0.657917\pi\)
\(12\) 0 0
\(13\) −1.48189 3.24489i −0.411003 0.899971i −0.996035 0.0889609i \(-0.971645\pi\)
0.585032 0.811010i \(-0.301082\pi\)
\(14\) 0 0
\(15\) 0.939578 1.08433i 0.242598 0.279973i
\(16\) 0 0
\(17\) −0.499590 0.321067i −0.121168 0.0778701i 0.478653 0.878004i \(-0.341125\pi\)
−0.599821 + 0.800134i \(0.704762\pi\)
\(18\) 0 0
\(19\) −3.22610 + 2.07329i −0.740118 + 0.475645i −0.855582 0.517667i \(-0.826801\pi\)
0.115464 + 0.993312i \(0.463164\pi\)
\(20\) 0 0
\(21\) 6.76240 1.98562i 1.47568 0.433298i
\(22\) 0 0
\(23\) 0.607574 + 4.75719i 0.126688 + 0.991943i
\(24\) 0 0
\(25\) −0.959493 + 0.281733i −0.191899 + 0.0563465i
\(26\) 0 0
\(27\) 4.75733 3.05735i 0.915549 0.588388i
\(28\) 0 0
\(29\) 3.59036 + 2.30739i 0.666713 + 0.428471i 0.829739 0.558151i \(-0.188489\pi\)
−0.163026 + 0.986622i \(0.552125\pi\)
\(30\) 0 0
\(31\) 4.36493 5.03739i 0.783964 0.904743i −0.213425 0.976959i \(-0.568462\pi\)
0.997389 + 0.0722167i \(0.0230073\pi\)
\(32\) 0 0
\(33\) −0.826150 1.80902i −0.143814 0.314909i
\(34\) 0 0
\(35\) −4.71321 1.38392i −0.796678 0.233926i
\(36\) 0 0
\(37\) −0.914003 + 6.35703i −0.150261 + 1.04509i 0.765520 + 0.643412i \(0.222482\pi\)
−0.915781 + 0.401677i \(0.868427\pi\)
\(38\) 0 0
\(39\) 2.12618 4.65569i 0.340462 0.745507i
\(40\) 0 0
\(41\) 1.61198 + 11.2116i 0.251749 + 1.75095i 0.587707 + 0.809074i \(0.300031\pi\)
−0.335958 + 0.941877i \(0.609060\pi\)
\(42\) 0 0
\(43\) 6.29004 + 7.25910i 0.959222 + 1.10700i 0.994193 + 0.107613i \(0.0343209\pi\)
−0.0349704 + 0.999388i \(0.511134\pi\)
\(44\) 0 0
\(45\) −0.941420 −0.140339
\(46\) 0 0
\(47\) 10.3743 1.51325 0.756627 0.653847i \(-0.226846\pi\)
0.756627 + 0.653847i \(0.226846\pi\)
\(48\) 0 0
\(49\) −11.2175 12.9457i −1.60250 1.84939i
\(50\) 0 0
\(51\) −0.121261 0.843388i −0.0169799 0.118098i
\(52\) 0 0
\(53\) −3.64954 + 7.99137i −0.501302 + 1.09770i 0.474742 + 0.880125i \(0.342541\pi\)
−0.976044 + 0.217574i \(0.930186\pi\)
\(54\) 0 0
\(55\) −0.197262 + 1.37199i −0.0265988 + 0.184998i
\(56\) 0 0
\(57\) −5.27930 1.55014i −0.699261 0.205321i
\(58\) 0 0
\(59\) −3.29047 7.20513i −0.428383 0.938028i −0.993586 0.113076i \(-0.963930\pi\)
0.565203 0.824952i \(-0.308798\pi\)
\(60\) 0 0
\(61\) −1.06322 + 1.22702i −0.136131 + 0.157104i −0.819722 0.572762i \(-0.805872\pi\)
0.683590 + 0.729866i \(0.260417\pi\)
\(62\) 0 0
\(63\) −3.89032 2.50016i −0.490135 0.314990i
\(64\) 0 0
\(65\) −3.00097 + 1.92861i −0.372224 + 0.239214i
\(66\) 0 0
\(67\) −10.7510 + 3.15677i −1.31344 + 0.385661i −0.862122 0.506701i \(-0.830865\pi\)
−0.451320 + 0.892362i \(0.649047\pi\)
\(68\) 0 0
\(69\) −4.58750 + 5.12856i −0.552271 + 0.617406i
\(70\) 0 0
\(71\) 7.56643 2.22170i 0.897970 0.263668i 0.200001 0.979796i \(-0.435905\pi\)
0.697969 + 0.716128i \(0.254087\pi\)
\(72\) 0 0
\(73\) 5.94562 3.82102i 0.695883 0.447217i −0.144290 0.989535i \(-0.546090\pi\)
0.840173 + 0.542319i \(0.182454\pi\)
\(74\) 0 0
\(75\) −1.20701 0.775698i −0.139373 0.0895699i
\(76\) 0 0
\(77\) −4.45879 + 5.14572i −0.508126 + 0.586409i
\(78\) 0 0
\(79\) −5.03366 11.0222i −0.566332 1.24009i −0.948728 0.316095i \(-0.897628\pi\)
0.382396 0.923998i \(-0.375099\pi\)
\(80\) 0 0
\(81\) 5.07521 + 1.49022i 0.563912 + 0.165580i
\(82\) 0 0
\(83\) 0.930302 6.47039i 0.102114 0.710218i −0.872872 0.487950i \(-0.837745\pi\)
0.974986 0.222268i \(-0.0713460\pi\)
\(84\) 0 0
\(85\) −0.246700 + 0.540197i −0.0267583 + 0.0585926i
\(86\) 0 0
\(87\) 0.871456 + 6.06111i 0.0934299 + 0.649819i
\(88\) 0 0
\(89\) −2.15781 2.49024i −0.228727 0.263965i 0.629772 0.776780i \(-0.283148\pi\)
−0.858499 + 0.512815i \(0.828603\pi\)
\(90\) 0 0
\(91\) −17.5231 −1.83692
\(92\) 0 0
\(93\) 9.56339 0.991677
\(94\) 0 0
\(95\) 2.51131 + 2.89820i 0.257655 + 0.297349i
\(96\) 0 0
\(97\) 2.53238 + 17.6131i 0.257124 + 1.78833i 0.553075 + 0.833132i \(0.313454\pi\)
−0.295951 + 0.955203i \(0.595637\pi\)
\(98\) 0 0
\(99\) −0.542074 + 1.18698i −0.0544804 + 0.119296i
\(100\) 0 0
\(101\) −1.24990 + 8.69322i −0.124369 + 0.865007i 0.828145 + 0.560514i \(0.189396\pi\)
−0.952514 + 0.304494i \(0.901513\pi\)
\(102\) 0 0
\(103\) 10.9132 + 3.20440i 1.07531 + 0.315739i 0.771000 0.636835i \(-0.219757\pi\)
0.304308 + 0.952574i \(0.401575\pi\)
\(104\) 0 0
\(105\) −2.92780 6.41099i −0.285724 0.625648i
\(106\) 0 0
\(107\) 5.61560 6.48074i 0.542880 0.626517i −0.416329 0.909214i \(-0.636684\pi\)
0.959209 + 0.282697i \(0.0912290\pi\)
\(108\) 0 0
\(109\) 0.367043 + 0.235884i 0.0351563 + 0.0225936i 0.558101 0.829773i \(-0.311530\pi\)
−0.522945 + 0.852367i \(0.675167\pi\)
\(110\) 0 0
\(111\) −7.75190 + 4.98185i −0.735778 + 0.472856i
\(112\) 0 0
\(113\) 1.86035 0.546247i 0.175007 0.0513866i −0.193055 0.981188i \(-0.561840\pi\)
0.368062 + 0.929801i \(0.380021\pi\)
\(114\) 0 0
\(115\) 4.62230 1.27841i 0.431032 0.119212i
\(116\) 0 0
\(117\) −3.22225 + 0.946139i −0.297897 + 0.0874706i
\(118\) 0 0
\(119\) −2.45408 + 1.57714i −0.224965 + 0.144576i
\(120\) 0 0
\(121\) −7.63753 4.90834i −0.694320 0.446213i
\(122\) 0 0
\(123\) −10.6425 + 12.2820i −0.959598 + 1.10743i
\(124\) 0 0
\(125\) 0.415415 + 0.909632i 0.0371558 + 0.0813600i
\(126\) 0 0
\(127\) −9.72416 2.85527i −0.862880 0.253364i −0.179796 0.983704i \(-0.557544\pi\)
−0.683084 + 0.730340i \(0.739362\pi\)
\(128\) 0 0
\(129\) −1.96128 + 13.6410i −0.172681 + 1.20102i
\(130\) 0 0
\(131\) 1.68689 3.69378i 0.147385 0.322727i −0.821513 0.570190i \(-0.806870\pi\)
0.968897 + 0.247463i \(0.0795968\pi\)
\(132\) 0 0
\(133\) 2.68087 + 18.6459i 0.232461 + 1.61680i
\(134\) 0 0
\(135\) −3.70327 4.27380i −0.318727 0.367830i
\(136\) 0 0
\(137\) −8.09574 −0.691665 −0.345833 0.938296i \(-0.612404\pi\)
−0.345833 + 0.938296i \(0.612404\pi\)
\(138\) 0 0
\(139\) −10.0808 −0.855039 −0.427519 0.904006i \(-0.640612\pi\)
−0.427519 + 0.904006i \(0.640612\pi\)
\(140\) 0 0
\(141\) 9.74750 + 11.2492i 0.820888 + 0.947355i
\(142\) 0 0
\(143\) 0.703683 + 4.89423i 0.0588450 + 0.409276i
\(144\) 0 0
\(145\) 1.77294 3.88219i 0.147234 0.322399i
\(146\) 0 0
\(147\) 3.49770 24.3270i 0.288485 2.00646i
\(148\) 0 0
\(149\) −5.90081 1.73263i −0.483413 0.141943i 0.0309403 0.999521i \(-0.490150\pi\)
−0.514353 + 0.857578i \(0.671968\pi\)
\(150\) 0 0
\(151\) −3.01023 6.59149i −0.244969 0.536408i 0.746709 0.665151i \(-0.231633\pi\)
−0.991678 + 0.128743i \(0.958906\pi\)
\(152\) 0 0
\(153\) −0.366116 + 0.422520i −0.0295987 + 0.0341588i
\(154\) 0 0
\(155\) −5.60731 3.60360i −0.450390 0.289448i
\(156\) 0 0
\(157\) 0.983305 0.631932i 0.0784763 0.0504336i −0.500814 0.865555i \(-0.666966\pi\)
0.579291 + 0.815121i \(0.303330\pi\)
\(158\) 0 0
\(159\) −12.0943 + 3.55121i −0.959141 + 0.281629i
\(160\) 0 0
\(161\) 22.4963 + 6.99270i 1.77296 + 0.551102i
\(162\) 0 0
\(163\) 13.0288 3.82560i 1.02049 0.299644i 0.271654 0.962395i \(-0.412430\pi\)
0.748840 + 0.662751i \(0.230611\pi\)
\(164\) 0 0
\(165\) −1.67303 + 1.07519i −0.130245 + 0.0837035i
\(166\) 0 0
\(167\) 14.3770 + 9.23955i 1.11253 + 0.714978i 0.961843 0.273604i \(-0.0882157\pi\)
0.150685 + 0.988582i \(0.451852\pi\)
\(168\) 0 0
\(169\) 0.179872 0.207584i 0.0138363 0.0159680i
\(170\) 0 0
\(171\) 1.49974 + 3.28398i 0.114688 + 0.251132i
\(172\) 0 0
\(173\) 8.48305 + 2.49085i 0.644954 + 0.189376i 0.587821 0.808991i \(-0.299986\pi\)
0.0571330 + 0.998367i \(0.481804\pi\)
\(174\) 0 0
\(175\) −0.699078 + 4.86219i −0.0528453 + 0.367547i
\(176\) 0 0
\(177\) 4.72109 10.3377i 0.354859 0.777032i
\(178\) 0 0
\(179\) 1.45237 + 10.1014i 0.108555 + 0.755016i 0.969283 + 0.245950i \(0.0790999\pi\)
−0.860728 + 0.509066i \(0.829991\pi\)
\(180\) 0 0
\(181\) −7.51262 8.67002i −0.558408 0.644438i 0.404413 0.914576i \(-0.367476\pi\)
−0.962821 + 0.270139i \(0.912930\pi\)
\(182\) 0 0
\(183\) −2.32948 −0.172200
\(184\) 0 0
\(185\) 6.42240 0.472184
\(186\) 0 0
\(187\) 0.539049 + 0.622095i 0.0394191 + 0.0454921i
\(188\) 0 0
\(189\) −3.95332 27.4960i −0.287562 2.00004i
\(190\) 0 0
\(191\) −7.99636 + 17.5096i −0.578596 + 1.26695i 0.363497 + 0.931596i \(0.381583\pi\)
−0.942093 + 0.335353i \(0.891144\pi\)
\(192\) 0 0
\(193\) −0.292207 + 2.03234i −0.0210335 + 0.146291i −0.997632 0.0687801i \(-0.978089\pi\)
0.976598 + 0.215071i \(0.0689984\pi\)
\(194\) 0 0
\(195\) −4.91089 1.44197i −0.351676 0.103261i
\(196\) 0 0
\(197\) 2.37336 + 5.19692i 0.169095 + 0.370265i 0.975140 0.221588i \(-0.0711239\pi\)
−0.806046 + 0.591853i \(0.798397\pi\)
\(198\) 0 0
\(199\) −0.582305 + 0.672016i −0.0412785 + 0.0476379i −0.776013 0.630716i \(-0.782761\pi\)
0.734735 + 0.678354i \(0.237307\pi\)
\(200\) 0 0
\(201\) −13.5244 8.69159i −0.953936 0.613057i
\(202\) 0 0
\(203\) 17.6365 11.3343i 1.23784 0.795513i
\(204\) 0 0
\(205\) 10.8680 3.19114i 0.759056 0.222879i
\(206\) 0 0
\(207\) 4.51433 + 0.0711984i 0.313768 + 0.00494863i
\(208\) 0 0
\(209\) 5.10018 1.49755i 0.352787 0.103587i
\(210\) 0 0
\(211\) 18.5839 11.9431i 1.27937 0.822200i 0.288558 0.957462i \(-0.406824\pi\)
0.990810 + 0.135263i \(0.0431878\pi\)
\(212\) 0 0
\(213\) 9.51831 + 6.11705i 0.652184 + 0.419133i
\(214\) 0 0
\(215\) 6.29004 7.25910i 0.428977 0.495066i
\(216\) 0 0
\(217\) −13.6015 29.7830i −0.923327 2.02180i
\(218\) 0 0
\(219\) 9.72963 + 2.85688i 0.657467 + 0.193050i
\(220\) 0 0
\(221\) −0.301489 + 2.09690i −0.0202803 + 0.141053i
\(222\) 0 0
\(223\) 4.03163 8.82803i 0.269978 0.591169i −0.725279 0.688455i \(-0.758289\pi\)
0.995256 + 0.0972866i \(0.0310163\pi\)
\(224\) 0 0
\(225\) 0.133978 + 0.931838i 0.00893187 + 0.0621225i
\(226\) 0 0
\(227\) 2.47411 + 2.85528i 0.164212 + 0.189511i 0.831892 0.554937i \(-0.187258\pi\)
−0.667680 + 0.744449i \(0.732712\pi\)
\(228\) 0 0
\(229\) −3.48252 −0.230131 −0.115066 0.993358i \(-0.536708\pi\)
−0.115066 + 0.993358i \(0.536708\pi\)
\(230\) 0 0
\(231\) −9.76904 −0.642756
\(232\) 0 0
\(233\) −4.65210 5.36881i −0.304769 0.351723i 0.582619 0.812746i \(-0.302028\pi\)
−0.887388 + 0.461023i \(0.847483\pi\)
\(234\) 0 0
\(235\) −1.47642 10.2687i −0.0963112 0.669859i
\(236\) 0 0
\(237\) 7.22218 15.8144i 0.469131 1.02725i
\(238\) 0 0
\(239\) 2.61575 18.1929i 0.169199 1.17680i −0.711346 0.702842i \(-0.751914\pi\)
0.880545 0.473962i \(-0.157177\pi\)
\(240\) 0 0
\(241\) 5.77594 + 1.69597i 0.372061 + 0.109247i 0.462417 0.886663i \(-0.346982\pi\)
−0.0903560 + 0.995910i \(0.528800\pi\)
\(242\) 0 0
\(243\) −3.89491 8.52867i −0.249859 0.547114i
\(244\) 0 0
\(245\) −11.2175 + 12.9457i −0.716661 + 0.827071i
\(246\) 0 0
\(247\) 11.5083 + 7.39595i 0.732257 + 0.470593i
\(248\) 0 0
\(249\) 7.89014 5.07068i 0.500017 0.321342i
\(250\) 0 0
\(251\) −13.6071 + 3.99541i −0.858873 + 0.252188i −0.681376 0.731934i \(-0.738618\pi\)
−0.177497 + 0.984121i \(0.556800\pi\)
\(252\) 0 0
\(253\) 1.04968 6.56407i 0.0659927 0.412680i
\(254\) 0 0
\(255\) −0.817546 + 0.240053i −0.0511967 + 0.0150327i
\(256\) 0 0
\(257\) −23.8817 + 15.3479i −1.48970 + 0.957373i −0.493551 + 0.869717i \(0.664302\pi\)
−0.996151 + 0.0876569i \(0.972062\pi\)
\(258\) 0 0
\(259\) 26.5399 + 17.0562i 1.64911 + 1.05982i
\(260\) 0 0
\(261\) 2.63114 3.03650i 0.162863 0.187954i
\(262\) 0 0
\(263\) 1.34888 + 2.95363i 0.0831752 + 0.182128i 0.946650 0.322264i \(-0.104444\pi\)
−0.863475 + 0.504392i \(0.831717\pi\)
\(264\) 0 0
\(265\) 8.42941 + 2.47510i 0.517815 + 0.152044i
\(266\) 0 0
\(267\) 0.672818 4.67955i 0.0411758 0.286384i
\(268\) 0 0
\(269\) −10.2695 + 22.4870i −0.626141 + 1.37106i 0.284827 + 0.958579i \(0.408064\pi\)
−0.910968 + 0.412478i \(0.864663\pi\)
\(270\) 0 0
\(271\) −1.94730 13.5437i −0.118290 0.822723i −0.959438 0.281919i \(-0.909029\pi\)
0.841148 0.540804i \(-0.181880\pi\)
\(272\) 0 0
\(273\) −16.4643 19.0008i −0.996463 1.14998i
\(274\) 0 0
\(275\) 1.38609 0.0835846
\(276\) 0 0
\(277\) −18.5368 −1.11377 −0.556885 0.830590i \(-0.688004\pi\)
−0.556885 + 0.830590i \(0.688004\pi\)
\(278\) 0 0
\(279\) −4.10923 4.74230i −0.246013 0.283914i
\(280\) 0 0
\(281\) −4.06775 28.2918i −0.242662 1.68775i −0.638653 0.769495i \(-0.720508\pi\)
0.395992 0.918254i \(-0.370401\pi\)
\(282\) 0 0
\(283\) 6.40447 14.0238i 0.380706 0.833630i −0.618161 0.786051i \(-0.712122\pi\)
0.998867 0.0475791i \(-0.0151506\pi\)
\(284\) 0 0
\(285\) −0.783042 + 5.44617i −0.0463834 + 0.322604i
\(286\) 0 0
\(287\) 53.3858 + 15.6755i 3.15127 + 0.925295i
\(288\) 0 0
\(289\) −6.91555 15.1429i −0.406797 0.890761i
\(290\) 0 0
\(291\) −16.7190 + 19.2948i −0.980086 + 1.13108i
\(292\) 0 0
\(293\) 10.2141 + 6.56418i 0.596712 + 0.383484i 0.803853 0.594827i \(-0.202780\pi\)
−0.207141 + 0.978311i \(0.566416\pi\)
\(294\) 0 0
\(295\) −6.66351 + 4.28238i −0.387965 + 0.249330i
\(296\) 0 0
\(297\) −7.52092 + 2.20834i −0.436408 + 0.128141i
\(298\) 0 0
\(299\) 14.5362 9.02116i 0.840650 0.521707i
\(300\) 0 0
\(301\) 45.2712 13.2928i 2.60939 0.766185i
\(302\) 0 0
\(303\) −10.6007 + 6.81265i −0.608994 + 0.391377i
\(304\) 0 0
\(305\) 1.36584 + 0.877775i 0.0782080 + 0.0502612i
\(306\) 0 0
\(307\) −20.9173 + 24.1398i −1.19381 + 1.37773i −0.286067 + 0.958210i \(0.592348\pi\)
−0.907745 + 0.419522i \(0.862198\pi\)
\(308\) 0 0
\(309\) 6.77916 + 14.8443i 0.385653 + 0.844462i
\(310\) 0 0
\(311\) 3.61402 + 1.06117i 0.204932 + 0.0601735i 0.382587 0.923919i \(-0.375033\pi\)
−0.177655 + 0.984093i \(0.556851\pi\)
\(312\) 0 0
\(313\) −0.150542 + 1.04704i −0.00850915 + 0.0591824i −0.993634 0.112660i \(-0.964063\pi\)
0.985124 + 0.171842i \(0.0549720\pi\)
\(314\) 0 0
\(315\) −1.92106 + 4.20653i −0.108239 + 0.237011i
\(316\) 0 0
\(317\) 3.53299 + 24.5725i 0.198432 + 1.38013i 0.808834 + 0.588036i \(0.200099\pi\)
−0.610402 + 0.792092i \(0.708992\pi\)
\(318\) 0 0
\(319\) −3.87394 4.47077i −0.216899 0.250315i
\(320\) 0 0
\(321\) 12.3036 0.686718
\(322\) 0 0
\(323\) 2.27739 0.126717
\(324\) 0 0
\(325\) 2.33606 + 2.69595i 0.129581 + 0.149545i
\(326\) 0 0
\(327\) 0.0890890 + 0.619627i 0.00492663 + 0.0342655i
\(328\) 0 0
\(329\) 21.1699 46.3555i 1.16713 2.55566i
\(330\) 0 0
\(331\) −3.25595 + 22.6456i −0.178963 + 1.24472i 0.680205 + 0.733022i \(0.261891\pi\)
−0.859168 + 0.511694i \(0.829018\pi\)
\(332\) 0 0
\(333\) 5.80126 + 1.70341i 0.317907 + 0.0933460i
\(334\) 0 0
\(335\) 4.65467 + 10.1923i 0.254312 + 0.556865i
\(336\) 0 0
\(337\) 5.93365 6.84780i 0.323227 0.373024i −0.570760 0.821117i \(-0.693351\pi\)
0.893987 + 0.448093i \(0.147897\pi\)
\(338\) 0 0
\(339\) 2.34025 + 1.50399i 0.127105 + 0.0816855i
\(340\) 0 0
\(341\) −7.77226 + 4.99493i −0.420892 + 0.270491i
\(342\) 0 0
\(343\) −47.7431 + 14.0186i −2.57788 + 0.756935i
\(344\) 0 0
\(345\) 5.72923 + 3.81094i 0.308451 + 0.205174i
\(346\) 0 0
\(347\) −17.3678 + 5.09966i −0.932354 + 0.273764i −0.712422 0.701751i \(-0.752402\pi\)
−0.219932 + 0.975515i \(0.570584\pi\)
\(348\) 0 0
\(349\) −0.607633 + 0.390502i −0.0325258 + 0.0209031i −0.556803 0.830645i \(-0.687972\pi\)
0.524277 + 0.851548i \(0.324336\pi\)
\(350\) 0 0
\(351\) −16.9706 10.9064i −0.905825 0.582139i
\(352\) 0 0
\(353\) −12.1372 + 14.0071i −0.646000 + 0.745523i −0.980424 0.196899i \(-0.936913\pi\)
0.334424 + 0.942423i \(0.391458\pi\)
\(354\) 0 0
\(355\) −3.27591 7.17323i −0.173867 0.380716i
\(356\) 0 0
\(357\) −4.01594 1.17919i −0.212546 0.0624092i
\(358\) 0 0
\(359\) −4.23150 + 29.4308i −0.223330 + 1.55330i 0.501984 + 0.864877i \(0.332604\pi\)
−0.725314 + 0.688418i \(0.758305\pi\)
\(360\) 0 0
\(361\) −1.78369 + 3.90574i −0.0938785 + 0.205565i
\(362\) 0 0
\(363\) −1.85379 12.8934i −0.0972986 0.676727i
\(364\) 0 0
\(365\) −4.62828 5.34132i −0.242255 0.279577i
\(366\) 0 0
\(367\) −10.2518 −0.535138 −0.267569 0.963539i \(-0.586220\pi\)
−0.267569 + 0.963539i \(0.586220\pi\)
\(368\) 0 0
\(369\) 10.6633 0.555110
\(370\) 0 0
\(371\) 28.2605 + 32.6143i 1.46721 + 1.69325i
\(372\) 0 0
\(373\) −2.39725 16.6732i −0.124125 0.863306i −0.952805 0.303584i \(-0.901817\pi\)
0.828680 0.559723i \(-0.189092\pi\)
\(374\) 0 0
\(375\) −0.596027 + 1.30512i −0.0307787 + 0.0673960i
\(376\) 0 0
\(377\) 2.16669 15.0696i 0.111590 0.776126i
\(378\) 0 0
\(379\) 17.4561 + 5.12557i 0.896659 + 0.263283i 0.697415 0.716667i \(-0.254333\pi\)
0.199243 + 0.979950i \(0.436152\pi\)
\(380\) 0 0
\(381\) −6.04055 13.2270i −0.309467 0.677638i
\(382\) 0 0
\(383\) −9.29071 + 10.7220i −0.474733 + 0.547871i −0.941722 0.336392i \(-0.890793\pi\)
0.466989 + 0.884263i \(0.345339\pi\)
\(384\) 0 0
\(385\) 5.72789 + 3.68109i 0.291920 + 0.187606i
\(386\) 0 0
\(387\) 7.60703 4.88874i 0.386687 0.248509i
\(388\) 0 0
\(389\) −11.7928 + 3.46267i −0.597917 + 0.175564i −0.566666 0.823947i \(-0.691767\pi\)
−0.0312505 + 0.999512i \(0.509949\pi\)
\(390\) 0 0
\(391\) 1.22384 2.57171i 0.0618921 0.130057i
\(392\) 0 0
\(393\) 5.59025 1.64145i 0.281991 0.0828000i
\(394\) 0 0
\(395\) −10.1936 + 6.55105i −0.512897 + 0.329619i
\(396\) 0 0
\(397\) 13.1192 + 8.43118i 0.658432 + 0.423149i 0.826739 0.562586i \(-0.190193\pi\)
−0.168307 + 0.985735i \(0.553830\pi\)
\(398\) 0 0
\(399\) −17.6994 + 20.4262i −0.886079 + 1.02259i
\(400\) 0 0
\(401\) −10.3192 22.5959i −0.515316 1.12838i −0.971183 0.238336i \(-0.923398\pi\)
0.455867 0.890048i \(-0.349329\pi\)
\(402\) 0 0
\(403\) −22.8142 6.69884i −1.13645 0.333693i
\(404\) 0 0
\(405\) 0.752770 5.23563i 0.0374054 0.260161i
\(406\) 0 0
\(407\) 3.69805 8.09759i 0.183305 0.401383i
\(408\) 0 0
\(409\) 1.34291 + 9.34011i 0.0664024 + 0.461839i 0.995710 + 0.0925316i \(0.0294959\pi\)
−0.929307 + 0.369307i \(0.879595\pi\)
\(410\) 0 0
\(411\) −7.60658 8.77846i −0.375205 0.433009i
\(412\) 0 0
\(413\) −38.9091 −1.91459
\(414\) 0 0
\(415\) −6.53693 −0.320885
\(416\) 0 0
\(417\) −9.47166 10.9309i −0.463829 0.535287i
\(418\) 0 0
\(419\) 5.62592 + 39.1291i 0.274844 + 1.91158i 0.394735 + 0.918795i \(0.370837\pi\)
−0.119890 + 0.992787i \(0.538254\pi\)
\(420\) 0 0
\(421\) 1.18970 2.60508i 0.0579825 0.126964i −0.878423 0.477884i \(-0.841404\pi\)
0.936405 + 0.350920i \(0.114131\pi\)
\(422\) 0 0
\(423\) 1.38993 9.66720i 0.0675809 0.470035i
\(424\) 0 0
\(425\) 0.569808 + 0.167311i 0.0276397 + 0.00811576i
\(426\) 0 0
\(427\) 3.31308 + 7.25463i 0.160331 + 0.351076i
\(428\) 0 0
\(429\) −4.64579 + 5.36153i −0.224301 + 0.258857i
\(430\) 0 0
\(431\) −16.2842 10.4653i −0.784385 0.504093i 0.0861015 0.996286i \(-0.472559\pi\)
−0.870486 + 0.492193i \(0.836195\pi\)
\(432\) 0 0
\(433\) −14.9421 + 9.60272i −0.718073 + 0.461477i −0.847966 0.530051i \(-0.822173\pi\)
0.129893 + 0.991528i \(0.458536\pi\)
\(434\) 0 0
\(435\) 5.87539 1.72517i 0.281704 0.0827156i
\(436\) 0 0
\(437\) −11.8231 14.0875i −0.565577 0.673896i
\(438\) 0 0
\(439\) 0.274828 0.0806967i 0.0131168 0.00385144i −0.275168 0.961396i \(-0.588733\pi\)
0.288284 + 0.957545i \(0.406915\pi\)
\(440\) 0 0
\(441\) −13.5662 + 8.71847i −0.646009 + 0.415165i
\(442\) 0 0
\(443\) −31.9527 20.5348i −1.51812 0.975636i −0.992139 0.125139i \(-0.960062\pi\)
−0.525980 0.850497i \(-0.676301\pi\)
\(444\) 0 0
\(445\) −2.15781 + 2.49024i −0.102290 + 0.118049i
\(446\) 0 0
\(447\) −3.66552 8.02637i −0.173373 0.379634i
\(448\) 0 0
\(449\) 20.5136 + 6.02334i 0.968097 + 0.284259i 0.727302 0.686317i \(-0.240774\pi\)
0.240795 + 0.970576i \(0.422592\pi\)
\(450\) 0 0
\(451\) 2.23435 15.5403i 0.105212 0.731763i
\(452\) 0 0
\(453\) 4.31901 9.45731i 0.202925 0.444343i
\(454\) 0 0
\(455\) 2.49379 + 17.3447i 0.116911 + 0.813132i
\(456\) 0 0
\(457\) 10.1245 + 11.6843i 0.473605 + 0.546569i 0.941411 0.337262i \(-0.109501\pi\)
−0.467806 + 0.883831i \(0.654955\pi\)
\(458\) 0 0
\(459\) −3.35833 −0.156753
\(460\) 0 0
\(461\) 16.0685 0.748384 0.374192 0.927351i \(-0.377920\pi\)
0.374192 + 0.927351i \(0.377920\pi\)
\(462\) 0 0
\(463\) 14.6760 + 16.9370i 0.682050 + 0.787127i 0.986211 0.165493i \(-0.0529216\pi\)
−0.304161 + 0.952621i \(0.598376\pi\)
\(464\) 0 0
\(465\) −1.36101 9.46605i −0.0631154 0.438978i
\(466\) 0 0
\(467\) 4.99664 10.9411i 0.231217 0.506295i −0.758089 0.652151i \(-0.773867\pi\)
0.989306 + 0.145857i \(0.0465939\pi\)
\(468\) 0 0
\(469\) −7.83307 + 54.4802i −0.361698 + 2.51566i
\(470\) 0 0
\(471\) 1.60911 + 0.472479i 0.0741441 + 0.0217707i
\(472\) 0 0
\(473\) −5.53069 12.1105i −0.254301 0.556843i
\(474\) 0 0
\(475\) 2.51131 2.89820i 0.115227 0.132979i
\(476\) 0 0
\(477\) 6.95770 + 4.47144i 0.318571 + 0.204733i
\(478\) 0 0
\(479\) 22.0927 14.1981i 1.00944 0.648728i 0.0721923 0.997391i \(-0.477000\pi\)
0.937248 + 0.348663i \(0.113364\pi\)
\(480\) 0 0
\(481\) 21.9823 6.45460i 1.00231 0.294304i
\(482\) 0 0
\(483\) 13.5546 + 30.9636i 0.616757 + 1.40889i
\(484\) 0 0
\(485\) 17.0734 5.01320i 0.775262 0.227638i
\(486\) 0 0
\(487\) −13.6617 + 8.77986i −0.619072 + 0.397853i −0.812249 0.583310i \(-0.801757\pi\)
0.193177 + 0.981164i \(0.438121\pi\)
\(488\) 0 0
\(489\) 16.3898 + 10.5331i 0.741171 + 0.476322i
\(490\) 0 0
\(491\) −19.5449 + 22.5560i −0.882047 + 1.01794i 0.117644 + 0.993056i \(0.462466\pi\)
−0.999690 + 0.0248805i \(0.992079\pi\)
\(492\) 0 0
\(493\) −1.05288 2.30549i −0.0474194 0.103834i
\(494\) 0 0
\(495\) 1.25204 + 0.367632i 0.0562750 + 0.0165238i
\(496\) 0 0
\(497\) 5.51283 38.3426i 0.247284 1.71990i
\(498\) 0 0
\(499\) 6.06707 13.2850i 0.271599 0.594719i −0.723856 0.689951i \(-0.757632\pi\)
0.995455 + 0.0952319i \(0.0303593\pi\)
\(500\) 0 0
\(501\) 3.48960 + 24.2707i 0.155904 + 1.08434i
\(502\) 0 0
\(503\) 8.60184 + 9.92705i 0.383537 + 0.442625i 0.914387 0.404840i \(-0.132673\pi\)
−0.530850 + 0.847466i \(0.678127\pi\)
\(504\) 0 0
\(505\) 8.78261 0.390821
\(506\) 0 0
\(507\) 0.394094 0.0175023
\(508\) 0 0
\(509\) −5.83927 6.73888i −0.258821 0.298695i 0.611435 0.791294i \(-0.290592\pi\)
−0.870256 + 0.492599i \(0.836047\pi\)
\(510\) 0 0
\(511\) −4.94078 34.3639i −0.218567 1.52017i
\(512\) 0 0
\(513\) −9.00886 + 19.7266i −0.397751 + 0.870952i
\(514\) 0 0
\(515\) 1.61868 11.2581i 0.0713274 0.496093i
\(516\) 0 0
\(517\) −13.7973 4.05126i −0.606806 0.178174i
\(518\) 0 0
\(519\) 5.26958 + 11.5388i 0.231309 + 0.506496i
\(520\) 0 0
\(521\) −11.6573 + 13.4533i −0.510717 + 0.589399i −0.951282 0.308322i \(-0.900233\pi\)
0.440565 + 0.897721i \(0.354778\pi\)
\(522\) 0 0
\(523\) −16.8496 10.8286i −0.736783 0.473502i 0.117655 0.993055i \(-0.462462\pi\)
−0.854438 + 0.519553i \(0.826099\pi\)
\(524\) 0 0
\(525\) −5.92906 + 3.81038i −0.258766 + 0.166299i
\(526\) 0 0
\(527\) −3.79801 + 1.11520i −0.165444 + 0.0485787i
\(528\) 0 0
\(529\) −22.2617 + 5.78069i −0.967900 + 0.251334i
\(530\) 0 0
\(531\) −7.15486 + 2.10086i −0.310495 + 0.0911694i
\(532\) 0 0
\(533\) 33.9915 21.8450i 1.47234 0.946213i
\(534\) 0 0
\(535\) −7.21396 4.63613i −0.311887 0.200437i
\(536\) 0 0
\(537\) −9.58867 + 11.0659i −0.413782 + 0.477530i
\(538\) 0 0
\(539\) 9.86331 + 21.5976i 0.424843 + 0.930276i
\(540\) 0 0
\(541\) 24.5052 + 7.19538i 1.05356 + 0.309353i 0.762255 0.647276i \(-0.224092\pi\)
0.291306 + 0.956630i \(0.405910\pi\)
\(542\) 0 0
\(543\) 2.34248 16.2923i 0.100526 0.699171i
\(544\) 0 0
\(545\) 0.181247 0.396877i 0.00776379 0.0170003i
\(546\) 0 0
\(547\) 3.69999 + 25.7340i 0.158200 + 1.10031i 0.901948 + 0.431846i \(0.142137\pi\)
−0.743747 + 0.668461i \(0.766953\pi\)
\(548\) 0 0
\(549\) 1.00094 + 1.15514i 0.0427189 + 0.0493003i
\(550\) 0 0
\(551\) −16.3667 −0.697247
\(552\) 0 0
\(553\) −59.5220 −2.53113
\(554\) 0 0
\(555\) 6.03435 + 6.96401i 0.256144 + 0.295606i
\(556\) 0 0
\(557\) −5.08816 35.3890i −0.215592 1.49948i −0.754045 0.656823i \(-0.771900\pi\)
0.538453 0.842656i \(-0.319009\pi\)
\(558\) 0 0
\(559\) 14.2338 31.1677i 0.602026 1.31825i
\(560\) 0 0
\(561\) −0.168079 + 1.16901i −0.00709630 + 0.0493558i
\(562\) 0 0
\(563\) 34.1468 + 10.0264i 1.43912 + 0.422562i 0.905927 0.423434i \(-0.139176\pi\)
0.533188 + 0.845997i \(0.320994\pi\)
\(564\) 0 0
\(565\) −0.805442 1.76367i −0.0338852 0.0741982i
\(566\) 0 0
\(567\) 17.0152 19.6366i 0.714570 0.824658i
\(568\) 0 0
\(569\) −25.6244 16.4678i −1.07423 0.690367i −0.121014 0.992651i \(-0.538615\pi\)
−0.953218 + 0.302284i \(0.902251\pi\)
\(570\) 0 0
\(571\) −35.0677 + 22.5366i −1.46754 + 0.943128i −0.469344 + 0.883015i \(0.655510\pi\)
−0.998192 + 0.0601129i \(0.980854\pi\)
\(572\) 0 0
\(573\) −26.4994 + 7.78092i −1.10703 + 0.325053i
\(574\) 0 0
\(575\) −1.92322 4.39332i −0.0802037 0.183214i
\(576\) 0 0
\(577\) 37.3530 10.9678i 1.55503 0.456597i 0.612429 0.790526i \(-0.290193\pi\)
0.942598 + 0.333929i \(0.108375\pi\)
\(578\) 0 0
\(579\) −2.47828 + 1.59270i −0.102994 + 0.0661902i
\(580\) 0 0
\(581\) −27.0132 17.3603i −1.12070 0.720228i
\(582\) 0 0
\(583\) 7.97438 9.20293i 0.330265 0.381146i
\(584\) 0 0
\(585\) 1.39508 + 3.05481i 0.0576796 + 0.126301i
\(586\) 0 0
\(587\) 6.07814 + 1.78470i 0.250872 + 0.0736626i 0.404751 0.914427i \(-0.367358\pi\)
−0.153879 + 0.988090i \(0.549177\pi\)
\(588\) 0 0
\(589\) −3.63772 + 25.3009i −0.149890 + 1.04250i
\(590\) 0 0
\(591\) −3.40523 + 7.45642i −0.140073 + 0.306716i
\(592\) 0 0
\(593\) −3.19668 22.2334i −0.131272 0.913017i −0.943899 0.330233i \(-0.892873\pi\)
0.812627 0.582784i \(-0.198037\pi\)
\(594\) 0 0
\(595\) 1.91034 + 2.20465i 0.0783163 + 0.0903818i
\(596\) 0 0
\(597\) −1.27581 −0.0522154
\(598\) 0 0
\(599\) 32.9724 1.34721 0.673607 0.739089i \(-0.264744\pi\)
0.673607 + 0.739089i \(0.264744\pi\)
\(600\) 0 0
\(601\) 11.2818 + 13.0199i 0.460194 + 0.531092i 0.937658 0.347559i \(-0.112989\pi\)
−0.477464 + 0.878651i \(0.658444\pi\)
\(602\) 0 0
\(603\) 1.50121 + 10.4411i 0.0611338 + 0.425195i
\(604\) 0 0
\(605\) −3.77145 + 8.25832i −0.153331 + 0.335748i
\(606\) 0 0
\(607\) 2.27505 15.8233i 0.0923414 0.642249i −0.890112 0.455742i \(-0.849374\pi\)
0.982454 0.186507i \(-0.0597168\pi\)
\(608\) 0 0
\(609\) 28.8611 + 8.47437i 1.16951 + 0.343399i
\(610\) 0 0
\(611\) −15.3737 33.6636i −0.621952 1.36188i
\(612\) 0 0
\(613\) 25.4910 29.4182i 1.02957 1.18819i 0.0476575 0.998864i \(-0.484824\pi\)
0.981914 0.189326i \(-0.0606302\pi\)
\(614\) 0 0
\(615\) 13.6716 + 8.78621i 0.551293 + 0.354294i
\(616\) 0 0
\(617\) −33.1260 + 21.2888i −1.33360 + 0.857054i −0.996433 0.0843898i \(-0.973106\pi\)
−0.337169 + 0.941444i \(0.609470\pi\)
\(618\) 0 0
\(619\) −21.1724 + 6.21677i −0.850989 + 0.249873i −0.678010 0.735052i \(-0.737158\pi\)
−0.172979 + 0.984925i \(0.555339\pi\)
\(620\) 0 0
\(621\) 17.4348 + 20.7740i 0.699636 + 0.833630i
\(622\) 0 0
\(623\) −15.5303 + 4.56011i −0.622209 + 0.182697i
\(624\) 0 0
\(625\) 0.841254 0.540641i 0.0336501 0.0216256i
\(626\) 0 0
\(627\) 6.41585 + 4.12322i 0.256224 + 0.164665i
\(628\) 0 0
\(629\) 2.49766 2.88245i 0.0995881 0.114931i
\(630\) 0 0
\(631\) −3.60808 7.90060i −0.143636 0.314518i 0.824118 0.566419i \(-0.191672\pi\)
−0.967753 + 0.251901i \(0.918944\pi\)
\(632\) 0 0
\(633\) 30.4113 + 8.92957i 1.20874 + 0.354919i
\(634\) 0 0
\(635\) −1.44232 + 10.0315i −0.0572366 + 0.398089i
\(636\) 0 0
\(637\) −25.3843 + 55.5838i −1.00576 + 2.20231i
\(638\) 0 0
\(639\) −1.05653 7.34834i −0.0417958 0.290696i
\(640\) 0 0
\(641\) −3.63046 4.18977i −0.143394 0.165486i 0.679509 0.733667i \(-0.262193\pi\)
−0.822904 + 0.568181i \(0.807647\pi\)
\(642\) 0 0
\(643\) 22.4843 0.886695 0.443348 0.896350i \(-0.353791\pi\)
0.443348 + 0.896350i \(0.353791\pi\)
\(644\) 0 0
\(645\) 13.7812 0.542636
\(646\) 0 0
\(647\) −18.9567 21.8773i −0.745267 0.860083i 0.248834 0.968546i \(-0.419953\pi\)
−0.994101 + 0.108463i \(0.965407\pi\)
\(648\) 0 0
\(649\) 1.56250 + 10.8674i 0.0613333 + 0.426583i
\(650\) 0 0
\(651\) 19.5150 42.7320i 0.764855 1.67480i
\(652\) 0 0
\(653\) 6.56313 45.6476i 0.256835 1.78633i −0.298203 0.954502i \(-0.596387\pi\)
0.555038 0.831825i \(-0.312704\pi\)
\(654\) 0 0
\(655\) −3.89626 1.14404i −0.152239 0.0447015i
\(656\) 0 0
\(657\) −2.76399 6.05229i −0.107833 0.236122i
\(658\) 0 0
\(659\) 18.3622 21.1911i 0.715288 0.825487i −0.275444 0.961317i \(-0.588825\pi\)
0.990732 + 0.135831i \(0.0433703\pi\)
\(660\) 0 0
\(661\) 18.9456 + 12.1756i 0.736897 + 0.473575i 0.854478 0.519488i \(-0.173877\pi\)
−0.117580 + 0.993063i \(0.537514\pi\)
\(662\) 0 0
\(663\) −2.55701 + 1.64329i −0.0993059 + 0.0638200i
\(664\) 0 0
\(665\) 18.0746 5.30717i 0.700902 0.205803i
\(666\) 0 0
\(667\) −8.79526 + 18.4819i −0.340554 + 0.715624i
\(668\) 0 0
\(669\) 13.3605 3.92301i 0.516548 0.151672i
\(670\) 0 0
\(671\) 1.89319 1.21668i 0.0730857 0.0469693i
\(672\) 0 0
\(673\) −31.6573 20.3449i −1.22030 0.784239i −0.237948 0.971278i \(-0.576475\pi\)
−0.982353 + 0.187039i \(0.940111\pi\)
\(674\) 0 0
\(675\) −3.70327 + 4.27380i −0.142539 + 0.164499i
\(676\) 0 0
\(677\) 1.74027 + 3.81067i 0.0668842 + 0.146456i 0.940122 0.340839i \(-0.110711\pi\)
−0.873238 + 0.487295i \(0.837984\pi\)
\(678\) 0 0
\(679\) 83.8677 + 24.6258i 3.21855 + 0.945051i
\(680\) 0 0
\(681\) −0.771444 + 5.36551i −0.0295618 + 0.205607i
\(682\) 0 0
\(683\) 2.34134 5.12683i 0.0895890 0.196173i −0.859534 0.511079i \(-0.829246\pi\)
0.949123 + 0.314907i \(0.101973\pi\)
\(684\) 0 0
\(685\) 1.15214 + 8.01333i 0.0440211 + 0.306174i
\(686\) 0 0
\(687\) −3.27210 3.77620i −0.124838 0.144071i
\(688\) 0 0
\(689\) 31.3393 1.19393
\(690\) 0 0
\(691\) 10.5414 0.401013 0.200507 0.979692i \(-0.435741\pi\)
0.200507 + 0.979692i \(0.435741\pi\)
\(692\) 0 0
\(693\) 4.19759 + 4.84428i 0.159453 + 0.184019i
\(694\) 0 0
\(695\) 1.43464 + 9.97815i 0.0544191 + 0.378493i
\(696\) 0 0
\(697\) 2.79433 6.11873i 0.105843 0.231763i
\(698\) 0 0
\(699\) 1.45056 10.0888i 0.0548651 0.381595i
\(700\) 0 0
\(701\) −13.7535 4.03839i −0.519463 0.152528i 0.0114827 0.999934i \(-0.496345\pi\)
−0.530945 + 0.847406i \(0.678163\pi\)
\(702\) 0 0
\(703\) −10.2313 22.4034i −0.385881 0.844961i
\(704\) 0 0
\(705\) 9.74750 11.2492i 0.367112 0.423670i
\(706\) 0 0
\(707\) 36.2933 + 23.3243i 1.36495 + 0.877199i
\(708\) 0 0
\(709\) −28.5018 + 18.3170i −1.07041 + 0.687909i −0.952322 0.305095i \(-0.901312\pi\)
−0.118085 + 0.993003i \(0.537676\pi\)
\(710\) 0 0
\(711\) −10.9453 + 3.21383i −0.410480 + 0.120528i
\(712\) 0 0
\(713\) 26.6159 + 17.7042i 0.996772 + 0.663027i
\(714\) 0 0
\(715\) 4.74426 1.39304i 0.177425 0.0520968i
\(716\) 0 0
\(717\) 22.1849 14.2573i 0.828509 0.532450i
\(718\) 0 0
\(719\) −18.3407 11.7869i −0.683994 0.439576i 0.151952 0.988388i \(-0.451444\pi\)
−0.835946 + 0.548812i \(0.815080\pi\)
\(720\) 0 0
\(721\) 36.5876 42.2243i 1.36259 1.57252i
\(722\) 0 0
\(723\) 3.58796 + 7.85653i 0.133437 + 0.292187i
\(724\) 0 0
\(725\) −4.09499 1.20240i −0.152084 0.0446560i
\(726\) 0 0
\(727\) −0.209062 + 1.45406i −0.00775367 + 0.0539279i −0.993331 0.115298i \(-0.963218\pi\)
0.985577 + 0.169226i \(0.0541268\pi\)
\(728\) 0 0
\(729\) 12.1803 26.6711i 0.451122 0.987820i
\(730\) 0 0
\(731\) −0.811785 5.64609i −0.0300250 0.208828i
\(732\) 0 0
\(733\) 8.09618 + 9.34349i 0.299039 + 0.345110i 0.885306 0.465008i \(-0.153949\pi\)
−0.586267 + 0.810118i \(0.699403\pi\)
\(734\) 0 0
\(735\) −24.5772 −0.906542
\(736\) 0 0
\(737\) 15.5310 0.572091
\(738\) 0 0
\(739\) −31.7705 36.6652i −1.16870 1.34875i −0.925488 0.378776i \(-0.876345\pi\)
−0.243210 0.969974i \(-0.578200\pi\)
\(740\) 0 0
\(741\) 2.79331 + 19.4279i 0.102615 + 0.713702i
\(742\) 0 0
\(743\) 11.9052 26.0688i 0.436761 0.956373i −0.555421 0.831570i \(-0.687443\pi\)
0.992181 0.124803i \(-0.0398300\pi\)
\(744\) 0 0
\(745\) −0.875225 + 6.08733i −0.0320658 + 0.223022i
\(746\) 0 0
\(747\) −5.90472 1.73378i −0.216042 0.0634357i
\(748\) 0 0
\(749\) −17.4986 38.3167i −0.639387 1.40006i
\(750\) 0 0
\(751\) 24.3360 28.0852i 0.888034 1.02485i −0.111483 0.993766i \(-0.535560\pi\)
0.999517 0.0310790i \(-0.00989435\pi\)
\(752\) 0 0
\(753\) −17.1173 11.0006i −0.623788 0.400884i
\(754\) 0 0
\(755\) −6.09600 + 3.91766i −0.221856 + 0.142578i
\(756\) 0 0
\(757\) 7.53081 2.21125i 0.273712 0.0803691i −0.141996 0.989867i \(-0.545352\pi\)
0.415708 + 0.909498i \(0.363534\pi\)
\(758\) 0 0
\(759\) 8.10388 5.02926i 0.294152 0.182551i
\(760\) 0 0
\(761\) −36.2218 + 10.6357i −1.31304 + 0.385543i −0.861976 0.506949i \(-0.830773\pi\)
−0.451063 + 0.892492i \(0.648955\pi\)
\(762\) 0 0
\(763\) 1.80298 1.15871i 0.0652724 0.0419480i
\(764\) 0 0
\(765\) 0.470324 + 0.302259i 0.0170046 + 0.0109282i
\(766\) 0 0
\(767\) −18.5037 + 21.3545i −0.668131 + 0.771065i
\(768\) 0 0
\(769\) −7.19779 15.7610i −0.259559 0.568355i 0.734323 0.678800i \(-0.237500\pi\)
−0.993882 + 0.110445i \(0.964772\pi\)
\(770\) 0 0
\(771\) −39.0809 11.4752i −1.40747 0.413269i
\(772\) 0 0
\(773\) −3.54849 + 24.6803i −0.127630 + 0.887688i 0.820916 + 0.571049i \(0.193463\pi\)
−0.948546 + 0.316639i \(0.897446\pi\)
\(774\) 0 0
\(775\) −2.76892 + 6.06309i −0.0994625 + 0.217792i
\(776\) 0 0
\(777\) 6.44179 + 44.8037i 0.231098 + 1.60732i
\(778\) 0 0
\(779\) −28.4452 32.8275i −1.01915 1.17617i
\(780\) 0 0
\(781\) −10.9305 −0.391126
\(782\) 0 0
\(783\) 24.1350 0.862516
\(784\) 0 0
\(785\) −0.765438 0.883363i −0.0273197 0.0315286i
\(786\) 0 0
\(787\) 0.673295 + 4.68287i 0.0240004 + 0.166926i 0.998296 0.0583448i \(-0.0185823\pi\)
−0.974296 + 0.225271i \(0.927673\pi\)
\(788\) 0 0
\(789\) −1.93533 + 4.23779i −0.0688997 + 0.150869i
\(790\) 0 0
\(791\) 1.35543 9.42723i 0.0481936 0.335194i
\(792\) 0 0
\(793\) 5.55713 + 1.63172i 0.197339 + 0.0579441i
\(794\) 0 0
\(795\) 5.23626 + 11.4658i 0.185711 + 0.406651i
\(796\) 0 0