# Properties

 Label 460.2.a.e Level $460$ Weight $2$ Character orbit 460.a Self dual yes Analytic conductor $3.673$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [460,2,Mod(1,460)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(460, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("460.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$460 = 2^{2} \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 460.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$3.67311849298$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{17})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 4$$ x^2 - x - 4 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{17})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{3} + q^{5} + ( - \beta + 1) q^{7} + (\beta + 1) q^{9}+O(q^{10})$$ q + b * q^3 + q^5 + (-b + 1) * q^7 + (b + 1) * q^9 $$q + \beta q^{3} + q^{5} + ( - \beta + 1) q^{7} + (\beta + 1) q^{9} + 2 q^{11} + (\beta - 2) q^{13} + \beta q^{15} + ( - \beta + 1) q^{17} + 6 q^{19} - 4 q^{21} + q^{23} + q^{25} + ( - \beta + 4) q^{27} + ( - 2 \beta + 3) q^{29} + ( - 4 \beta + 1) q^{31} + 2 \beta q^{33} + ( - \beta + 1) q^{35} + (\beta - 3) q^{37} + ( - \beta + 4) q^{39} + ( - 2 \beta + 1) q^{41} + (\beta + 1) q^{45} - 3 \beta q^{47} + ( - \beta - 2) q^{49} - 4 q^{51} + (\beta - 3) q^{53} + 2 q^{55} + 6 \beta q^{57} + (3 \beta + 1) q^{59} + (2 \beta - 4) q^{61} + ( - \beta - 3) q^{63} + (\beta - 2) q^{65} + (\beta - 7) q^{67} + \beta q^{69} + ( - 2 \beta + 7) q^{71} + ( - \beta - 6) q^{73} + \beta q^{75} + ( - 2 \beta + 2) q^{77} + (2 \beta + 8) q^{79} - 7 q^{81} + (7 \beta - 3) q^{83} + ( - \beta + 1) q^{85} + (\beta - 8) q^{87} + ( - 4 \beta + 8) q^{89} + (2 \beta - 6) q^{91} + ( - 3 \beta - 16) q^{93} + 6 q^{95} + (2 \beta - 10) q^{97} + (2 \beta + 2) q^{99} +O(q^{100})$$ q + b * q^3 + q^5 + (-b + 1) * q^7 + (b + 1) * q^9 + 2 * q^11 + (b - 2) * q^13 + b * q^15 + (-b + 1) * q^17 + 6 * q^19 - 4 * q^21 + q^23 + q^25 + (-b + 4) * q^27 + (-2*b + 3) * q^29 + (-4*b + 1) * q^31 + 2*b * q^33 + (-b + 1) * q^35 + (b - 3) * q^37 + (-b + 4) * q^39 + (-2*b + 1) * q^41 + (b + 1) * q^45 - 3*b * q^47 + (-b - 2) * q^49 - 4 * q^51 + (b - 3) * q^53 + 2 * q^55 + 6*b * q^57 + (3*b + 1) * q^59 + (2*b - 4) * q^61 + (-b - 3) * q^63 + (b - 2) * q^65 + (b - 7) * q^67 + b * q^69 + (-2*b + 7) * q^71 + (-b - 6) * q^73 + b * q^75 + (-2*b + 2) * q^77 + (2*b + 8) * q^79 - 7 * q^81 + (7*b - 3) * q^83 + (-b + 1) * q^85 + (b - 8) * q^87 + (-4*b + 8) * q^89 + (2*b - 6) * q^91 + (-3*b - 16) * q^93 + 6 * q^95 + (2*b - 10) * q^97 + (2*b + 2) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{3} + 2 q^{5} + q^{7} + 3 q^{9}+O(q^{10})$$ 2 * q + q^3 + 2 * q^5 + q^7 + 3 * q^9 $$2 q + q^{3} + 2 q^{5} + q^{7} + 3 q^{9} + 4 q^{11} - 3 q^{13} + q^{15} + q^{17} + 12 q^{19} - 8 q^{21} + 2 q^{23} + 2 q^{25} + 7 q^{27} + 4 q^{29} - 2 q^{31} + 2 q^{33} + q^{35} - 5 q^{37} + 7 q^{39} + 3 q^{45} - 3 q^{47} - 5 q^{49} - 8 q^{51} - 5 q^{53} + 4 q^{55} + 6 q^{57} + 5 q^{59} - 6 q^{61} - 7 q^{63} - 3 q^{65} - 13 q^{67} + q^{69} + 12 q^{71} - 13 q^{73} + q^{75} + 2 q^{77} + 18 q^{79} - 14 q^{81} + q^{83} + q^{85} - 15 q^{87} + 12 q^{89} - 10 q^{91} - 35 q^{93} + 12 q^{95} - 18 q^{97} + 6 q^{99}+O(q^{100})$$ 2 * q + q^3 + 2 * q^5 + q^7 + 3 * q^9 + 4 * q^11 - 3 * q^13 + q^15 + q^17 + 12 * q^19 - 8 * q^21 + 2 * q^23 + 2 * q^25 + 7 * q^27 + 4 * q^29 - 2 * q^31 + 2 * q^33 + q^35 - 5 * q^37 + 7 * q^39 + 3 * q^45 - 3 * q^47 - 5 * q^49 - 8 * q^51 - 5 * q^53 + 4 * q^55 + 6 * q^57 + 5 * q^59 - 6 * q^61 - 7 * q^63 - 3 * q^65 - 13 * q^67 + q^69 + 12 * q^71 - 13 * q^73 + q^75 + 2 * q^77 + 18 * q^79 - 14 * q^81 + q^83 + q^85 - 15 * q^87 + 12 * q^89 - 10 * q^91 - 35 * q^93 + 12 * q^95 - 18 * q^97 + 6 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.56155 2.56155
0 −1.56155 0 1.00000 0 2.56155 0 −0.561553 0
1.2 0 2.56155 0 1.00000 0 −1.56155 0 3.56155 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$23$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 460.2.a.e 2
3.b odd 2 1 4140.2.a.m 2
4.b odd 2 1 1840.2.a.m 2
5.b even 2 1 2300.2.a.i 2
5.c odd 4 2 2300.2.c.h 4
8.b even 2 1 7360.2.a.bi 2
8.d odd 2 1 7360.2.a.bo 2
20.d odd 2 1 9200.2.a.bv 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
460.2.a.e 2 1.a even 1 1 trivial
1840.2.a.m 2 4.b odd 2 1
2300.2.a.i 2 5.b even 2 1
2300.2.c.h 4 5.c odd 4 2
4140.2.a.m 2 3.b odd 2 1
7360.2.a.bi 2 8.b even 2 1
7360.2.a.bo 2 8.d odd 2 1
9200.2.a.bv 2 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{2} - T_{3} - 4$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(460))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} - T - 4$$
$5$ $$(T - 1)^{2}$$
$7$ $$T^{2} - T - 4$$
$11$ $$(T - 2)^{2}$$
$13$ $$T^{2} + 3T - 2$$
$17$ $$T^{2} - T - 4$$
$19$ $$(T - 6)^{2}$$
$23$ $$(T - 1)^{2}$$
$29$ $$T^{2} - 4T - 13$$
$31$ $$T^{2} + 2T - 67$$
$37$ $$T^{2} + 5T + 2$$
$41$ $$T^{2} - 17$$
$43$ $$T^{2}$$
$47$ $$T^{2} + 3T - 36$$
$53$ $$T^{2} + 5T + 2$$
$59$ $$T^{2} - 5T - 32$$
$61$ $$T^{2} + 6T - 8$$
$67$ $$T^{2} + 13T + 38$$
$71$ $$T^{2} - 12T + 19$$
$73$ $$T^{2} + 13T + 38$$
$79$ $$T^{2} - 18T + 64$$
$83$ $$T^{2} - T - 208$$
$89$ $$T^{2} - 12T - 32$$
$97$ $$T^{2} + 18T + 64$$