# Properties

 Label 460.2.a.b Level $460$ Weight $2$ Character orbit 460.a Self dual yes Analytic conductor $3.673$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [460,2,Mod(1,460)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(460, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("460.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$460 = 2^{2} \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 460.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$3.67311849298$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} - q^{7} - 3 q^{9}+O(q^{10})$$ q - q^5 - q^7 - 3 * q^9 $$q - q^{5} - q^{7} - 3 q^{9} + 6 q^{11} + 6 q^{13} + 7 q^{17} + 2 q^{19} - q^{23} + q^{25} - 5 q^{29} + q^{31} + q^{35} - 5 q^{37} - 7 q^{41} + 8 q^{43} + 3 q^{45} + 8 q^{47} - 6 q^{49} + 3 q^{53} - 6 q^{55} + 13 q^{59} - 8 q^{61} + 3 q^{63} - 6 q^{65} - 9 q^{67} + 7 q^{71} - 2 q^{73} - 6 q^{77} - 12 q^{79} + 9 q^{81} - 5 q^{83} - 7 q^{85} - 12 q^{89} - 6 q^{91} - 2 q^{95} + 2 q^{97} - 18 q^{99}+O(q^{100})$$ q - q^5 - q^7 - 3 * q^9 + 6 * q^11 + 6 * q^13 + 7 * q^17 + 2 * q^19 - q^23 + q^25 - 5 * q^29 + q^31 + q^35 - 5 * q^37 - 7 * q^41 + 8 * q^43 + 3 * q^45 + 8 * q^47 - 6 * q^49 + 3 * q^53 - 6 * q^55 + 13 * q^59 - 8 * q^61 + 3 * q^63 - 6 * q^65 - 9 * q^67 + 7 * q^71 - 2 * q^73 - 6 * q^77 - 12 * q^79 + 9 * q^81 - 5 * q^83 - 7 * q^85 - 12 * q^89 - 6 * q^91 - 2 * q^95 + 2 * q^97 - 18 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 −1.00000 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$1$$
$$23$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 460.2.a.b 1
3.b odd 2 1 4140.2.a.h 1
4.b odd 2 1 1840.2.a.e 1
5.b even 2 1 2300.2.a.e 1
5.c odd 4 2 2300.2.c.g 2
8.b even 2 1 7360.2.a.m 1
8.d odd 2 1 7360.2.a.r 1
20.d odd 2 1 9200.2.a.q 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
460.2.a.b 1 1.a even 1 1 trivial
1840.2.a.e 1 4.b odd 2 1
2300.2.a.e 1 5.b even 2 1
2300.2.c.g 2 5.c odd 4 2
4140.2.a.h 1 3.b odd 2 1
7360.2.a.m 1 8.b even 2 1
7360.2.a.r 1 8.d odd 2 1
9200.2.a.q 1 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(460))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T + 1$$
$11$ $$T - 6$$
$13$ $$T - 6$$
$17$ $$T - 7$$
$19$ $$T - 2$$
$23$ $$T + 1$$
$29$ $$T + 5$$
$31$ $$T - 1$$
$37$ $$T + 5$$
$41$ $$T + 7$$
$43$ $$T - 8$$
$47$ $$T - 8$$
$53$ $$T - 3$$
$59$ $$T - 13$$
$61$ $$T + 8$$
$67$ $$T + 9$$
$71$ $$T - 7$$
$73$ $$T + 2$$
$79$ $$T + 12$$
$83$ $$T + 5$$
$89$ $$T + 12$$
$97$ $$T - 2$$