Defining parameters
Level: | \( N \) | \(=\) | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 460.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(460))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 78 | 6 | 72 |
Cusp forms | 67 | 6 | 61 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | \(23\) | Fricke | Dim |
---|---|---|---|---|
\(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
Plus space | \(+\) | \(2\) | ||
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(460))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 23 | |||||||
460.2.a.a | $1$ | $3.673$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-2\) | $-$ | $-$ | $+$ | \(q-q^{3}+q^{5}-2q^{7}-2q^{9}-4q^{11}+\cdots\) | |
460.2.a.b | $1$ | $3.673$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | \(q-q^{5}-q^{7}-3q^{9}+6q^{11}+6q^{13}+\cdots\) | |
460.2.a.c | $1$ | $3.673$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-4\) | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}-4q^{7}-2q^{9}-6q^{11}+\cdots\) | |
460.2.a.d | $1$ | $3.673$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(2\) | $-$ | $+$ | $+$ | \(q+3q^{3}-q^{5}+2q^{7}+6q^{9}-3q^{13}+\cdots\) | |
460.2.a.e | $2$ | $3.673$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | \(q+\beta q^{3}+q^{5}+(1-\beta )q^{7}+(1+\beta )q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(460))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(460)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 2}\)