Defining parameters
| Level: | \( N \) | \(=\) | \( 460 = 2^{2} \cdot 5 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 460.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(144\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(460))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 78 | 6 | 72 |
| Cusp forms | 67 | 6 | 61 |
| Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(8\) | \(0\) | \(8\) | \(7\) | \(0\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(11\) | \(0\) | \(11\) | \(9\) | \(0\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(12\) | \(0\) | \(12\) | \(10\) | \(0\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(9\) | \(0\) | \(9\) | \(7\) | \(0\) | \(7\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(10\) | \(1\) | \(9\) | \(9\) | \(1\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(9\) | \(1\) | \(8\) | \(8\) | \(1\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(9\) | \(2\) | \(7\) | \(8\) | \(2\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(36\) | \(2\) | \(34\) | \(31\) | \(2\) | \(29\) | \(5\) | \(0\) | \(5\) | |||||
| Minus space | \(-\) | \(42\) | \(4\) | \(38\) | \(36\) | \(4\) | \(32\) | \(6\) | \(0\) | \(6\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(460))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 23 | |||||||
| 460.2.a.a | $1$ | $3.673$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-2\) | $-$ | $-$ | $+$ | \(q-q^{3}+q^{5}-2q^{7}-2q^{9}-4q^{11}+\cdots\) | |
| 460.2.a.b | $1$ | $3.673$ | \(\Q\) | None | \(0\) | \(0\) | \(-1\) | \(-1\) | $-$ | $+$ | $+$ | \(q-q^{5}-q^{7}-3q^{9}+6q^{11}+6q^{13}+\cdots\) | |
| 460.2.a.c | $1$ | $3.673$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-4\) | $-$ | $+$ | $-$ | \(q+q^{3}-q^{5}-4q^{7}-2q^{9}-6q^{11}+\cdots\) | |
| 460.2.a.d | $1$ | $3.673$ | \(\Q\) | None | \(0\) | \(3\) | \(-1\) | \(2\) | $-$ | $+$ | $+$ | \(q+3q^{3}-q^{5}+2q^{7}+6q^{9}-3q^{13}+\cdots\) | |
| 460.2.a.e | $2$ | $3.673$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(1\) | \(2\) | \(1\) | $-$ | $-$ | $-$ | \(q+\beta q^{3}+q^{5}+(1-\beta )q^{7}+(1+\beta )q^{9}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(460))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(460)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(92))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 2}\)