Properties

Label 46.5.d
Level $46$
Weight $5$
Character orbit 46.d
Rep. character $\chi_{46}(5,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $80$
Newform subspaces $1$
Sturm bound $30$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 46.d (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(30\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(46, [\chi])\).

Total New Old
Modular forms 260 80 180
Cusp forms 220 80 140
Eisenstein series 40 0 40

Trace form

\( 80 q - 20 q^{3} - 64 q^{4} + 64 q^{6} - 108 q^{9} - 160 q^{12} - 4 q^{13} - 2926 q^{15} - 512 q^{16} + 990 q^{17} + 3392 q^{18} + 1914 q^{19} + 1584 q^{20} + 2706 q^{21} - 1284 q^{23} + 512 q^{24} - 4044 q^{25}+ \cdots - 115302 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(46, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
46.5.d.a 46.d 23.d $80$ $4.755$ None 46.5.d.a \(0\) \(-20\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$

Decomposition of \(S_{5}^{\mathrm{old}}(46, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(46, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 2}\)