Defining parameters
Level: | \( N \) | = | \( 46 = 2 \cdot 23 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(528\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(46))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 220 | 66 | 154 |
Cusp forms | 176 | 66 | 110 |
Eisenstein series | 44 | 0 | 44 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
46.4.a | \(\chi_{46}(1, \cdot)\) | 46.4.a.a | 1 | 1 |
46.4.a.b | 1 | |||
46.4.a.c | 2 | |||
46.4.a.d | 2 | |||
46.4.c | \(\chi_{46}(3, \cdot)\) | 46.4.c.a | 30 | 10 |
46.4.c.b | 30 |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(46))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(46)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 1}\)