Properties

Label 46.4
Level 46
Weight 4
Dimension 66
Nonzero newspaces 2
Newform subspaces 6
Sturm bound 528
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 46 = 2 \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 6 \)
Sturm bound: \(528\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(46))\).

Total New Old
Modular forms 220 66 154
Cusp forms 176 66 110
Eisenstein series 44 0 44

Trace form

\( 66 q + 748 q^{15} + 176 q^{17} - 88 q^{18} - 220 q^{19} - 352 q^{20} - 1320 q^{21} - 484 q^{22} - 968 q^{23} - 704 q^{25} - 220 q^{26} - 132 q^{27} + 176 q^{28} + 440 q^{29} + 1496 q^{30} + 1100 q^{31}+ \cdots + 11550 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
46.4.a \(\chi_{46}(1, \cdot)\) 46.4.a.a 1 1
46.4.a.b 1
46.4.a.c 2
46.4.a.d 2
46.4.c \(\chi_{46}(3, \cdot)\) 46.4.c.a 30 10
46.4.c.b 30

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(46))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(46)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 1}\)