Newspace parameters
Level: | \( N \) | \(=\) | \( 46 = 2 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 46.c (of order \(11\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.367311849298\) |
Analytic rank: | \(0\) |
Dimension: | \(10\) |
Coefficient field: | \(\Q(\zeta_{22})\) |
Defining polynomial: |
\( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{22}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/46\mathbb{Z}\right)^\times\).
\(n\) | \(5\) |
\(\chi(n)\) | \(-\zeta_{22}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 |
|
0.142315 | + | 0.989821i | 0.817178 | − | 1.78937i | −0.959493 | + | 0.281733i | −0.357685 | + | 0.412791i | 1.88745 | + | 0.554206i | −3.96028 | + | 2.54512i | −0.415415 | − | 0.909632i | −0.569485 | − | 0.657220i | −0.459493 | − | 0.295298i | ||||||||||||||||||||||||||||||
9.1 | 0.959493 | − | 0.281733i | −1.80075 | − | 2.07817i | 0.841254 | − | 0.540641i | 0.459493 | + | 3.19584i | −2.31329 | − | 1.48666i | −0.497033 | + | 1.08835i | 0.654861 | − | 0.755750i | −0.649167 | + | 4.51506i | 1.34125 | + | 2.93694i | |||||||||||||||||||||||||||||||
13.1 | 0.654861 | + | 0.755750i | −0.512546 | − | 0.329393i | −0.142315 | + | 0.989821i | 0.154861 | − | 0.339098i | −0.0867074 | − | 0.603063i | −1.97611 | − | 0.580239i | −0.841254 | + | 0.540641i | −1.09204 | − | 2.39124i | 0.357685 | − | 0.105026i | |||||||||||||||||||||||||||||||
25.1 | −0.841254 | − | 0.540641i | 0.425839 | + | 2.96177i | 0.415415 | + | 0.909632i | −1.34125 | − | 0.393828i | 1.24302 | − | 2.72183i | 2.81051 | − | 3.24350i | 0.142315 | − | 0.989821i | −5.71228 | + | 1.67728i | 0.915415 | + | 1.05645i | |||||||||||||||||||||||||||||||
27.1 | −0.415415 | − | 0.909632i | 1.07028 | − | 0.314261i | −0.654861 | + | 0.755750i | −0.915415 | − | 0.588302i | −0.730471 | − | 0.843008i | 0.122916 | + | 0.854902i | 0.959493 | + | 0.281733i | −1.47703 | + | 0.949230i | −0.154861 | + | 1.07708i | |||||||||||||||||||||||||||||||
29.1 | −0.415415 | + | 0.909632i | 1.07028 | + | 0.314261i | −0.654861 | − | 0.755750i | −0.915415 | + | 0.588302i | −0.730471 | + | 0.843008i | 0.122916 | − | 0.854902i | 0.959493 | − | 0.281733i | −1.47703 | − | 0.949230i | −0.154861 | − | 1.07708i | |||||||||||||||||||||||||||||||
31.1 | 0.142315 | − | 0.989821i | 0.817178 | + | 1.78937i | −0.959493 | − | 0.281733i | −0.357685 | − | 0.412791i | 1.88745 | − | 0.554206i | −3.96028 | − | 2.54512i | −0.415415 | + | 0.909632i | −0.569485 | + | 0.657220i | −0.459493 | + | 0.295298i | |||||||||||||||||||||||||||||||
35.1 | −0.841254 | + | 0.540641i | 0.425839 | − | 2.96177i | 0.415415 | − | 0.909632i | −1.34125 | + | 0.393828i | 1.24302 | + | 2.72183i | 2.81051 | + | 3.24350i | 0.142315 | + | 0.989821i | −5.71228 | − | 1.67728i | 0.915415 | − | 1.05645i | |||||||||||||||||||||||||||||||
39.1 | 0.654861 | − | 0.755750i | −0.512546 | + | 0.329393i | −0.142315 | − | 0.989821i | 0.154861 | + | 0.339098i | −0.0867074 | + | 0.603063i | −1.97611 | + | 0.580239i | −0.841254 | − | 0.540641i | −1.09204 | + | 2.39124i | 0.357685 | + | 0.105026i | |||||||||||||||||||||||||||||||
41.1 | 0.959493 | + | 0.281733i | −1.80075 | + | 2.07817i | 0.841254 | + | 0.540641i | 0.459493 | − | 3.19584i | −2.31329 | + | 1.48666i | −0.497033 | − | 1.08835i | 0.654861 | + | 0.755750i | −0.649167 | − | 4.51506i | 1.34125 | − | 2.93694i | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 46.2.c.b | ✓ | 10 |
3.b | odd | 2 | 1 | 414.2.i.c | 10 | ||
4.b | odd | 2 | 1 | 368.2.m.a | 10 | ||
23.c | even | 11 | 1 | inner | 46.2.c.b | ✓ | 10 |
23.c | even | 11 | 1 | 1058.2.a.j | 5 | ||
23.d | odd | 22 | 1 | 1058.2.a.k | 5 | ||
69.g | even | 22 | 1 | 9522.2.a.bw | 5 | ||
69.h | odd | 22 | 1 | 414.2.i.c | 10 | ||
69.h | odd | 22 | 1 | 9522.2.a.bz | 5 | ||
92.g | odd | 22 | 1 | 368.2.m.a | 10 | ||
92.g | odd | 22 | 1 | 8464.2.a.bu | 5 | ||
92.h | even | 22 | 1 | 8464.2.a.bv | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
46.2.c.b | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
46.2.c.b | ✓ | 10 | 23.c | even | 11 | 1 | inner |
368.2.m.a | 10 | 4.b | odd | 2 | 1 | ||
368.2.m.a | 10 | 92.g | odd | 22 | 1 | ||
414.2.i.c | 10 | 3.b | odd | 2 | 1 | ||
414.2.i.c | 10 | 69.h | odd | 22 | 1 | ||
1058.2.a.j | 5 | 23.c | even | 11 | 1 | ||
1058.2.a.k | 5 | 23.d | odd | 22 | 1 | ||
8464.2.a.bu | 5 | 92.g | odd | 22 | 1 | ||
8464.2.a.bv | 5 | 92.h | even | 22 | 1 | ||
9522.2.a.bw | 5 | 69.g | even | 22 | 1 | ||
9522.2.a.bz | 5 | 69.h | odd | 22 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{10} + 11T_{3}^{8} + 55T_{3}^{6} - 99T_{3}^{5} + 242T_{3}^{4} - 242T_{3}^{3} - 121T_{3}^{2} + 121T_{3} + 121 \)
acting on \(S_{2}^{\mathrm{new}}(46, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{10} - T^{9} + T^{8} - T^{7} + T^{6} - T^{5} + \cdots + 1 \)
$3$
\( T^{10} + 11 T^{8} + 55 T^{6} + \cdots + 121 \)
$5$
\( T^{10} + 4 T^{9} + 16 T^{8} + 53 T^{7} + \cdots + 1 \)
$7$
\( T^{10} + 7 T^{9} + 16 T^{8} + \cdots + 1849 \)
$11$
\( T^{10} + 2 T^{9} + 26 T^{8} + 74 T^{7} + \cdots + 1 \)
$13$
\( T^{10} - 2 T^{9} + 48 T^{8} + \cdots + 436921 \)
$17$
\( T^{10} + 9 T^{9} + 81 T^{8} + 454 T^{7} + \cdots + 1 \)
$19$
\( T^{10} - 2 T^{9} + 15 T^{8} + \cdots + 139129 \)
$23$
\( T^{10} - 21 T^{9} + 210 T^{8} + \cdots + 6436343 \)
$29$
\( T^{10} + 2 T^{9} + 48 T^{8} - 25 T^{7} + \cdots + 529 \)
$31$
\( T^{10} - 11 T^{9} + 110 T^{8} + \cdots + 2076481 \)
$37$
\( T^{10} + 18 T^{9} + 225 T^{8} + \cdots + 14645929 \)
$41$
\( T^{10} - 5 T^{9} + 25 T^{8} + \cdots + 1985281 \)
$43$
\( T^{10} + 21 T^{9} + 232 T^{8} + \cdots + 53333809 \)
$47$
\( (T^{5} + 11 T^{4} - 66 T^{3} - 726 T^{2} + \cdots + 3883)^{2} \)
$53$
\( T^{10} + 7 T^{9} + 16 T^{8} + \cdots + 1849 \)
$59$
\( T^{10} - 43 T^{9} + 859 T^{8} + \cdots + 8300161 \)
$61$
\( T^{10} + 3 T^{9} + 53 T^{8} + 104 T^{7} + \cdots + 529 \)
$67$
\( T^{10} + T^{9} - 54 T^{8} + \cdots + 157609 \)
$71$
\( T^{10} + 11 T^{9} + 110 T^{8} + \cdots + 2076481 \)
$73$
\( T^{10} + 28 T^{9} + 366 T^{8} + \cdots + 34774609 \)
$79$
\( T^{10} - 34 T^{9} + \cdots + 118613881 \)
$83$
\( T^{10} + 3 T^{9} - 277 T^{8} + \cdots + 923126689 \)
$89$
\( T^{10} + 49 T^{9} + 1191 T^{8} + \cdots + 380689 \)
$97$
\( T^{10} - 16 T^{9} + \cdots + 788093329 \)
show more
show less