Newspace parameters
Level: | \( N \) | \(=\) | \( 46 = 2 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 46.c (of order \(11\), degree \(10\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.367311849298\) |
Analytic rank: | \(0\) |
Dimension: | \(10\) |
Coefficient field: | \(\Q(\zeta_{22})\) |
Defining polynomial: |
\( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{22}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/46\mathbb{Z}\right)^\times\).
\(n\) | \(5\) |
\(\chi(n)\) | \(-\zeta_{22}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 |
|
−0.142315 | − | 0.989821i | 0.580699 | − | 1.27155i | −0.959493 | + | 0.281733i | −1.66741 | + | 1.92429i | −1.34125 | − | 0.393828i | 1.75667 | − | 1.12894i | 0.415415 | + | 0.909632i | 0.684944 | + | 0.790468i | 2.14200 | + | 1.37658i | ||||||||||||||||||||||||||||||
9.1 | −0.959493 | + | 0.281733i | 0.712591 | + | 0.822373i | 0.841254 | − | 0.540641i | 0.174863 | + | 1.21620i | −0.915415 | − | 0.588302i | 0.260554 | − | 0.570534i | −0.654861 | + | 0.755750i | 0.258432 | − | 1.79743i | −0.510424 | − | 1.11767i | |||||||||||||||||||||||||||||||
13.1 | −0.654861 | − | 0.755750i | −2.71616 | − | 1.74557i | −0.142315 | + | 0.989821i | 0.985691 | − | 2.15836i | 0.459493 | + | 3.19584i | 0.381761 | + | 0.112095i | 0.841254 | − | 0.540641i | 3.08427 | + | 6.75361i | −2.27667 | + | 0.668491i | |||||||||||||||||||||||||||||||
25.1 | 0.841254 | + | 0.540641i | −0.0530529 | − | 0.368991i | 0.415415 | + | 0.909632i | −3.26024 | − | 0.957293i | 0.154861 | − | 0.339098i | −0.297176 | + | 0.342959i | −0.142315 | + | 0.989821i | 2.74514 | − | 0.806046i | −2.22514 | − | 2.56794i | |||||||||||||||||||||||||||||||
27.1 | 0.415415 | + | 0.909632i | −0.524075 | + | 0.153882i | −0.654861 | + | 0.755750i | 0.767092 | + | 0.492980i | −0.357685 | − | 0.412791i | −0.601808 | − | 4.18567i | −0.959493 | − | 0.281733i | −2.27279 | + | 1.46063i | −0.129769 | + | 0.902563i | |||||||||||||||||||||||||||||||
29.1 | 0.415415 | − | 0.909632i | −0.524075 | − | 0.153882i | −0.654861 | − | 0.755750i | 0.767092 | − | 0.492980i | −0.357685 | + | 0.412791i | −0.601808 | + | 4.18567i | −0.959493 | + | 0.281733i | −2.27279 | − | 1.46063i | −0.129769 | − | 0.902563i | |||||||||||||||||||||||||||||||
31.1 | −0.142315 | + | 0.989821i | 0.580699 | + | 1.27155i | −0.959493 | − | 0.281733i | −1.66741 | − | 1.92429i | −1.34125 | + | 0.393828i | 1.75667 | + | 1.12894i | 0.415415 | − | 0.909632i | 0.684944 | − | 0.790468i | 2.14200 | − | 1.37658i | |||||||||||||||||||||||||||||||
35.1 | 0.841254 | − | 0.540641i | −0.0530529 | + | 0.368991i | 0.415415 | − | 0.909632i | −3.26024 | + | 0.957293i | 0.154861 | + | 0.339098i | −0.297176 | − | 0.342959i | −0.142315 | − | 0.989821i | 2.74514 | + | 0.806046i | −2.22514 | + | 2.56794i | |||||||||||||||||||||||||||||||
39.1 | −0.654861 | + | 0.755750i | −2.71616 | + | 1.74557i | −0.142315 | − | 0.989821i | 0.985691 | + | 2.15836i | 0.459493 | − | 3.19584i | 0.381761 | − | 0.112095i | 0.841254 | + | 0.540641i | 3.08427 | − | 6.75361i | −2.27667 | − | 0.668491i | |||||||||||||||||||||||||||||||
41.1 | −0.959493 | − | 0.281733i | 0.712591 | − | 0.822373i | 0.841254 | + | 0.540641i | 0.174863 | − | 1.21620i | −0.915415 | + | 0.588302i | 0.260554 | + | 0.570534i | −0.654861 | − | 0.755750i | 0.258432 | + | 1.79743i | −0.510424 | + | 1.11767i | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
23.c | even | 11 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 46.2.c.a | ✓ | 10 |
3.b | odd | 2 | 1 | 414.2.i.f | 10 | ||
4.b | odd | 2 | 1 | 368.2.m.b | 10 | ||
23.c | even | 11 | 1 | inner | 46.2.c.a | ✓ | 10 |
23.c | even | 11 | 1 | 1058.2.a.m | 5 | ||
23.d | odd | 22 | 1 | 1058.2.a.l | 5 | ||
69.g | even | 22 | 1 | 9522.2.a.bu | 5 | ||
69.h | odd | 22 | 1 | 414.2.i.f | 10 | ||
69.h | odd | 22 | 1 | 9522.2.a.bp | 5 | ||
92.g | odd | 22 | 1 | 368.2.m.b | 10 | ||
92.g | odd | 22 | 1 | 8464.2.a.bx | 5 | ||
92.h | even | 22 | 1 | 8464.2.a.bw | 5 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
46.2.c.a | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
46.2.c.a | ✓ | 10 | 23.c | even | 11 | 1 | inner |
368.2.m.b | 10 | 4.b | odd | 2 | 1 | ||
368.2.m.b | 10 | 92.g | odd | 22 | 1 | ||
414.2.i.f | 10 | 3.b | odd | 2 | 1 | ||
414.2.i.f | 10 | 69.h | odd | 22 | 1 | ||
1058.2.a.l | 5 | 23.d | odd | 22 | 1 | ||
1058.2.a.m | 5 | 23.c | even | 11 | 1 | ||
8464.2.a.bw | 5 | 92.h | even | 22 | 1 | ||
8464.2.a.bx | 5 | 92.g | odd | 22 | 1 | ||
9522.2.a.bp | 5 | 69.h | odd | 22 | 1 | ||
9522.2.a.bu | 5 | 69.g | even | 22 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{10} + 4T_{3}^{9} + 5T_{3}^{8} - 2T_{3}^{7} + 25T_{3}^{6} + T_{3}^{5} + 4T_{3}^{4} + 16T_{3}^{3} + 9T_{3}^{2} + 3T_{3} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(46, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{10} + T^{9} + T^{8} + T^{7} + T^{6} + T^{5} + \cdots + 1 \)
$3$
\( T^{10} + 4 T^{9} + 5 T^{8} - 2 T^{7} + \cdots + 1 \)
$5$
\( T^{10} + 6 T^{9} + 14 T^{8} + 29 T^{7} + \cdots + 529 \)
$7$
\( T^{10} - 3 T^{9} + 20 T^{8} - 71 T^{7} + \cdots + 1 \)
$11$
\( T^{10} + 12 T^{9} + 56 T^{8} + \cdots + 109561 \)
$13$
\( T^{10} + 14 T^{9} + 86 T^{8} + 258 T^{7} + \cdots + 1 \)
$17$
\( T^{10} - 15 T^{9} + 137 T^{8} + \cdots + 214369 \)
$19$
\( T^{10} - 2 T^{9} + 37 T^{8} + \cdots + 4489 \)
$23$
\( T^{10} + T^{9} + 78 T^{8} + \cdots + 6436343 \)
$29$
\( T^{10} + 8 T^{9} - 2 T^{8} + 259 T^{7} + \cdots + 4489 \)
$31$
\( T^{10} + 21 T^{9} + 232 T^{8} + \cdots + 20529961 \)
$37$
\( T^{10} - 28 T^{9} + 509 T^{8} + \cdots + 49857721 \)
$41$
\( T^{10} + 31 T^{9} + \cdots + 172475689 \)
$43$
\( T^{10} - 11 T^{9} + 66 T^{8} + \cdots + 7027801 \)
$47$
\( (T^{5} - 9 T^{4} - 82 T^{3} + 922 T^{2} + \cdots - 529)^{2} \)
$53$
\( T^{10} + 21 T^{9} + 144 T^{8} + \cdots + 31236921 \)
$59$
\( T^{10} + 5 T^{9} - 41 T^{8} + \cdots + 4489 \)
$61$
\( T^{10} - 37 T^{9} + \cdots + 349727401 \)
$67$
\( T^{10} + 13 T^{9} + 202 T^{8} + \cdots + 94109401 \)
$71$
\( T^{10} - 49 T^{9} + 1180 T^{8} + \cdots + 8300161 \)
$73$
\( T^{10} + 8 T^{9} + 42 T^{8} + \cdots + 7921 \)
$79$
\( T^{10} - 8 T^{9} + 9 T^{8} + \cdots + 17161 \)
$83$
\( T^{10} + 7 T^{9} + 49 T^{8} + \cdots + 667137241 \)
$89$
\( T^{10} + 13 T^{9} + 147 T^{8} + \cdots + 26739241 \)
$97$
\( T^{10} + 32 T^{9} + 628 T^{8} + \cdots + 5031049 \)
show more
show less