Defining parameters
Level: | \( N \) | \(=\) | \( 46 = 2 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 46.c (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(12\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(46, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 20 | 60 |
Cusp forms | 40 | 20 | 20 |
Eisenstein series | 40 | 0 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(46, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
46.2.c.a | $10$ | $0.367$ | \(\Q(\zeta_{22})\) | None | \(-1\) | \(-4\) | \(-6\) | \(3\) | \(q-\zeta_{22}q^{2}+(-\zeta_{22}+\zeta_{22}^{4}-\zeta_{22}^{7}+\cdots)q^{3}+\cdots\) |
46.2.c.b | $10$ | $0.367$ | \(\Q(\zeta_{22})\) | None | \(1\) | \(0\) | \(-4\) | \(-7\) | \(q+\zeta_{22}q^{2}+(-\zeta_{22}+\zeta_{22}^{4}+\zeta_{22}^{7}+\cdots)q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(46, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(46, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 2}\)