Properties

Label 46.2.c
Level $46$
Weight $2$
Character orbit 46.c
Rep. character $\chi_{46}(3,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $20$
Newform subspaces $2$
Sturm bound $12$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 46.c (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(46, [\chi])\).

Total New Old
Modular forms 80 20 60
Cusp forms 40 20 20
Eisenstein series 40 0 40

Trace form

\( 20 q - 4 q^{3} - 2 q^{4} - 10 q^{5} - 4 q^{6} - 4 q^{7} - 10 q^{9} - 2 q^{10} - 14 q^{11} - 4 q^{12} - 12 q^{13} - 12 q^{14} - 2 q^{15} - 2 q^{16} + 6 q^{17} + 28 q^{18} + 4 q^{19} + 12 q^{20} + 34 q^{21}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(46, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
46.2.c.a 46.c 23.c $10$ $0.367$ \(\Q(\zeta_{22})\) None 46.2.c.a \(-1\) \(-4\) \(-6\) \(3\) $\mathrm{SU}(2)[C_{11}]$ \(q-\zeta_{22}q^{2}+(-\zeta_{22}+\zeta_{22}^{4}-\zeta_{22}^{7}+\cdots)q^{3}+\cdots\)
46.2.c.b 46.c 23.c $10$ $0.367$ \(\Q(\zeta_{22})\) None 46.2.c.b \(1\) \(0\) \(-4\) \(-7\) $\mathrm{SU}(2)[C_{11}]$ \(q+\zeta_{22}q^{2}+(-\zeta_{22}+\zeta_{22}^{4}+\zeta_{22}^{7}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(46, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(46, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 2}\)