Properties

Label 46.2
Level 46
Weight 2
Dimension 21
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 264
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 46 = 2 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(264\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(46))\).

Total New Old
Modular forms 88 21 67
Cusp forms 45 21 24
Eisenstein series 43 0 43

Trace form

\( 21 q - q^{2} - 4 q^{3} - q^{4} - 6 q^{5} - 4 q^{6} - 8 q^{7} - q^{8} - 13 q^{9} - 6 q^{10} - 12 q^{11} - 4 q^{12} - 14 q^{13} - 8 q^{14} - 2 q^{15} - q^{16} + 4 q^{17} + 31 q^{18} + 2 q^{19} + 16 q^{20}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
46.2.a \(\chi_{46}(1, \cdot)\) 46.2.a.a 1 1
46.2.c \(\chi_{46}(3, \cdot)\) 46.2.c.a 10 10
46.2.c.b 10

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(46))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(46)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)