Properties

Label 46.11.b
Level $46$
Weight $11$
Character orbit 46.b
Rep. character $\chi_{46}(45,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $1$
Sturm bound $66$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 46 = 2 \cdot 23 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 46.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(66\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(46, [\chi])\).

Total New Old
Modular forms 62 20 42
Cusp forms 58 20 38
Eisenstein series 4 0 4

Trace form

\( 20 q - 124 q^{3} + 10240 q^{4} - 12160 q^{6} + 362880 q^{9} - 63488 q^{12} + 1231780 q^{13} + 5242880 q^{16} + 6493952 q^{18} + 2731876 q^{23} - 6225920 q^{24} - 47471412 q^{25} - 13969408 q^{26} - 60370732 q^{27}+ \cdots + 20634273536 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(46, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
46.11.b.a 46.b 23.b $20$ $29.226$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 46.11.b.a \(0\) \(-124\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-6+\beta _{1}+\beta _{3})q^{3}+2^{9}q^{4}+\cdots\)

Decomposition of \(S_{11}^{\mathrm{old}}(46, [\chi])\) into lower level spaces

\( S_{11}^{\mathrm{old}}(46, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 2}\)