Properties

Label 459.2.x
Level $459$
Weight $2$
Character orbit 459.x
Rep. character $\chi_{459}(4,\cdot)$
Character field $\Q(\zeta_{36})$
Dimension $624$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.x (of order \(36\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 459 \)
Character field: \(\Q(\zeta_{36})\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(459, [\chi])\).

Total New Old
Modular forms 672 672 0
Cusp forms 624 624 0
Eisenstein series 48 48 0

Trace form

\( 624 q - 12 q^{3} - 24 q^{4} - 12 q^{5} - 12 q^{6} - 12 q^{7} - 6 q^{10} - 18 q^{11} + 6 q^{12} - 24 q^{13} - 42 q^{14} - 48 q^{16} - 6 q^{17} - 24 q^{18} - 24 q^{20} - 120 q^{21} - 30 q^{22} - 48 q^{23}+ \cdots + 156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(459, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
459.2.x.a 459.x 459.x $624$ $3.665$ None 459.2.x.a \(0\) \(-12\) \(-12\) \(-12\) $\mathrm{SU}(2)[C_{36}]$