Defining parameters
Level: | \( N \) | \(=\) | \( 459 = 3^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 459.p (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 51 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(28\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(459, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 480 | 192 | 288 |
Cusp forms | 384 | 192 | 192 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(459, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
459.2.p.a | $96$ | $3.665$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
459.2.p.b | $96$ | $3.665$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(459, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(459, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)