Properties

Label 459.2.o.a.208.4
Level $459$
Weight $2$
Character 459.208
Analytic conductor $3.665$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(64,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 208.4
Character \(\chi\) \(=\) 459.208
Dual form 459.2.o.a.64.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64395 - 0.949132i) q^{2} +(0.801704 + 1.38859i) q^{4} +(2.17864 + 0.583765i) q^{5} +(-1.92618 + 0.516120i) q^{7} +0.752835i q^{8} +(-3.02750 - 3.02750i) q^{10} +(-5.69260 + 1.52533i) q^{11} +(-2.62105 - 4.53979i) q^{13} +(3.65641 + 0.979732i) q^{14} +(2.31795 - 4.01481i) q^{16} +(2.46059 - 3.30840i) q^{17} -1.31278i q^{19} +(0.936014 + 3.49325i) q^{20} +(10.8061 + 2.89547i) q^{22} +(1.24995 - 4.66487i) q^{23} +(0.0755659 + 0.0436280i) q^{25} +9.95088i q^{26} +(-2.26091 - 2.26091i) q^{28} +(-1.64689 - 6.14628i) q^{29} +(-5.87097 - 1.57312i) q^{31} +(-6.31721 + 3.64725i) q^{32} +(-7.18518 + 3.10341i) q^{34} -4.49776 q^{35} +(0.0561633 - 0.0561633i) q^{37} +(-1.24601 + 2.15815i) q^{38} +(-0.439479 + 1.64016i) q^{40} +(0.875143 - 3.26608i) q^{41} +(0.590522 + 0.340938i) q^{43} +(-6.68184 - 6.68184i) q^{44} +(-6.48243 + 6.48243i) q^{46} +(0.445543 - 0.771702i) q^{47} +(-2.61837 + 1.51172i) q^{49} +(-0.0828175 - 0.143444i) q^{50} +(4.20261 - 7.27913i) q^{52} +3.82857i q^{53} -13.2926 q^{55} +(-0.388553 - 1.45010i) q^{56} +(-3.12623 + 11.6673i) q^{58} +(-10.3316 + 5.96494i) q^{59} +(9.62356 - 2.57863i) q^{61} +(8.15845 + 8.15845i) q^{62} +4.57508 q^{64} +(-3.06015 - 11.4206i) q^{65} +(2.54607 + 4.40993i) q^{67} +(6.56668 + 0.764390i) q^{68} +(7.39407 + 4.26897i) q^{70} +(-2.14742 + 2.14742i) q^{71} +(0.612456 - 0.612456i) q^{73} +(-0.145636 + 0.0390230i) q^{74} +(1.82292 - 1.05247i) q^{76} +(10.1777 - 5.87612i) q^{77} +(-0.617312 + 0.165408i) q^{79} +(7.39368 - 7.39368i) q^{80} +(-4.53863 + 4.53863i) q^{82} +(8.24317 + 4.75919i) q^{83} +(7.29206 - 5.77141i) q^{85} +(-0.647191 - 1.12097i) q^{86} +(-1.14832 - 4.28559i) q^{88} -16.7260 q^{89} +(7.39169 + 7.39169i) q^{91} +(7.47969 - 2.00418i) q^{92} +(-1.46490 + 0.845758i) q^{94} +(0.766358 - 2.86009i) q^{95} +(0.491234 + 1.83331i) q^{97} +5.73928 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 24 q^{4} + 2 q^{5} - 2 q^{7} - 16 q^{10} - 4 q^{13} - 16 q^{16} + 8 q^{17} - 18 q^{20} - 4 q^{22} + 8 q^{23} + 10 q^{29} - 2 q^{31} + 20 q^{34} + 128 q^{35} - 8 q^{37} + 24 q^{38} - 20 q^{40} - 32 q^{41}+ \cdots - 208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.64395 0.949132i −1.16244 0.671138i −0.210556 0.977582i \(-0.567528\pi\)
−0.951889 + 0.306444i \(0.900861\pi\)
\(3\) 0 0
\(4\) 0.801704 + 1.38859i 0.400852 + 0.694296i
\(5\) 2.17864 + 0.583765i 0.974318 + 0.261068i 0.710650 0.703546i \(-0.248401\pi\)
0.263668 + 0.964614i \(0.415068\pi\)
\(6\) 0 0
\(7\) −1.92618 + 0.516120i −0.728029 + 0.195075i −0.603752 0.797173i \(-0.706328\pi\)
−0.124278 + 0.992247i \(0.539661\pi\)
\(8\) 0.752835i 0.266167i
\(9\) 0 0
\(10\) −3.02750 3.02750i −0.957378 0.957378i
\(11\) −5.69260 + 1.52533i −1.71638 + 0.459903i −0.976975 0.213355i \(-0.931561\pi\)
−0.739408 + 0.673258i \(0.764894\pi\)
\(12\) 0 0
\(13\) −2.62105 4.53979i −0.726947 1.25911i −0.958167 0.286208i \(-0.907605\pi\)
0.231220 0.972902i \(-0.425728\pi\)
\(14\) 3.65641 + 0.979732i 0.977216 + 0.261844i
\(15\) 0 0
\(16\) 2.31795 4.01481i 0.579487 1.00370i
\(17\) 2.46059 3.30840i 0.596780 0.802405i
\(18\) 0 0
\(19\) 1.31278i 0.301173i −0.988597 0.150587i \(-0.951884\pi\)
0.988597 0.150587i \(-0.0481163\pi\)
\(20\) 0.936014 + 3.49325i 0.209299 + 0.781115i
\(21\) 0 0
\(22\) 10.8061 + 2.89547i 2.30386 + 0.617317i
\(23\) 1.24995 4.66487i 0.260632 0.972693i −0.704238 0.709964i \(-0.748711\pi\)
0.964870 0.262728i \(-0.0846223\pi\)
\(24\) 0 0
\(25\) 0.0755659 + 0.0436280i 0.0151132 + 0.00872560i
\(26\) 9.95088i 1.95153i
\(27\) 0 0
\(28\) −2.26091 2.26091i −0.427272 0.427272i
\(29\) −1.64689 6.14628i −0.305820 1.14134i −0.932237 0.361848i \(-0.882146\pi\)
0.626417 0.779488i \(-0.284521\pi\)
\(30\) 0 0
\(31\) −5.87097 1.57312i −1.05446 0.282541i −0.310365 0.950618i \(-0.600451\pi\)
−0.744092 + 0.668077i \(0.767118\pi\)
\(32\) −6.31721 + 3.64725i −1.11674 + 0.644748i
\(33\) 0 0
\(34\) −7.18518 + 3.10341i −1.23225 + 0.532231i
\(35\) −4.49776 −0.760260
\(36\) 0 0
\(37\) 0.0561633 0.0561633i 0.00923320 0.00923320i −0.702475 0.711708i \(-0.747922\pi\)
0.711708 + 0.702475i \(0.247922\pi\)
\(38\) −1.24601 + 2.15815i −0.202129 + 0.350098i
\(39\) 0 0
\(40\) −0.439479 + 1.64016i −0.0694877 + 0.259332i
\(41\) 0.875143 3.26608i 0.136674 0.510076i −0.863311 0.504672i \(-0.831613\pi\)
0.999985 0.00540349i \(-0.00171999\pi\)
\(42\) 0 0
\(43\) 0.590522 + 0.340938i 0.0900538 + 0.0519926i 0.544351 0.838858i \(-0.316776\pi\)
−0.454297 + 0.890850i \(0.650109\pi\)
\(44\) −6.68184 6.68184i −1.00733 1.00733i
\(45\) 0 0
\(46\) −6.48243 + 6.48243i −0.955782 + 0.955782i
\(47\) 0.445543 0.771702i 0.0649891 0.112564i −0.831700 0.555225i \(-0.812632\pi\)
0.896689 + 0.442661i \(0.145965\pi\)
\(48\) 0 0
\(49\) −2.61837 + 1.51172i −0.374053 + 0.215959i
\(50\) −0.0828175 0.143444i −0.0117122 0.0202861i
\(51\) 0 0
\(52\) 4.20261 7.27913i 0.582797 1.00943i
\(53\) 3.82857i 0.525894i 0.964810 + 0.262947i \(0.0846945\pi\)
−0.964810 + 0.262947i \(0.915306\pi\)
\(54\) 0 0
\(55\) −13.2926 −1.79237
\(56\) −0.388553 1.45010i −0.0519226 0.193778i
\(57\) 0 0
\(58\) −3.12623 + 11.6673i −0.410495 + 1.53199i
\(59\) −10.3316 + 5.96494i −1.34506 + 0.776569i −0.987545 0.157339i \(-0.949709\pi\)
−0.357513 + 0.933908i \(0.616375\pi\)
\(60\) 0 0
\(61\) 9.62356 2.57863i 1.23217 0.330159i 0.416746 0.909023i \(-0.363170\pi\)
0.815424 + 0.578864i \(0.196504\pi\)
\(62\) 8.15845 + 8.15845i 1.03612 + 1.03612i
\(63\) 0 0
\(64\) 4.57508 0.571885
\(65\) −3.06015 11.4206i −0.379565 1.41656i
\(66\) 0 0
\(67\) 2.54607 + 4.40993i 0.311052 + 0.538759i 0.978590 0.205817i \(-0.0659852\pi\)
−0.667538 + 0.744576i \(0.732652\pi\)
\(68\) 6.56668 + 0.764390i 0.796327 + 0.0926960i
\(69\) 0 0
\(70\) 7.39407 + 4.26897i 0.883760 + 0.510239i
\(71\) −2.14742 + 2.14742i −0.254852 + 0.254852i −0.822956 0.568105i \(-0.807677\pi\)
0.568105 + 0.822956i \(0.307677\pi\)
\(72\) 0 0
\(73\) 0.612456 0.612456i 0.0716826 0.0716826i −0.670357 0.742039i \(-0.733859\pi\)
0.742039 + 0.670357i \(0.233859\pi\)
\(74\) −0.145636 + 0.0390230i −0.0169298 + 0.00453633i
\(75\) 0 0
\(76\) 1.82292 1.05247i 0.209104 0.120726i
\(77\) 10.1777 5.87612i 1.15986 0.669646i
\(78\) 0 0
\(79\) −0.617312 + 0.165408i −0.0694530 + 0.0186099i −0.293378 0.955996i \(-0.594780\pi\)
0.223925 + 0.974606i \(0.428113\pi\)
\(80\) 7.39368 7.39368i 0.826639 0.826639i
\(81\) 0 0
\(82\) −4.53863 + 4.53863i −0.501208 + 0.501208i
\(83\) 8.24317 + 4.75919i 0.904805 + 0.522389i 0.878756 0.477271i \(-0.158374\pi\)
0.0260490 + 0.999661i \(0.491707\pi\)
\(84\) 0 0
\(85\) 7.29206 5.77141i 0.790935 0.625998i
\(86\) −0.647191 1.12097i −0.0697884 0.120877i
\(87\) 0 0
\(88\) −1.14832 4.28559i −0.122411 0.456845i
\(89\) −16.7260 −1.77295 −0.886477 0.462773i \(-0.846855\pi\)
−0.886477 + 0.462773i \(0.846855\pi\)
\(90\) 0 0
\(91\) 7.39169 + 7.39169i 0.774860 + 0.774860i
\(92\) 7.47969 2.00418i 0.779812 0.208950i
\(93\) 0 0
\(94\) −1.46490 + 0.845758i −0.151092 + 0.0872332i
\(95\) 0.766358 2.86009i 0.0786266 0.293439i
\(96\) 0 0
\(97\) 0.491234 + 1.83331i 0.0498773 + 0.186144i 0.986370 0.164543i \(-0.0526148\pi\)
−0.936493 + 0.350687i \(0.885948\pi\)
\(98\) 5.73928 0.579754
\(99\) 0 0
\(100\) 0.139907i 0.0139907i
\(101\) 1.60224 2.77517i 0.159429 0.276140i −0.775234 0.631674i \(-0.782368\pi\)
0.934663 + 0.355535i \(0.115701\pi\)
\(102\) 0 0
\(103\) 3.20194 + 5.54592i 0.315496 + 0.546455i 0.979543 0.201236i \(-0.0644957\pi\)
−0.664047 + 0.747691i \(0.731162\pi\)
\(104\) 3.41771 1.97322i 0.335134 0.193490i
\(105\) 0 0
\(106\) 3.63382 6.29396i 0.352948 0.611323i
\(107\) 9.50783 9.50783i 0.919157 0.919157i −0.0778113 0.996968i \(-0.524793\pi\)
0.996968 + 0.0778113i \(0.0247932\pi\)
\(108\) 0 0
\(109\) 1.78834 + 1.78834i 0.171292 + 0.171292i 0.787547 0.616255i \(-0.211351\pi\)
−0.616255 + 0.787547i \(0.711351\pi\)
\(110\) 21.8522 + 12.6164i 2.08353 + 1.20293i
\(111\) 0 0
\(112\) −2.39268 + 8.92960i −0.226087 + 0.843767i
\(113\) −1.92202 + 7.17308i −0.180808 + 0.674786i 0.814681 + 0.579910i \(0.196912\pi\)
−0.995489 + 0.0948765i \(0.969754\pi\)
\(114\) 0 0
\(115\) 5.44638 9.43340i 0.507877 0.879669i
\(116\) 7.21436 7.21436i 0.669837 0.669837i
\(117\) 0 0
\(118\) 22.6461 2.08474
\(119\) −3.03201 + 7.64255i −0.277944 + 0.700591i
\(120\) 0 0
\(121\) 20.5528 11.8661i 1.86843 1.07874i
\(122\) −18.2681 4.89491i −1.65391 0.443165i
\(123\) 0 0
\(124\) −2.52236 9.41356i −0.226514 0.845363i
\(125\) −7.83522 7.83522i −0.700803 0.700803i
\(126\) 0 0
\(127\) 4.87460i 0.432551i −0.976332 0.216276i \(-0.930609\pi\)
0.976332 0.216276i \(-0.0693910\pi\)
\(128\) 5.11325 + 2.95213i 0.451952 + 0.260934i
\(129\) 0 0
\(130\) −5.80897 + 21.6794i −0.509481 + 1.90141i
\(131\) 13.6726 + 3.66357i 1.19458 + 0.320088i 0.800696 0.599071i \(-0.204463\pi\)
0.393888 + 0.919159i \(0.371130\pi\)
\(132\) 0 0
\(133\) 0.677554 + 2.52867i 0.0587514 + 0.219263i
\(134\) 9.66624i 0.835036i
\(135\) 0 0
\(136\) 2.49068 + 1.85241i 0.213574 + 0.158843i
\(137\) −4.17247 + 7.22692i −0.356478 + 0.617438i −0.987370 0.158433i \(-0.949356\pi\)
0.630892 + 0.775871i \(0.282689\pi\)
\(138\) 0 0
\(139\) −11.2919 3.02565i −0.957764 0.256632i −0.254110 0.967175i \(-0.581783\pi\)
−0.703653 + 0.710543i \(0.748449\pi\)
\(140\) −3.60587 6.24555i −0.304752 0.527846i
\(141\) 0 0
\(142\) 5.56842 1.49205i 0.467291 0.125210i
\(143\) 21.8452 + 21.8452i 1.82679 + 1.82679i
\(144\) 0 0
\(145\) 14.3519i 1.19186i
\(146\) −1.58815 + 0.425543i −0.131436 + 0.0352182i
\(147\) 0 0
\(148\) 0.123014 + 0.0329616i 0.0101117 + 0.00270943i
\(149\) −4.36926 7.56778i −0.357944 0.619977i 0.629673 0.776860i \(-0.283189\pi\)
−0.987617 + 0.156883i \(0.949855\pi\)
\(150\) 0 0
\(151\) −17.8387 10.2992i −1.45169 0.838133i −0.453112 0.891454i \(-0.649686\pi\)
−0.998577 + 0.0533208i \(0.983019\pi\)
\(152\) 0.988310 0.0801625
\(153\) 0 0
\(154\) −22.3089 −1.79770
\(155\) −11.8724 6.85453i −0.953614 0.550569i
\(156\) 0 0
\(157\) −2.89582 5.01570i −0.231111 0.400296i 0.727024 0.686612i \(-0.240903\pi\)
−0.958135 + 0.286315i \(0.907569\pi\)
\(158\) 1.17182 + 0.313988i 0.0932251 + 0.0249796i
\(159\) 0 0
\(160\) −15.8921 + 4.25827i −1.25638 + 0.336646i
\(161\) 9.63052i 0.758992i
\(162\) 0 0
\(163\) −4.43622 4.43622i −0.347471 0.347471i 0.511695 0.859167i \(-0.329018\pi\)
−0.859167 + 0.511695i \(0.829018\pi\)
\(164\) 5.23686 1.40321i 0.408930 0.109572i
\(165\) 0 0
\(166\) −9.03421 15.6477i −0.701191 1.21450i
\(167\) 2.52239 + 0.675874i 0.195189 + 0.0523007i 0.355089 0.934833i \(-0.384451\pi\)
−0.159900 + 0.987133i \(0.551117\pi\)
\(168\) 0 0
\(169\) −7.23977 + 12.5396i −0.556905 + 0.964588i
\(170\) −17.4656 + 2.56676i −1.33955 + 0.196862i
\(171\) 0 0
\(172\) 1.09333i 0.0833653i
\(173\) 2.83417 + 10.5773i 0.215478 + 0.804174i 0.985998 + 0.166758i \(0.0533299\pi\)
−0.770520 + 0.637416i \(0.780003\pi\)
\(174\) 0 0
\(175\) −0.168071 0.0450346i −0.0127050 0.00340429i
\(176\) −7.07126 + 26.3903i −0.533016 + 1.98924i
\(177\) 0 0
\(178\) 27.4967 + 15.8752i 2.06096 + 1.18990i
\(179\) 0.534388i 0.0399421i −0.999801 0.0199710i \(-0.993643\pi\)
0.999801 0.0199710i \(-0.00635740\pi\)
\(180\) 0 0
\(181\) 13.4383 + 13.4383i 0.998858 + 0.998858i 0.999999 0.00114159i \(-0.000363378\pi\)
−0.00114159 + 0.999999i \(0.500363\pi\)
\(182\) −5.13584 19.1672i −0.380694 1.42077i
\(183\) 0 0
\(184\) 3.51188 + 0.941005i 0.258899 + 0.0693718i
\(185\) 0.155146 0.0895735i 0.0114066 0.00658558i
\(186\) 0 0
\(187\) −8.96073 + 22.5866i −0.655273 + 1.65170i
\(188\) 1.42877 0.104204
\(189\) 0 0
\(190\) −3.97445 + 3.97445i −0.288337 + 0.288337i
\(191\) −3.59850 + 6.23278i −0.260378 + 0.450988i −0.966342 0.257259i \(-0.917181\pi\)
0.705964 + 0.708247i \(0.250514\pi\)
\(192\) 0 0
\(193\) 6.45452 24.0886i 0.464606 1.73394i −0.193584 0.981084i \(-0.562011\pi\)
0.658191 0.752851i \(-0.271322\pi\)
\(194\) 0.932492 3.48011i 0.0669490 0.249857i
\(195\) 0 0
\(196\) −4.19832 2.42390i −0.299880 0.173136i
\(197\) −12.4512 12.4512i −0.887112 0.887112i 0.107133 0.994245i \(-0.465833\pi\)
−0.994245 + 0.107133i \(0.965833\pi\)
\(198\) 0 0
\(199\) 13.8641 13.8641i 0.982802 0.982802i −0.0170529 0.999855i \(-0.505428\pi\)
0.999855 + 0.0170529i \(0.00542837\pi\)
\(200\) −0.0328447 + 0.0568887i −0.00232247 + 0.00402264i
\(201\) 0 0
\(202\) −5.26801 + 3.04148i −0.370656 + 0.213998i
\(203\) 6.34443 + 10.9889i 0.445292 + 0.771268i
\(204\) 0 0
\(205\) 3.81324 6.60473i 0.266329 0.461295i
\(206\) 12.1562i 0.846966i
\(207\) 0 0
\(208\) −24.3018 −1.68503
\(209\) 2.00243 + 7.47315i 0.138511 + 0.516929i
\(210\) 0 0
\(211\) −2.71000 + 10.1139i −0.186564 + 0.696267i 0.807726 + 0.589558i \(0.200698\pi\)
−0.994290 + 0.106709i \(0.965969\pi\)
\(212\) −5.31632 + 3.06938i −0.365126 + 0.210806i
\(213\) 0 0
\(214\) −24.6545 + 6.60617i −1.68535 + 0.451588i
\(215\) 1.08751 + 1.08751i 0.0741674 + 0.0741674i
\(216\) 0 0
\(217\) 12.1205 0.822792
\(218\) −1.24256 4.63731i −0.0841570 0.314078i
\(219\) 0 0
\(220\) −10.6567 18.4579i −0.718475 1.24443i
\(221\) −21.4687 2.49905i −1.44414 0.168105i
\(222\) 0 0
\(223\) 12.5294 + 7.23383i 0.839028 + 0.484413i 0.856934 0.515427i \(-0.172366\pi\)
−0.0179056 + 0.999840i \(0.505700\pi\)
\(224\) 10.2857 10.2857i 0.687243 0.687243i
\(225\) 0 0
\(226\) 9.96790 9.96790i 0.663055 0.663055i
\(227\) 14.8717 3.98485i 0.987067 0.264484i 0.271049 0.962566i \(-0.412629\pi\)
0.716018 + 0.698082i \(0.245963\pi\)
\(228\) 0 0
\(229\) −17.3484 + 10.0161i −1.14642 + 0.661884i −0.948011 0.318236i \(-0.896909\pi\)
−0.198405 + 0.980120i \(0.563576\pi\)
\(230\) −17.9071 + 10.3387i −1.18076 + 0.681711i
\(231\) 0 0
\(232\) 4.62713 1.23984i 0.303786 0.0813993i
\(233\) −1.40190 + 1.40190i −0.0918418 + 0.0918418i −0.751535 0.659693i \(-0.770686\pi\)
0.659693 + 0.751535i \(0.270686\pi\)
\(234\) 0 0
\(235\) 1.42117 1.42117i 0.0927069 0.0927069i
\(236\) −16.5658 9.56424i −1.07834 0.622579i
\(237\) 0 0
\(238\) 12.2382 9.68615i 0.793288 0.627860i
\(239\) −10.0805 17.4599i −0.652052 1.12939i −0.982624 0.185606i \(-0.940575\pi\)
0.330573 0.943781i \(-0.392758\pi\)
\(240\) 0 0
\(241\) 4.72441 + 17.6317i 0.304326 + 1.13576i 0.933524 + 0.358515i \(0.116717\pi\)
−0.629198 + 0.777245i \(0.716616\pi\)
\(242\) −45.0502 −2.89593
\(243\) 0 0
\(244\) 11.2959 + 11.2959i 0.723147 + 0.723147i
\(245\) −6.58697 + 1.76497i −0.420826 + 0.112760i
\(246\) 0 0
\(247\) −5.95976 + 3.44087i −0.379211 + 0.218937i
\(248\) 1.18430 4.41987i 0.0752032 0.280662i
\(249\) 0 0
\(250\) 5.44401 + 20.3173i 0.344309 + 1.28498i
\(251\) −12.6084 −0.795835 −0.397917 0.917421i \(-0.630267\pi\)
−0.397917 + 0.917421i \(0.630267\pi\)
\(252\) 0 0
\(253\) 28.4618i 1.78938i
\(254\) −4.62664 + 8.01358i −0.290301 + 0.502817i
\(255\) 0 0
\(256\) −10.1790 17.6306i −0.636188 1.10191i
\(257\) 16.6738 9.62661i 1.04008 0.600492i 0.120225 0.992747i \(-0.461638\pi\)
0.919856 + 0.392255i \(0.128305\pi\)
\(258\) 0 0
\(259\) −0.0791940 + 0.137168i −0.00492087 + 0.00852320i
\(260\) 13.4053 13.4053i 0.831360 0.831360i
\(261\) 0 0
\(262\) −18.9999 18.9999i −1.17381 1.17381i
\(263\) −16.2155 9.36203i −0.999891 0.577287i −0.0916751 0.995789i \(-0.529222\pi\)
−0.908216 + 0.418502i \(0.862555\pi\)
\(264\) 0 0
\(265\) −2.23498 + 8.34107i −0.137294 + 0.512388i
\(266\) 1.28618 4.80008i 0.0788606 0.294312i
\(267\) 0 0
\(268\) −4.08240 + 7.07092i −0.249372 + 0.431925i
\(269\) 2.67436 2.67436i 0.163059 0.163059i −0.620862 0.783920i \(-0.713217\pi\)
0.783920 + 0.620862i \(0.213217\pi\)
\(270\) 0 0
\(271\) −14.8066 −0.899435 −0.449717 0.893171i \(-0.648475\pi\)
−0.449717 + 0.893171i \(0.648475\pi\)
\(272\) −7.57908 17.5475i −0.459549 1.06397i
\(273\) 0 0
\(274\) 13.7186 7.92045i 0.828772 0.478492i
\(275\) −0.496713 0.133094i −0.0299530 0.00802587i
\(276\) 0 0
\(277\) −0.224755 0.838796i −0.0135042 0.0503984i 0.958845 0.283930i \(-0.0916384\pi\)
−0.972349 + 0.233532i \(0.924972\pi\)
\(278\) 15.6915 + 15.6915i 0.941112 + 0.941112i
\(279\) 0 0
\(280\) 3.38607i 0.202356i
\(281\) 1.82873 + 1.05582i 0.109093 + 0.0629847i 0.553554 0.832814i \(-0.313271\pi\)
−0.444461 + 0.895798i \(0.646605\pi\)
\(282\) 0 0
\(283\) 7.82835 29.2158i 0.465347 1.73670i −0.190389 0.981709i \(-0.560975\pi\)
0.655736 0.754990i \(-0.272358\pi\)
\(284\) −4.70348 1.26029i −0.279100 0.0747847i
\(285\) 0 0
\(286\) −15.1783 56.6463i −0.897514 3.34957i
\(287\) 6.74275i 0.398012i
\(288\) 0 0
\(289\) −4.89104 16.2812i −0.287708 0.957718i
\(290\) −13.6219 + 23.5938i −0.799905 + 1.38548i
\(291\) 0 0
\(292\) 1.34146 + 0.359444i 0.0785031 + 0.0210348i
\(293\) 6.50970 + 11.2751i 0.380301 + 0.658700i 0.991105 0.133081i \(-0.0424872\pi\)
−0.610804 + 0.791781i \(0.709154\pi\)
\(294\) 0 0
\(295\) −25.9909 + 6.96425i −1.51325 + 0.405474i
\(296\) 0.0422817 + 0.0422817i 0.00245757 + 0.00245757i
\(297\) 0 0
\(298\) 16.5880i 0.960919i
\(299\) −24.4537 + 6.55234i −1.41419 + 0.378932i
\(300\) 0 0
\(301\) −1.31342 0.351930i −0.0757042 0.0202849i
\(302\) 19.5505 + 33.8625i 1.12501 + 1.94857i
\(303\) 0 0
\(304\) −5.27058 3.04297i −0.302288 0.174526i
\(305\) 22.4716 1.28672
\(306\) 0 0
\(307\) 7.13616 0.407282 0.203641 0.979046i \(-0.434722\pi\)
0.203641 + 0.979046i \(0.434722\pi\)
\(308\) 16.3191 + 9.42183i 0.929866 + 0.536858i
\(309\) 0 0
\(310\) 13.0117 + 22.5369i 0.739016 + 1.28001i
\(311\) 12.6600 + 3.39224i 0.717884 + 0.192356i 0.599227 0.800579i \(-0.295475\pi\)
0.118657 + 0.992935i \(0.462141\pi\)
\(312\) 0 0
\(313\) 0.891295 0.238822i 0.0503790 0.0134990i −0.233542 0.972347i \(-0.575031\pi\)
0.283921 + 0.958848i \(0.408365\pi\)
\(314\) 10.9940i 0.620430i
\(315\) 0 0
\(316\) −0.724586 0.724586i −0.0407612 0.0407612i
\(317\) 31.0198 8.31174i 1.74225 0.466834i 0.759303 0.650737i \(-0.225540\pi\)
0.982944 + 0.183904i \(0.0588734\pi\)
\(318\) 0 0
\(319\) 18.7502 + 32.4763i 1.04981 + 1.81832i
\(320\) 9.96745 + 2.67077i 0.557198 + 0.149301i
\(321\) 0 0
\(322\) 9.14064 15.8321i 0.509388 0.882286i
\(323\) −4.34322 3.23022i −0.241663 0.179734i
\(324\) 0 0
\(325\) 0.457404i 0.0253722i
\(326\) 3.08234 + 11.5035i 0.170715 + 0.637118i
\(327\) 0 0
\(328\) 2.45882 + 0.658838i 0.135766 + 0.0363783i
\(329\) −0.459907 + 1.71639i −0.0253555 + 0.0946279i
\(330\) 0 0
\(331\) −12.7084 7.33718i −0.698515 0.403288i 0.108279 0.994121i \(-0.465466\pi\)
−0.806794 + 0.590833i \(0.798799\pi\)
\(332\) 15.2619i 0.837604i
\(333\) 0 0
\(334\) −3.50519 3.50519i −0.191795 0.191795i
\(335\) 2.97262 + 11.0940i 0.162411 + 0.606128i
\(336\) 0 0
\(337\) −19.2763 5.16507i −1.05005 0.281359i −0.307776 0.951459i \(-0.599585\pi\)
−0.742271 + 0.670099i \(0.766251\pi\)
\(338\) 23.8036 13.7430i 1.29474 0.747520i
\(339\) 0 0
\(340\) 13.8602 + 5.49873i 0.751676 + 0.298211i
\(341\) 35.8206 1.93979
\(342\) 0 0
\(343\) 14.1337 14.1337i 0.763148 0.763148i
\(344\) −0.256670 + 0.444566i −0.0138387 + 0.0239694i
\(345\) 0 0
\(346\) 5.38000 20.0784i 0.289231 1.07942i
\(347\) −0.741206 + 2.76622i −0.0397900 + 0.148498i −0.982963 0.183804i \(-0.941159\pi\)
0.943173 + 0.332302i \(0.107825\pi\)
\(348\) 0 0
\(349\) −4.47762 2.58516i −0.239682 0.138380i 0.375349 0.926884i \(-0.377523\pi\)
−0.615030 + 0.788503i \(0.710856\pi\)
\(350\) 0.233556 + 0.233556i 0.0124841 + 0.0124841i
\(351\) 0 0
\(352\) 30.3981 30.3981i 1.62023 1.62023i
\(353\) 9.51485 16.4802i 0.506424 0.877153i −0.493548 0.869719i \(-0.664300\pi\)
0.999972 0.00743409i \(-0.00236637\pi\)
\(354\) 0 0
\(355\) −5.93204 + 3.42486i −0.314840 + 0.181773i
\(356\) −13.4093 23.2256i −0.710693 1.23096i
\(357\) 0 0
\(358\) −0.507205 + 0.878505i −0.0268066 + 0.0464305i
\(359\) 16.3446i 0.862636i 0.902200 + 0.431318i \(0.141951\pi\)
−0.902200 + 0.431318i \(0.858049\pi\)
\(360\) 0 0
\(361\) 17.2766 0.909295
\(362\) −9.33708 34.8464i −0.490746 1.83149i
\(363\) 0 0
\(364\) −4.33810 + 16.1900i −0.227378 + 0.848587i
\(365\) 1.69185 0.976792i 0.0885556 0.0511276i
\(366\) 0 0
\(367\) −7.31943 + 1.96123i −0.382071 + 0.102376i −0.444742 0.895659i \(-0.646705\pi\)
0.0626713 + 0.998034i \(0.480038\pi\)
\(368\) −15.8312 15.8312i −0.825260 0.825260i
\(369\) 0 0
\(370\) −0.340069 −0.0176793
\(371\) −1.97600 7.37453i −0.102589 0.382866i
\(372\) 0 0
\(373\) 11.7350 + 20.3256i 0.607616 + 1.05242i 0.991632 + 0.129095i \(0.0412073\pi\)
−0.384016 + 0.923326i \(0.625459\pi\)
\(374\) 36.1686 28.6262i 1.87023 1.48023i
\(375\) 0 0
\(376\) 0.580964 + 0.335420i 0.0299610 + 0.0172980i
\(377\) −23.5862 + 23.5862i −1.21475 + 1.21475i
\(378\) 0 0
\(379\) −2.92624 + 2.92624i −0.150311 + 0.150311i −0.778257 0.627946i \(-0.783896\pi\)
0.627946 + 0.778257i \(0.283896\pi\)
\(380\) 4.58589 1.22878i 0.235251 0.0630353i
\(381\) 0 0
\(382\) 11.8315 6.83090i 0.605350 0.349499i
\(383\) 5.45172 3.14755i 0.278570 0.160832i −0.354206 0.935167i \(-0.615249\pi\)
0.632776 + 0.774335i \(0.281915\pi\)
\(384\) 0 0
\(385\) 25.6039 6.86055i 1.30490 0.349646i
\(386\) −33.4741 + 33.4741i −1.70379 + 1.70379i
\(387\) 0 0
\(388\) −2.15190 + 2.15190i −0.109246 + 0.109246i
\(389\) 8.39131 + 4.84472i 0.425456 + 0.245637i 0.697409 0.716673i \(-0.254336\pi\)
−0.271953 + 0.962311i \(0.587669\pi\)
\(390\) 0 0
\(391\) −12.3577 15.6136i −0.624954 0.789616i
\(392\) −1.13807 1.97120i −0.0574814 0.0995606i
\(393\) 0 0
\(394\) 8.65127 + 32.2870i 0.435844 + 1.62659i
\(395\) −1.44146 −0.0725277
\(396\) 0 0
\(397\) 13.1234 + 13.1234i 0.658644 + 0.658644i 0.955059 0.296415i \(-0.0957912\pi\)
−0.296415 + 0.955059i \(0.595791\pi\)
\(398\) −35.9508 + 9.63298i −1.80205 + 0.482857i
\(399\) 0 0
\(400\) 0.350316 0.202255i 0.0175158 0.0101128i
\(401\) 0.963549 3.59601i 0.0481173 0.179576i −0.937685 0.347487i \(-0.887035\pi\)
0.985802 + 0.167910i \(0.0537019\pi\)
\(402\) 0 0
\(403\) 8.24645 + 30.7762i 0.410785 + 1.53307i
\(404\) 5.13811 0.255630
\(405\) 0 0
\(406\) 24.0868i 1.19541i
\(407\) −0.234048 + 0.405383i −0.0116013 + 0.0200941i
\(408\) 0 0
\(409\) −11.6145 20.1169i −0.574300 0.994716i −0.996117 0.0880356i \(-0.971941\pi\)
0.421818 0.906681i \(-0.361392\pi\)
\(410\) −12.5375 + 7.23855i −0.619185 + 0.357486i
\(411\) 0 0
\(412\) −5.13401 + 8.89237i −0.252935 + 0.438096i
\(413\) 16.8219 16.8219i 0.827752 0.827752i
\(414\) 0 0
\(415\) 15.1806 + 15.1806i 0.745189 + 0.745189i
\(416\) 33.1154 + 19.1192i 1.62362 + 0.937396i
\(417\) 0 0
\(418\) 3.80113 14.1860i 0.185920 0.693861i
\(419\) 0.483059 1.80280i 0.0235990 0.0880727i −0.953122 0.302586i \(-0.902150\pi\)
0.976721 + 0.214514i \(0.0688166\pi\)
\(420\) 0 0
\(421\) 4.54349 7.86955i 0.221436 0.383539i −0.733808 0.679357i \(-0.762259\pi\)
0.955244 + 0.295818i \(0.0955922\pi\)
\(422\) 14.0545 14.0545i 0.684162 0.684162i
\(423\) 0 0
\(424\) −2.88228 −0.139976
\(425\) 0.330275 0.142652i 0.0160207 0.00691964i
\(426\) 0 0
\(427\) −17.2059 + 9.93382i −0.832651 + 0.480731i
\(428\) 20.8250 + 5.58004i 1.00661 + 0.269721i
\(429\) 0 0
\(430\) −0.755615 2.81999i −0.0364390 0.135992i
\(431\) 23.2645 + 23.2645i 1.12061 + 1.12061i 0.991650 + 0.128961i \(0.0411641\pi\)
0.128961 + 0.991650i \(0.458836\pi\)
\(432\) 0 0
\(433\) 39.0956i 1.87882i 0.342802 + 0.939408i \(0.388624\pi\)
−0.342802 + 0.939408i \(0.611376\pi\)
\(434\) −19.9254 11.5039i −0.956451 0.552207i
\(435\) 0 0
\(436\) −1.04956 + 3.91700i −0.0502647 + 0.187590i
\(437\) −6.12397 1.64091i −0.292949 0.0784955i
\(438\) 0 0
\(439\) −3.49320 13.0368i −0.166721 0.622212i −0.997814 0.0660790i \(-0.978951\pi\)
0.831093 0.556133i \(-0.187716\pi\)
\(440\) 10.0071i 0.477070i
\(441\) 0 0
\(442\) 32.9215 + 24.4850i 1.56592 + 1.16463i
\(443\) 13.6564 23.6536i 0.648837 1.12382i −0.334564 0.942373i \(-0.608589\pi\)
0.983401 0.181446i \(-0.0580776\pi\)
\(444\) 0 0
\(445\) −36.4400 9.76406i −1.72742 0.462861i
\(446\) −13.7317 23.7840i −0.650216 1.12621i
\(447\) 0 0
\(448\) −8.81245 + 2.36129i −0.416349 + 0.111560i
\(449\) −20.8158 20.8158i −0.982358 0.982358i 0.0174887 0.999847i \(-0.494433\pi\)
−0.999847 + 0.0174887i \(0.994433\pi\)
\(450\) 0 0
\(451\) 19.9273i 0.938342i
\(452\) −11.5014 + 3.08178i −0.540979 + 0.144955i
\(453\) 0 0
\(454\) −28.2304 7.56430i −1.32492 0.355010i
\(455\) 11.7888 + 20.4189i 0.552669 + 0.957250i
\(456\) 0 0
\(457\) 10.7308 + 6.19545i 0.501967 + 0.289811i 0.729526 0.683953i \(-0.239741\pi\)
−0.227558 + 0.973764i \(0.573074\pi\)
\(458\) 38.0265 1.77686
\(459\) 0 0
\(460\) 17.4655 0.814335
\(461\) −4.49683 2.59625i −0.209438 0.120919i 0.391612 0.920130i \(-0.371918\pi\)
−0.601050 + 0.799211i \(0.705251\pi\)
\(462\) 0 0
\(463\) 14.3180 + 24.7996i 0.665416 + 1.15253i 0.979172 + 0.203031i \(0.0650791\pi\)
−0.313756 + 0.949503i \(0.601588\pi\)
\(464\) −28.4935 7.63482i −1.32278 0.354438i
\(465\) 0 0
\(466\) 3.63525 0.974061i 0.168399 0.0451225i
\(467\) 3.20188i 0.148165i 0.997252 + 0.0740826i \(0.0236028\pi\)
−0.997252 + 0.0740826i \(0.976397\pi\)
\(468\) 0 0
\(469\) −7.18026 7.18026i −0.331554 0.331554i
\(470\) −3.68520 + 0.987447i −0.169986 + 0.0455476i
\(471\) 0 0
\(472\) −4.49062 7.77798i −0.206697 0.358010i
\(473\) −3.88165 1.04008i −0.178478 0.0478231i
\(474\) 0 0
\(475\) 0.0572742 0.0992018i 0.00262792 0.00455169i
\(476\) −13.0432 + 1.91684i −0.597832 + 0.0878581i
\(477\) 0 0
\(478\) 38.2708i 1.75047i
\(479\) −2.72711 10.1777i −0.124605 0.465032i 0.875220 0.483724i \(-0.160716\pi\)
−0.999825 + 0.0186927i \(0.994050\pi\)
\(480\) 0 0
\(481\) −0.402176 0.107763i −0.0183377 0.00491356i
\(482\) 8.96818 33.4697i 0.408489 1.52450i
\(483\) 0 0
\(484\) 32.9545 + 19.0263i 1.49793 + 0.864831i
\(485\) 4.28089i 0.194385i
\(486\) 0 0
\(487\) −24.6742 24.6742i −1.11809 1.11809i −0.992021 0.126073i \(-0.959763\pi\)
−0.126073 0.992021i \(-0.540237\pi\)
\(488\) 1.94128 + 7.24495i 0.0878776 + 0.327964i
\(489\) 0 0
\(490\) 12.5038 + 3.35039i 0.564865 + 0.151355i
\(491\) −24.0866 + 13.9064i −1.08701 + 0.627587i −0.932780 0.360447i \(-0.882624\pi\)
−0.154234 + 0.988034i \(0.549291\pi\)
\(492\) 0 0
\(493\) −24.3867 9.67487i −1.09832 0.435734i
\(494\) 13.0634 0.587748
\(495\) 0 0
\(496\) −19.9244 + 19.9244i −0.894631 + 0.894631i
\(497\) 3.02800 5.24465i 0.135824 0.235255i
\(498\) 0 0
\(499\) 4.42000 16.4956i 0.197866 0.738447i −0.793640 0.608388i \(-0.791817\pi\)
0.991506 0.130059i \(-0.0415167\pi\)
\(500\) 4.59840 17.1615i 0.205647 0.767483i
\(501\) 0 0
\(502\) 20.7275 + 11.9670i 0.925114 + 0.534115i
\(503\) −5.39636 5.39636i −0.240612 0.240612i 0.576491 0.817103i \(-0.304421\pi\)
−0.817103 + 0.576491i \(0.804421\pi\)
\(504\) 0 0
\(505\) 5.11076 5.11076i 0.227426 0.227426i
\(506\) 27.0140 46.7897i 1.20092 2.08005i
\(507\) 0 0
\(508\) 6.76884 3.90799i 0.300319 0.173389i
\(509\) −14.3762 24.9003i −0.637214 1.10369i −0.986041 0.166500i \(-0.946753\pi\)
0.348827 0.937187i \(-0.386580\pi\)
\(510\) 0 0
\(511\) −0.863603 + 1.49581i −0.0382036 + 0.0661705i
\(512\) 26.8364i 1.18601i
\(513\) 0 0
\(514\) −36.5477 −1.61205
\(515\) 3.73836 + 13.9517i 0.164732 + 0.614787i
\(516\) 0 0
\(517\) −1.35920 + 5.07259i −0.0597774 + 0.223092i
\(518\) 0.260381 0.150331i 0.0114405 0.00660517i
\(519\) 0 0
\(520\) 8.59785 2.30379i 0.377041 0.101028i
\(521\) −11.0656 11.0656i −0.484792 0.484792i 0.421866 0.906658i \(-0.361375\pi\)
−0.906658 + 0.421866i \(0.861375\pi\)
\(522\) 0 0
\(523\) −25.0456 −1.09517 −0.547585 0.836750i \(-0.684453\pi\)
−0.547585 + 0.836750i \(0.684453\pi\)
\(524\) 5.87420 + 21.9228i 0.256616 + 0.957703i
\(525\) 0 0
\(526\) 17.7716 + 30.7813i 0.774879 + 1.34213i
\(527\) −19.6505 + 15.5527i −0.855991 + 0.677487i
\(528\) 0 0
\(529\) −0.280057 0.161691i −0.0121764 0.00703004i
\(530\) 11.5910 11.5910i 0.503480 0.503480i
\(531\) 0 0
\(532\) −2.96809 + 2.96809i −0.128683 + 0.128683i
\(533\) −17.1211 + 4.58758i −0.741597 + 0.198710i
\(534\) 0 0
\(535\) 26.2645 15.1638i 1.13551 0.655589i
\(536\) −3.31995 + 1.91677i −0.143400 + 0.0827920i
\(537\) 0 0
\(538\) −6.93482 + 1.85818i −0.298981 + 0.0801118i
\(539\) 12.5995 12.5995i 0.542697 0.542697i
\(540\) 0 0
\(541\) 18.4736 18.4736i 0.794242 0.794242i −0.187939 0.982181i \(-0.560181\pi\)
0.982181 + 0.187939i \(0.0601806\pi\)
\(542\) 24.3412 + 14.0534i 1.04554 + 0.603645i
\(543\) 0 0
\(544\) −3.47749 + 29.8742i −0.149096 + 1.28085i
\(545\) 2.85218 + 4.94013i 0.122174 + 0.211612i
\(546\) 0 0
\(547\) −8.23746 30.7426i −0.352208 1.31446i −0.883961 0.467560i \(-0.845133\pi\)
0.531753 0.846899i \(-0.321533\pi\)
\(548\) −13.3803 −0.571580
\(549\) 0 0
\(550\) 0.690246 + 0.690246i 0.0294322 + 0.0294322i
\(551\) −8.06874 + 2.16201i −0.343740 + 0.0921049i
\(552\) 0 0
\(553\) 1.10369 0.637213i 0.0469335 0.0270971i
\(554\) −0.426644 + 1.59226i −0.0181264 + 0.0676485i
\(555\) 0 0
\(556\) −4.85135 18.1055i −0.205743 0.767843i
\(557\) −18.3168 −0.776109 −0.388054 0.921636i \(-0.626853\pi\)
−0.388054 + 0.921636i \(0.626853\pi\)
\(558\) 0 0
\(559\) 3.57446i 0.151183i
\(560\) −10.4256 + 18.0576i −0.440561 + 0.763074i
\(561\) 0 0
\(562\) −2.00422 3.47141i −0.0845429 0.146433i
\(563\) −32.8350 + 18.9573i −1.38383 + 0.798954i −0.992610 0.121344i \(-0.961279\pi\)
−0.391218 + 0.920298i \(0.627946\pi\)
\(564\) 0 0
\(565\) −8.37478 + 14.5056i −0.352330 + 0.610253i
\(566\) −40.5990 + 40.5990i −1.70650 + 1.70650i
\(567\) 0 0
\(568\) −1.61665 1.61665i −0.0678331 0.0678331i
\(569\) 12.1507 + 7.01522i 0.509384 + 0.294093i 0.732581 0.680680i \(-0.238316\pi\)
−0.223196 + 0.974774i \(0.571649\pi\)
\(570\) 0 0
\(571\) −8.01644 + 29.9178i −0.335478 + 1.25202i 0.567873 + 0.823116i \(0.307767\pi\)
−0.903350 + 0.428903i \(0.858900\pi\)
\(572\) −12.8207 + 47.8475i −0.536061 + 2.00061i
\(573\) 0 0
\(574\) 6.39976 11.0847i 0.267121 0.462667i
\(575\) 0.297973 0.297973i 0.0124263 0.0124263i
\(576\) 0 0
\(577\) −38.0720 −1.58496 −0.792479 0.609899i \(-0.791210\pi\)
−0.792479 + 0.609899i \(0.791210\pi\)
\(578\) −7.41241 + 31.4077i −0.308316 + 1.30639i
\(579\) 0 0
\(580\) 19.9290 11.5060i 0.827506 0.477761i
\(581\) −18.3342 4.91263i −0.760630 0.203810i
\(582\) 0 0
\(583\) −5.83982 21.7945i −0.241860 0.902636i
\(584\) 0.461079 + 0.461079i 0.0190796 + 0.0190796i
\(585\) 0 0
\(586\) 24.7143i 1.02094i
\(587\) −7.39465 4.26930i −0.305210 0.176213i 0.339571 0.940580i \(-0.389718\pi\)
−0.644781 + 0.764367i \(0.723051\pi\)
\(588\) 0 0
\(589\) −2.06517 + 7.70732i −0.0850938 + 0.317574i
\(590\) 49.3377 + 13.2200i 2.03120 + 0.544258i
\(591\) 0 0
\(592\) −0.0953011 0.355669i −0.00391685 0.0146179i
\(593\) 25.3743i 1.04200i −0.853558 0.520998i \(-0.825560\pi\)
0.853558 0.520998i \(-0.174440\pi\)
\(594\) 0 0
\(595\) −11.0671 + 14.8804i −0.453707 + 0.610036i
\(596\) 7.00571 12.1342i 0.286965 0.497038i
\(597\) 0 0
\(598\) 46.4196 + 12.4381i 1.89824 + 0.508631i
\(599\) 12.5835 + 21.7952i 0.514146 + 0.890527i 0.999865 + 0.0164122i \(0.00522440\pi\)
−0.485719 + 0.874115i \(0.661442\pi\)
\(600\) 0 0
\(601\) −23.9794 + 6.42527i −0.978141 + 0.262092i −0.712261 0.701914i \(-0.752329\pi\)
−0.265879 + 0.964006i \(0.585662\pi\)
\(602\) 1.82516 + 1.82516i 0.0743881 + 0.0743881i
\(603\) 0 0
\(604\) 33.0275i 1.34387i
\(605\) 51.7041 13.8541i 2.10207 0.563248i
\(606\) 0 0
\(607\) −21.2255 5.68736i −0.861517 0.230843i −0.199101 0.979979i \(-0.563802\pi\)
−0.662416 + 0.749136i \(0.730469\pi\)
\(608\) 4.78805 + 8.29314i 0.194181 + 0.336331i
\(609\) 0 0
\(610\) −36.9421 21.3285i −1.49574 0.863566i
\(611\) −4.67115 −0.188975
\(612\) 0 0
\(613\) 28.5467 1.15299 0.576495 0.817100i \(-0.304420\pi\)
0.576495 + 0.817100i \(0.304420\pi\)
\(614\) −11.7315 6.77316i −0.473443 0.273342i
\(615\) 0 0
\(616\) 4.42375 + 7.66216i 0.178238 + 0.308717i
\(617\) 12.8125 + 3.43310i 0.515812 + 0.138211i 0.507329 0.861753i \(-0.330633\pi\)
0.00848330 + 0.999964i \(0.497300\pi\)
\(618\) 0 0
\(619\) 15.4344 4.13562i 0.620359 0.166225i 0.0650681 0.997881i \(-0.479274\pi\)
0.555291 + 0.831656i \(0.312607\pi\)
\(620\) 21.9812i 0.882787i
\(621\) 0 0
\(622\) −17.5927 17.5927i −0.705403 0.705403i
\(623\) 32.2174 8.63262i 1.29076 0.345859i
\(624\) 0 0
\(625\) −12.7143 22.0219i −0.508573 0.880875i
\(626\) −1.69191 0.453347i −0.0676225 0.0181194i
\(627\) 0 0
\(628\) 4.64318 8.04222i 0.185283 0.320919i
\(629\) −0.0476162 0.324006i −0.00189858 0.0129189i
\(630\) 0 0
\(631\) 12.9668i 0.516200i 0.966118 + 0.258100i \(0.0830964\pi\)
−0.966118 + 0.258100i \(0.916904\pi\)
\(632\) −0.124525 0.464734i −0.00495334 0.0184861i
\(633\) 0 0
\(634\) −58.8838 15.7779i −2.33858 0.626620i
\(635\) 2.84562 10.6200i 0.112925 0.421442i
\(636\) 0 0
\(637\) 13.7257 + 7.92456i 0.543833 + 0.313982i
\(638\) 71.1856i 2.81826i
\(639\) 0 0
\(640\) 9.41658 + 9.41658i 0.372223 + 0.372223i
\(641\) 1.88100 + 7.02000i 0.0742951 + 0.277273i 0.993073 0.117503i \(-0.0374889\pi\)
−0.918777 + 0.394776i \(0.870822\pi\)
\(642\) 0 0
\(643\) 16.4649 + 4.41175i 0.649311 + 0.173982i 0.568417 0.822740i \(-0.307556\pi\)
0.0808938 + 0.996723i \(0.474223\pi\)
\(644\) −13.3729 + 7.72083i −0.526965 + 0.304243i
\(645\) 0 0
\(646\) 4.07411 + 9.43259i 0.160294 + 0.371120i
\(647\) −20.9417 −0.823304 −0.411652 0.911341i \(-0.635048\pi\)
−0.411652 + 0.911341i \(0.635048\pi\)
\(648\) 0 0
\(649\) 49.7151 49.7151i 1.95149 1.95149i
\(650\) −0.434137 + 0.751948i −0.0170283 + 0.0294938i
\(651\) 0 0
\(652\) 2.60357 9.71664i 0.101963 0.380533i
\(653\) 6.01663 22.4544i 0.235449 0.878708i −0.742497 0.669850i \(-0.766359\pi\)
0.977946 0.208858i \(-0.0669747\pi\)
\(654\) 0 0
\(655\) 27.6491 + 15.9632i 1.08034 + 0.623734i
\(656\) −11.0841 11.0841i −0.432763 0.432763i
\(657\) 0 0
\(658\) 2.38515 2.38515i 0.0929827 0.0929827i
\(659\) −4.09976 + 7.10100i −0.159704 + 0.276616i −0.934762 0.355275i \(-0.884387\pi\)
0.775058 + 0.631890i \(0.217721\pi\)
\(660\) 0 0
\(661\) 42.4508 24.5090i 1.65114 0.953288i 0.674540 0.738238i \(-0.264342\pi\)
0.976603 0.215050i \(-0.0689913\pi\)
\(662\) 13.9279 + 24.1238i 0.541323 + 0.937600i
\(663\) 0 0
\(664\) −3.58289 + 6.20574i −0.139043 + 0.240830i
\(665\) 5.90459i 0.228970i
\(666\) 0 0
\(667\) −30.7301 −1.18988
\(668\) 1.08370 + 4.04443i 0.0419297 + 0.156484i
\(669\) 0 0
\(670\) 5.64281 21.0593i 0.218001 0.813591i
\(671\) −50.8498 + 29.3582i −1.96304 + 1.13336i
\(672\) 0 0
\(673\) −33.0571 + 8.85763i −1.27426 + 0.341436i −0.831661 0.555284i \(-0.812610\pi\)
−0.442597 + 0.896720i \(0.645943\pi\)
\(674\) 26.7869 + 26.7869i 1.03179 + 1.03179i
\(675\) 0 0
\(676\) −23.2166 −0.892947
\(677\) 4.44594 + 16.5925i 0.170871 + 0.637701i 0.997218 + 0.0745390i \(0.0237485\pi\)
−0.826347 + 0.563162i \(0.809585\pi\)
\(678\) 0 0
\(679\) −1.89241 3.27776i −0.0726242 0.125789i
\(680\) 4.34492 + 5.48972i 0.166620 + 0.210521i
\(681\) 0 0
\(682\) −58.8871 33.9985i −2.25490 1.30187i
\(683\) 20.2575 20.2575i 0.775131 0.775131i −0.203867 0.978999i \(-0.565351\pi\)
0.978999 + 0.203867i \(0.0653511\pi\)
\(684\) 0 0
\(685\) −13.3091 + 13.3091i −0.508516 + 0.508516i
\(686\) −36.6498 + 9.82027i −1.39929 + 0.374940i
\(687\) 0 0
\(688\) 2.73760 1.58055i 0.104370 0.0602581i
\(689\) 17.3809 10.0349i 0.662159 0.382297i
\(690\) 0 0
\(691\) 26.2108 7.02316i 0.997106 0.267174i 0.276873 0.960906i \(-0.410702\pi\)
0.720232 + 0.693733i \(0.244035\pi\)
\(692\) −12.4153 + 12.4153i −0.471960 + 0.471960i
\(693\) 0 0
\(694\) 3.84401 3.84401i 0.145917 0.145917i
\(695\) −22.8347 13.1836i −0.866168 0.500082i
\(696\) 0 0
\(697\) −8.65214 10.9318i −0.327723 0.414071i
\(698\) 4.90731 + 8.49972i 0.185745 + 0.321719i
\(699\) 0 0
\(700\) −0.0722088 0.269487i −0.00272924 0.0101856i
\(701\) 48.1083 1.81703 0.908513 0.417856i \(-0.137218\pi\)
0.908513 + 0.417856i \(0.137218\pi\)
\(702\) 0 0
\(703\) −0.0737304 0.0737304i −0.00278079 0.00278079i
\(704\) −26.0441 + 6.97849i −0.981573 + 0.263012i
\(705\) 0 0
\(706\) −31.2838 + 18.0617i −1.17738 + 0.679761i
\(707\) −1.65390 + 6.17244i −0.0622013 + 0.232138i
\(708\) 0 0
\(709\) 5.20083 + 19.4098i 0.195321 + 0.728949i 0.992183 + 0.124788i \(0.0398249\pi\)
−0.796862 + 0.604161i \(0.793508\pi\)
\(710\) 13.0026 0.487979
\(711\) 0 0
\(712\) 12.5919i 0.471902i
\(713\) −14.6768 + 25.4210i −0.549651 + 0.952023i
\(714\) 0 0
\(715\) 34.8404 + 60.3453i 1.30296 + 2.25679i
\(716\) 0.742048 0.428422i 0.0277316 0.0160109i
\(717\) 0 0
\(718\) 15.5132 26.8697i 0.578948 1.00277i
\(719\) 26.3520 26.3520i 0.982762 0.982762i −0.0170917 0.999854i \(-0.505441\pi\)
0.999854 + 0.0170917i \(0.00544073\pi\)
\(720\) 0 0
\(721\) −9.02988 9.02988i −0.336290 0.336290i
\(722\) −28.4018 16.3978i −1.05700 0.610262i
\(723\) 0 0
\(724\) −7.88676 + 29.4338i −0.293109 + 1.09390i
\(725\) 0.143701 0.536300i 0.00533693 0.0199177i
\(726\) 0 0
\(727\) 13.5933 23.5443i 0.504148 0.873210i −0.495840 0.868414i \(-0.665140\pi\)
0.999988 0.00479665i \(-0.00152683\pi\)
\(728\) −5.56472 + 5.56472i −0.206242 + 0.206242i
\(729\) 0 0
\(730\) −3.70842 −0.137255
\(731\) 2.58099 1.11478i 0.0954614 0.0412315i
\(732\) 0 0
\(733\) 15.1340 8.73761i 0.558987 0.322731i −0.193752 0.981051i \(-0.562066\pi\)
0.752739 + 0.658319i \(0.228732\pi\)
\(734\) 13.8942 + 3.72294i 0.512845 + 0.137416i
\(735\) 0 0
\(736\) 9.11774 + 34.0279i 0.336084 + 1.25428i
\(737\) −21.2204 21.2204i −0.781662 0.781662i
\(738\) 0 0
\(739\) 29.7131i 1.09301i −0.837454 0.546507i \(-0.815957\pi\)
0.837454 0.546507i \(-0.184043\pi\)
\(740\) 0.248762 + 0.143623i 0.00914468 + 0.00527969i
\(741\) 0 0
\(742\) −3.75097 + 13.9988i −0.137702 + 0.513912i
\(743\) 12.3139 + 3.29950i 0.451753 + 0.121047i 0.477520 0.878621i \(-0.341536\pi\)
−0.0257664 + 0.999668i \(0.508203\pi\)
\(744\) 0 0
\(745\) −5.10124 19.0381i −0.186895 0.697502i
\(746\) 44.5523i 1.63118i
\(747\) 0 0
\(748\) −38.5474 + 5.66497i −1.40943 + 0.207132i
\(749\) −13.4067 + 23.2210i −0.489869 + 0.848478i
\(750\) 0 0
\(751\) −1.11670 0.299220i −0.0407491 0.0109187i 0.238387 0.971170i \(-0.423381\pi\)
−0.279136 + 0.960252i \(0.590048\pi\)
\(752\) −2.06549 3.57753i −0.0753207 0.130459i
\(753\) 0 0
\(754\) 61.1609 16.3880i 2.22735 0.596816i
\(755\) −32.8517 32.8517i −1.19560 1.19560i
\(756\) 0 0
\(757\) 16.1102i 0.585534i 0.956184 + 0.292767i \(0.0945760\pi\)
−0.956184 + 0.292767i \(0.905424\pi\)
\(758\) 7.58796 2.03319i 0.275607 0.0738487i
\(759\) 0 0
\(760\) 2.15317 + 0.576941i 0.0781038 + 0.0209278i
\(761\) 1.86930 + 3.23773i 0.0677622 + 0.117368i 0.897916 0.440167i \(-0.145081\pi\)
−0.830154 + 0.557535i \(0.811747\pi\)
\(762\) 0 0
\(763\) −4.36768 2.52168i −0.158120 0.0912909i
\(764\) −11.5397 −0.417492
\(765\) 0 0
\(766\) −11.9498 −0.431763
\(767\) 54.1591 + 31.2688i 1.95557 + 1.12905i
\(768\) 0 0
\(769\) 19.7133 + 34.1444i 0.710879 + 1.23128i 0.964527 + 0.263983i \(0.0850362\pi\)
−0.253648 + 0.967297i \(0.581630\pi\)
\(770\) −48.6030 13.0231i −1.75153 0.469321i
\(771\) 0 0
\(772\) 38.6239 10.3492i 1.39010 0.372477i
\(773\) 21.4324i 0.770869i 0.922735 + 0.385435i \(0.125948\pi\)
−0.922735 + 0.385435i \(0.874052\pi\)
\(774\) 0 0
\(775\) −0.375013 0.375013i −0.0134709 0.0134709i
\(776\) −1.38018 + 0.369818i −0.0495456 + 0.0132757i
\(777\) 0 0
\(778\) −9.19657 15.9289i −0.329713 0.571080i
\(779\) −4.28766 1.14887i −0.153621 0.0411627i
\(780\) 0 0
\(781\) 8.94887 15.4999i 0.320216 0.554630i
\(782\) 5.49591 + 37.3970i 0.196533 + 1.33731i
\(783\) 0 0
\(784\) 14.0163i 0.500583i
\(785\) −3.38095 12.6179i −0.120671 0.450351i
\(786\) 0 0
\(787\) 5.06817 + 1.35801i 0.180661 + 0.0484079i 0.348015 0.937489i \(-0.386856\pi\)
−0.167354 + 0.985897i \(0.553522\pi\)
\(788\) 7.30747 27.2719i 0.260318 0.971520i
\(789\) 0 0
\(790\) 2.36968 + 1.36814i 0.0843095 + 0.0486761i
\(791\) 14.8087i 0.526536i
\(792\) 0 0
\(793\) −36.9302 36.9302i −1.31143 1.31143i
\(794\) −9.11830 34.0300i −0.323596 1.20768i
\(795\) 0 0
\(796\) 30.3666 + 8.13669i 1.07631 + 0.288397i
\(797\) −4.68437 + 2.70452i −0.165929 + 0.0957990i −0.580665 0.814143i \(-0.697207\pi\)
0.414736 + 0.909942i \(0.363874\pi\)
\(798\) 0 0
\(799\) −1.45681 3.37287i −0.0515381 0.119324i
\(800\) −0.636488 −0.0225033
\(801\) 0 0
\(802\) −4.99711 + 4.99711i −0.176454 + 0.176454i
\(803\) −2.55227 + 4.42066i −0.0900677 + 0.156002i
\(804\) 0 0
\(805\) −5.62196 + 20.9815i −0.198148 + 0.739499i
\(806\) 15.6539 58.4213i 0.551386 2.05780i
\(807\) 0 0
\(808\) 2.08924 + 1.20623i 0.0734993 + 0.0424349i
\(809\) 16.8399 + 16.8399i 0.592061 + 0.592061i 0.938188 0.346127i \(-0.112503\pi\)
−0.346127 + 0.938188i \(0.612503\pi\)
\(810\) 0 0
\(811\) −17.8632 + 17.8632i −0.627261 + 0.627261i −0.947378 0.320117i \(-0.896278\pi\)
0.320117 + 0.947378i \(0.396278\pi\)
\(812\) −10.1727 + 17.6197i −0.356992 + 0.618329i
\(813\) 0 0
\(814\) 0.769524 0.444285i 0.0269718 0.0155722i
\(815\) −7.07522 12.2546i −0.247834 0.429261i
\(816\) 0 0
\(817\) 0.447578 0.775228i 0.0156588 0.0271218i
\(818\) 44.0948i 1.54174i
\(819\) 0 0
\(820\) 12.2284 0.427034
\(821\) 11.3496 + 42.3571i 0.396102 + 1.47827i 0.819895 + 0.572515i \(0.194032\pi\)
−0.423792 + 0.905759i \(0.639301\pi\)
\(822\) 0 0
\(823\) 3.10278 11.5797i 0.108156 0.403644i −0.890528 0.454929i \(-0.849665\pi\)
0.998684 + 0.0512842i \(0.0163314\pi\)
\(824\) −4.17516 + 2.41053i −0.145449 + 0.0839748i
\(825\) 0 0
\(826\) −43.6205 + 11.6881i −1.51775 + 0.406681i
\(827\) −24.2979 24.2979i −0.844920 0.844920i 0.144574 0.989494i \(-0.453819\pi\)
−0.989494 + 0.144574i \(0.953819\pi\)
\(828\) 0 0
\(829\) 33.7417 1.17190 0.585949 0.810348i \(-0.300722\pi\)
0.585949 + 0.810348i \(0.300722\pi\)
\(830\) −10.5477 39.3646i −0.366116 1.36636i
\(831\) 0 0
\(832\) −11.9915 20.7699i −0.415730 0.720066i
\(833\) −1.44136 + 12.3823i −0.0499400 + 0.429022i
\(834\) 0 0
\(835\) 5.10084 + 2.94497i 0.176522 + 0.101915i
\(836\) −8.77182 + 8.77182i −0.303380 + 0.303380i
\(837\) 0 0
\(838\) −2.50522 + 2.50522i −0.0865414 + 0.0865414i
\(839\) −6.62393 + 1.77488i −0.228684 + 0.0612756i −0.371341 0.928497i \(-0.621102\pi\)
0.142657 + 0.989772i \(0.454435\pi\)
\(840\) 0 0
\(841\) −9.94978 + 5.74451i −0.343096 + 0.198086i
\(842\) −14.9385 + 8.62474i −0.514815 + 0.297228i
\(843\) 0 0
\(844\) −16.2167 + 4.34524i −0.558201 + 0.149569i
\(845\) −23.0931 + 23.0931i −0.794425 + 0.794425i
\(846\) 0 0
\(847\) −33.4641 + 33.4641i −1.14984 + 1.14984i
\(848\) 15.3710 + 8.87442i 0.527841 + 0.304749i
\(849\) 0 0
\(850\) −0.678351 0.0789629i −0.0232672 0.00270841i
\(851\) −0.191793 0.332196i −0.00657459 0.0113875i
\(852\) 0 0
\(853\) 7.02438 + 26.2153i 0.240510 + 0.897596i 0.975587 + 0.219612i \(0.0704792\pi\)
−0.735077 + 0.677983i \(0.762854\pi\)
\(854\) 37.7140 1.29055
\(855\) 0 0
\(856\) 7.15783 + 7.15783i 0.244650 + 0.244650i
\(857\) −43.3437 + 11.6139i −1.48059 + 0.396723i −0.906548 0.422102i \(-0.861292\pi\)
−0.574043 + 0.818825i \(0.694626\pi\)
\(858\) 0 0
\(859\) 43.7116 25.2369i 1.49142 0.861072i 0.491469 0.870895i \(-0.336460\pi\)
0.999952 + 0.00982325i \(0.00312689\pi\)
\(860\) −0.638246 + 2.38196i −0.0217640 + 0.0812243i
\(861\) 0 0
\(862\) −16.1645 60.3266i −0.550564 2.05473i
\(863\) −20.8391 −0.709371 −0.354686 0.934986i \(-0.615412\pi\)
−0.354686 + 0.934986i \(0.615412\pi\)
\(864\) 0 0
\(865\) 24.6985i 0.839775i
\(866\) 37.1069 64.2711i 1.26094 2.18402i
\(867\) 0 0
\(868\) 9.71705 + 16.8304i 0.329818 + 0.571262i
\(869\) 3.26181 1.88320i 0.110649 0.0638833i
\(870\) 0 0
\(871\) 13.3468 23.1173i 0.452238 0.783298i
\(872\) −1.34633 + 1.34633i −0.0455924 + 0.0455924i
\(873\) 0 0
\(874\) 8.51003 + 8.51003i 0.287856 + 0.287856i
\(875\) 19.1360 + 11.0482i 0.646914 + 0.373496i
\(876\) 0 0
\(877\) 4.03997 15.0774i 0.136420 0.509127i −0.863568 0.504232i \(-0.831775\pi\)
0.999988 0.00489414i \(-0.00155786\pi\)
\(878\) −6.63102 + 24.7473i −0.223786 + 0.835181i
\(879\) 0 0
\(880\) −30.8115 + 53.3670i −1.03865 + 1.79900i
\(881\) 10.8259 10.8259i 0.364732 0.364732i −0.500819 0.865552i \(-0.666968\pi\)
0.865552 + 0.500819i \(0.166968\pi\)
\(882\) 0 0
\(883\) −26.3119 −0.885467 −0.442733 0.896653i \(-0.645991\pi\)
−0.442733 + 0.896653i \(0.645991\pi\)
\(884\) −13.7414 31.8148i −0.462174 1.07005i
\(885\) 0 0
\(886\) −44.9009 + 25.9235i −1.50847 + 0.870918i
\(887\) −1.31918 0.353474i −0.0442938 0.0118685i 0.236604 0.971606i \(-0.423966\pi\)
−0.280898 + 0.959738i \(0.590632\pi\)
\(888\) 0 0
\(889\) 2.51588 + 9.38939i 0.0843799 + 0.314910i
\(890\) 50.6379 + 50.6379i 1.69739 + 1.69739i
\(891\) 0 0
\(892\) 23.1976i 0.776712i
\(893\) −1.01308 0.584901i −0.0339014 0.0195730i
\(894\) 0 0
\(895\) 0.311957 1.16424i 0.0104276 0.0389163i
\(896\) −11.3727 3.04731i −0.379936 0.101803i
\(897\) 0 0
\(898\) 14.4631 + 53.9770i 0.482640 + 1.80124i
\(899\) 38.6754i 1.28990i
\(900\) 0 0
\(901\) 12.6664 + 9.42052i 0.421980 + 0.313843i
\(902\) 18.9137 32.7595i 0.629757 1.09077i
\(903\) 0 0
\(904\) −5.40014 1.44696i −0.179606 0.0481253i
\(905\) 21.4323 + 37.1219i 0.712435 + 1.23397i
\(906\) 0 0
\(907\) −19.0980 + 5.11728i −0.634137 + 0.169917i −0.561546 0.827445i \(-0.689793\pi\)
−0.0725907 + 0.997362i \(0.523127\pi\)
\(908\) 17.4560 + 17.4560i 0.579298 + 0.579298i
\(909\) 0 0
\(910\) 44.7566i 1.48367i
\(911\) −29.7583 + 7.97372i −0.985937 + 0.264181i −0.715543 0.698569i \(-0.753821\pi\)
−0.270394 + 0.962750i \(0.587154\pi\)
\(912\) 0 0
\(913\) −54.1843 14.5187i −1.79324 0.480497i
\(914\) −11.7606 20.3700i −0.389006 0.673779i
\(915\) 0 0
\(916\) −27.8166 16.0599i −0.919087 0.530635i
\(917\) −28.2269 −0.932133
\(918\) 0 0
\(919\) −7.87734 −0.259850 −0.129925 0.991524i \(-0.541474\pi\)
−0.129925 + 0.991524i \(0.541474\pi\)
\(920\) 7.10179 + 4.10022i 0.234139 + 0.135180i
\(921\) 0 0
\(922\) 4.92836 + 8.53618i 0.162307 + 0.281124i
\(923\) 15.3773 + 4.12033i 0.506150 + 0.135622i
\(924\) 0 0
\(925\) 0.00669433 0.00179374i 0.000220108 5.89778e-5i
\(926\) 54.3589i 1.78634i
\(927\) 0 0
\(928\) 32.8208 + 32.8208i 1.07739 + 1.07739i
\(929\) −25.6481 + 6.87239i −0.841487 + 0.225476i −0.653719 0.756738i \(-0.726792\pi\)
−0.187768 + 0.982213i \(0.560125\pi\)
\(930\) 0 0
\(931\) 1.98456 + 3.43736i 0.0650413 + 0.112655i
\(932\) −3.07059 0.822761i −0.100580 0.0269504i
\(933\) 0 0
\(934\) 3.03900 5.26371i 0.0994393 0.172234i
\(935\) −32.7075 + 43.9771i −1.06965 + 1.43821i
\(936\) 0 0
\(937\) 13.3991i 0.437730i −0.975755 0.218865i \(-0.929765\pi\)
0.975755 0.218865i \(-0.0702354\pi\)
\(938\) 4.98894 + 18.6190i 0.162895 + 0.607931i
\(939\) 0 0
\(940\) 3.11278 + 0.834068i 0.101528 + 0.0272043i
\(941\) 12.8934 48.1188i 0.420312 1.56863i −0.353639 0.935382i \(-0.615056\pi\)
0.773952 0.633245i \(-0.218277\pi\)
\(942\) 0 0
\(943\) −14.1419 8.16486i −0.460525 0.265884i
\(944\) 55.3057i 1.80005i
\(945\) 0 0
\(946\) 5.39404 + 5.39404i 0.175375 + 0.175375i
\(947\) −10.0539 37.5215i −0.326706 1.21929i −0.912585 0.408886i \(-0.865917\pi\)
0.585879 0.810399i \(-0.300749\pi\)
\(948\) 0 0
\(949\) −4.38570 1.17514i −0.142366 0.0381468i
\(950\) −0.188311 + 0.108722i −0.00610963 + 0.00352739i
\(951\) 0 0
\(952\) −5.75358 2.28260i −0.186475 0.0739796i
\(953\) 10.0857 0.326707 0.163354 0.986568i \(-0.447769\pi\)
0.163354 + 0.986568i \(0.447769\pi\)
\(954\) 0 0
\(955\) −11.4783 + 11.4783i −0.371429 + 0.371429i
\(956\) 16.1631 27.9954i 0.522753 0.905434i
\(957\) 0 0
\(958\) −5.17678 + 19.3200i −0.167254 + 0.624201i
\(959\) 4.30698 16.0739i 0.139080 0.519053i
\(960\) 0 0
\(961\) 5.14676 + 2.97149i 0.166025 + 0.0958544i
\(962\) 0.558875 + 0.558875i 0.0180188 + 0.0180188i
\(963\) 0 0
\(964\) −20.6957 + 20.6957i −0.666564 + 0.666564i
\(965\) 28.1242 48.7125i 0.905349 1.56811i
\(966\) 0 0
\(967\) 22.1131 12.7670i 0.711108 0.410558i −0.100363 0.994951i \(-0.532001\pi\)
0.811471 + 0.584393i \(0.198667\pi\)
\(968\) 8.93325 + 15.4728i 0.287125 + 0.497316i
\(969\) 0 0
\(970\) 4.06313 7.03755i 0.130459 0.225962i
\(971\) 8.11737i 0.260499i −0.991481 0.130249i \(-0.958422\pi\)
0.991481 0.130249i \(-0.0415778\pi\)
\(972\) 0 0
\(973\) 23.3118 0.747343
\(974\) 17.1439 + 63.9821i 0.549327 + 2.05012i
\(975\) 0 0
\(976\) 11.9542 44.6138i 0.382646 1.42805i
\(977\) 7.15788 4.13260i 0.229001 0.132214i −0.381110 0.924530i \(-0.624458\pi\)
0.610111 + 0.792316i \(0.291125\pi\)
\(978\) 0 0
\(979\) 95.2145 25.5126i 3.04307 0.815387i
\(980\) −7.73164 7.73164i −0.246978 0.246978i
\(981\) 0 0
\(982\) 52.7961 1.68479
\(983\) 7.11101 + 26.5387i 0.226806 + 0.846452i 0.981673 + 0.190574i \(0.0610348\pi\)
−0.754867 + 0.655878i \(0.772299\pi\)
\(984\) 0 0
\(985\) −19.8581 34.3953i −0.632733 1.09593i
\(986\) 30.9076 + 39.0511i 0.984300 + 1.24364i
\(987\) 0 0
\(988\) −9.55593 5.51712i −0.304015 0.175523i
\(989\) 2.32855 2.32855i 0.0740437 0.0740437i
\(990\) 0 0
\(991\) 24.8200 24.8200i 0.788433 0.788433i −0.192804 0.981237i \(-0.561758\pi\)
0.981237 + 0.192804i \(0.0617582\pi\)
\(992\) 42.8257 11.4751i 1.35972 0.364335i
\(993\) 0 0
\(994\) −9.95573 + 5.74794i −0.315776 + 0.182314i
\(995\) 38.2983 22.1116i 1.21414 0.700983i
\(996\) 0 0
\(997\) 13.7706 3.68983i 0.436120 0.116858i −0.0340775 0.999419i \(-0.510849\pi\)
0.470198 + 0.882561i \(0.344183\pi\)
\(998\) −22.9228 + 22.9228i −0.725608 + 0.725608i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.o.a.208.4 64
3.2 odd 2 153.2.n.a.106.13 yes 64
9.4 even 3 inner 459.2.o.a.361.13 64
9.5 odd 6 153.2.n.a.4.4 64
17.13 even 4 inner 459.2.o.a.370.13 64
51.47 odd 4 153.2.n.a.115.4 yes 64
153.13 even 12 inner 459.2.o.a.64.4 64
153.149 odd 12 153.2.n.a.13.13 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.n.a.4.4 64 9.5 odd 6
153.2.n.a.13.13 yes 64 153.149 odd 12
153.2.n.a.106.13 yes 64 3.2 odd 2
153.2.n.a.115.4 yes 64 51.47 odd 4
459.2.o.a.64.4 64 153.13 even 12 inner
459.2.o.a.208.4 64 1.1 even 1 trivial
459.2.o.a.361.13 64 9.4 even 3 inner
459.2.o.a.370.13 64 17.13 even 4 inner