Properties

Label 459.2.a.n
Level $459$
Weight $2$
Character orbit 459.a
Self dual yes
Analytic conductor $3.665$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(1,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,0,9,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + ( - \beta_{2} + \beta_1 + 3) q^{4} + (\beta_{2} - \beta_1 + 1) q^{5} + (\beta_{2} + \beta_1 - 2) q^{7} + (2 \beta_{2} + \beta_1 - 4) q^{8} + ( - \beta_1 + 4) q^{10} + ( - 2 \beta_1 + 2) q^{11}+ \cdots + (11 \beta_{2} - 18) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 9 q^{4} + 3 q^{5} - 4 q^{7} - 9 q^{8} + 11 q^{10} + 4 q^{11} + q^{13} + 18 q^{14} + 13 q^{16} - 3 q^{17} + 5 q^{19} - 7 q^{20} - 8 q^{22} + 3 q^{23} + 4 q^{25} - 9 q^{26} - 16 q^{28} - 3 q^{29}+ \cdots - 43 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.210756
−1.65544
2.86620
−2.74483 0 5.53407 −1.53407 0 −4.95558 −9.70041 0 4.21076
1.2 1.39593 0 −0.0513742 4.05137 0 −2.25951 −2.86358 0 5.65544
1.3 2.34889 0 3.51730 0.482696 0 3.21509 3.56399 0 1.13380
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 459.2.a.n yes 3
3.b odd 2 1 459.2.a.m 3
4.b odd 2 1 7344.2.a.cn 3
12.b even 2 1 7344.2.a.ci 3
17.b even 2 1 7803.2.a.bg 3
51.c odd 2 1 7803.2.a.bd 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
459.2.a.m 3 3.b odd 2 1
459.2.a.n yes 3 1.a even 1 1 trivial
7344.2.a.ci 3 12.b even 2 1
7344.2.a.cn 3 4.b odd 2 1
7803.2.a.bd 3 51.c odd 2 1
7803.2.a.bg 3 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(459))\):

\( T_{2}^{3} - T_{2}^{2} - 7T_{2} + 9 \) Copy content Toggle raw display
\( T_{5}^{3} - 3T_{5}^{2} - 5T_{5} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} - 7T + 9 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 3 T^{2} + \cdots + 3 \) Copy content Toggle raw display
$7$ \( T^{3} + 4 T^{2} + \cdots - 36 \) Copy content Toggle raw display
$11$ \( T^{3} - 4 T^{2} + \cdots + 48 \) Copy content Toggle raw display
$13$ \( T^{3} - T^{2} + \cdots + 29 \) Copy content Toggle raw display
$17$ \( (T + 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 5 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$23$ \( T^{3} - 3 T^{2} + \cdots + 63 \) Copy content Toggle raw display
$29$ \( T^{3} + 3 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$31$ \( T^{3} - 32T + 32 \) Copy content Toggle raw display
$37$ \( T^{3} - 12 T^{2} + \cdots - 28 \) Copy content Toggle raw display
$41$ \( T^{3} + 3 T^{2} + \cdots - 3 \) Copy content Toggle raw display
$43$ \( T^{3} - 5 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$47$ \( T^{3} + 4 T^{2} + \cdots + 132 \) Copy content Toggle raw display
$53$ \( T^{3} - 4 T^{2} + \cdots - 84 \) Copy content Toggle raw display
$59$ \( T^{3} + 30 T^{2} + \cdots + 924 \) Copy content Toggle raw display
$61$ \( T^{3} - 36 T^{2} + \cdots - 1636 \) Copy content Toggle raw display
$67$ \( T^{3} + 29 T^{2} + \cdots + 751 \) Copy content Toggle raw display
$71$ \( T^{3} + 19 T^{2} + \cdots - 111 \) Copy content Toggle raw display
$73$ \( T^{3} - 200T + 500 \) Copy content Toggle raw display
$79$ \( T^{3} - 14 T^{2} + \cdots - 36 \) Copy content Toggle raw display
$83$ \( T^{3} - 4 T^{2} + \cdots + 672 \) Copy content Toggle raw display
$89$ \( T^{3} - 30 T^{2} + \cdots - 648 \) Copy content Toggle raw display
$97$ \( T^{3} - 8T - 4 \) Copy content Toggle raw display
show more
show less