Properties

Label 459.1.c.b
Level 459459
Weight 11
Character orbit 459.c
Self dual yes
Analytic conductor 0.2290.229
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -51
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,1,Mod(458,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.458"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 459=3317 459 = 3^{3} \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 459.c (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.2290708407990.229070840799
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.459.1
Artin image: D6D_6
Artin field: Galois closure of 6.0.632043.1
Stark unit: Root of x672x5+756x43818x3+756x272x+1x^{6} - 72x^{5} + 756x^{4} - 3818x^{3} + 756x^{2} - 72x + 1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+q4+q52q11q13+q16q17q19+q20+q23+q29+q41q432q44+q49q522q55+q64q65q67q68+q95+O(q100) q + q^{4} + q^{5} - 2 q^{11} - q^{13} + q^{16} - q^{17} - q^{19} + q^{20} + q^{23} + q^{29} + q^{41} - q^{43} - 2 q^{44} + q^{49} - q^{52} - 2 q^{55} + q^{64} - q^{65} - q^{67} - q^{68}+ \cdots - q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/459Z)×\left(\mathbb{Z}/459\mathbb{Z}\right)^\times.

nn 137137 190190
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
458.1
0
0 0 1.00000 1.00000 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
51.c odd 2 1 CM by Q(51)\Q(\sqrt{-51})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 459.1.c.b yes 1
3.b odd 2 1 459.1.c.a 1
9.c even 3 2 1377.1.i.a 2
9.d odd 6 2 1377.1.i.b 2
17.b even 2 1 459.1.c.a 1
51.c odd 2 1 CM 459.1.c.b yes 1
153.h even 6 2 1377.1.i.b 2
153.i odd 6 2 1377.1.i.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
459.1.c.a 1 3.b odd 2 1
459.1.c.a 1 17.b even 2 1
459.1.c.b yes 1 1.a even 1 1 trivial
459.1.c.b yes 1 51.c odd 2 1 CM
1377.1.i.a 2 9.c even 3 2
1377.1.i.a 2 153.i odd 6 2
1377.1.i.b 2 9.d odd 6 2
1377.1.i.b 2 153.h even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T51 T_{5} - 1 acting on S1new(459,[χ])S_{1}^{\mathrm{new}}(459, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T1 T - 1 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T+2 T + 2 Copy content Toggle raw display
1313 T+1 T + 1 Copy content Toggle raw display
1717 T+1 T + 1 Copy content Toggle raw display
1919 T+1 T + 1 Copy content Toggle raw display
2323 T1 T - 1 Copy content Toggle raw display
2929 T1 T - 1 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T T Copy content Toggle raw display
4141 T1 T - 1 Copy content Toggle raw display
4343 T+1 T + 1 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T+1 T + 1 Copy content Toggle raw display
7171 T1 T - 1 Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less