Properties

Label 4560.2.a.x.1.1
Level $4560$
Weight $2$
Character 4560.1
Self dual yes
Analytic conductor $36.412$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4560 = 2^{4} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4560.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(36.4117833217\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 570)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4560.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} -4.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +1.00000 q^{5} -4.00000 q^{7} +1.00000 q^{9} -6.00000 q^{13} +1.00000 q^{15} +2.00000 q^{17} -1.00000 q^{19} -4.00000 q^{21} -8.00000 q^{23} +1.00000 q^{25} +1.00000 q^{27} +2.00000 q^{29} +8.00000 q^{31} -4.00000 q^{35} +10.0000 q^{37} -6.00000 q^{39} +6.00000 q^{41} +8.00000 q^{43} +1.00000 q^{45} +9.00000 q^{49} +2.00000 q^{51} -2.00000 q^{53} -1.00000 q^{57} +12.0000 q^{59} -2.00000 q^{61} -4.00000 q^{63} -6.00000 q^{65} +12.0000 q^{67} -8.00000 q^{69} +8.00000 q^{71} +2.00000 q^{73} +1.00000 q^{75} +16.0000 q^{79} +1.00000 q^{81} +4.00000 q^{83} +2.00000 q^{85} +2.00000 q^{87} +6.00000 q^{89} +24.0000 q^{91} +8.00000 q^{93} -1.00000 q^{95} -10.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) −4.00000 −0.503953
\(64\) 0 0
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 24.0000 2.51588
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −20.0000 −1.93347 −0.966736 0.255774i \(-0.917670\pi\)
−0.966736 + 0.255774i \(0.917670\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 0 0
\(117\) −6.00000 −0.554700
\(118\) 0 0
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 6.00000 0.541002
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 9.00000 0.742307
\(148\) 0 0
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) −2.00000 −0.158610
\(160\) 0 0
\(161\) 32.0000 2.52195
\(162\) 0 0
\(163\) −8.00000 −0.626608 −0.313304 0.949653i \(-0.601436\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 0 0
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 10.0000 0.735215
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) −6.00000 −0.429669
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 12.0000 0.846415
\(202\) 0 0
\(203\) −8.00000 −0.561490
\(204\) 0 0
\(205\) 6.00000 0.419058
\(206\) 0 0
\(207\) −8.00000 −0.556038
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) −32.0000 −2.17230
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 16.0000 1.03931
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 9.00000 0.574989
\(246\) 0 0
\(247\) 6.00000 0.381771
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 2.00000 0.125245
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −40.0000 −2.48548
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 24.0000 1.45255
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 0 0
\(285\) −1.00000 −0.0592349
\(286\) 0 0
\(287\) −24.0000 −1.41668
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 48.0000 2.77591
\(300\) 0 0
\(301\) −32.0000 −1.84445
\(302\) 0 0
\(303\) −18.0000 −1.03407
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) −26.0000 −1.46031 −0.730153 0.683284i \(-0.760551\pi\)
−0.730153 + 0.683284i \(0.760551\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −20.0000 −1.11629
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 0 0
\(327\) 6.00000 0.331801
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 0 0
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) −8.00000 −0.430706
\(346\) 0 0
\(347\) −20.0000 −1.07366 −0.536828 0.843692i \(-0.680378\pi\)
−0.536828 + 0.843692i \(0.680378\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 0 0
\(355\) 8.00000 0.424596
\(356\) 0 0
\(357\) −8.00000 −0.423405
\(358\) 0 0
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 8.00000 0.415339
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) 38.0000 1.90717 0.953583 0.301131i \(-0.0973643\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) −48.0000 −2.39105
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 18.0000 0.890043 0.445021 0.895520i \(-0.353196\pi\)
0.445021 + 0.895520i \(0.353196\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) −48.0000 −2.36193
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) 40.0000 1.95413 0.977064 0.212946i \(-0.0683059\pi\)
0.977064 + 0.212946i \(0.0683059\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.00000 0.0970143
\(426\) 0 0
\(427\) 8.00000 0.387147
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 2.00000 0.0958927
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) −2.00000 −0.0945968
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 24.0000 1.12514
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) 8.00000 0.370991
\(466\) 0 0
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) −48.0000 −2.21643
\(470\) 0 0
\(471\) −10.0000 −0.460776
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 0 0
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) 0 0
\(481\) −60.0000 −2.73576
\(482\) 0 0
\(483\) 32.0000 1.45605
\(484\) 0 0
\(485\) −10.0000 −0.454077
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) 40.0000 1.80517 0.902587 0.430507i \(-0.141665\pi\)
0.902587 + 0.430507i \(0.141665\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −32.0000 −1.43540
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) 0 0
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) 23.0000 1.02147
\(508\) 0 0
\(509\) −22.0000 −0.975133 −0.487566 0.873086i \(-0.662115\pi\)
−0.487566 + 0.873086i \(0.662115\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) −36.0000 −1.55933
\(534\) 0 0
\(535\) −20.0000 −0.864675
\(536\) 0 0
\(537\) 20.0000 0.863064
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) 0 0
\(543\) −18.0000 −0.772454
\(544\) 0 0
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −36.0000 −1.53925 −0.769624 0.638497i \(-0.779557\pi\)
−0.769624 + 0.638497i \(0.779557\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −2.00000 −0.0852029
\(552\) 0 0
\(553\) −64.0000 −2.72156
\(554\) 0 0
\(555\) 10.0000 0.424476
\(556\) 0 0
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 0 0
\(559\) −48.0000 −2.03018
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) 18.0000 0.757266
\(566\) 0 0
\(567\) −4.00000 −0.167984
\(568\) 0 0
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) −16.0000 −0.663792
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −6.00000 −0.248069
\(586\) 0 0
\(587\) 20.0000 0.825488 0.412744 0.910847i \(-0.364570\pi\)
0.412744 + 0.910847i \(0.364570\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) −8.00000 −0.327968
\(596\) 0 0
\(597\) −16.0000 −0.654836
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −14.0000 −0.571072 −0.285536 0.958368i \(-0.592172\pi\)
−0.285536 + 0.958368i \(0.592172\pi\)
\(602\) 0 0
\(603\) 12.0000 0.488678
\(604\) 0 0
\(605\) −11.0000 −0.447214
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) −8.00000 −0.324176
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 0 0
\(615\) 6.00000 0.241943
\(616\) 0 0
\(617\) 26.0000 1.04672 0.523360 0.852111i \(-0.324678\pi\)
0.523360 + 0.852111i \(0.324678\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 0 0
\(623\) −24.0000 −0.961540
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.0000 0.797452
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) −20.0000 −0.794929
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) −54.0000 −2.13956
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 40.0000 1.57745 0.788723 0.614749i \(-0.210743\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −32.0000 −1.25418
\(652\) 0 0
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) −34.0000 −1.32245 −0.661223 0.750189i \(-0.729962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(662\) 0 0
\(663\) −12.0000 −0.466041
\(664\) 0 0
\(665\) 4.00000 0.155113
\(666\) 0 0
\(667\) −16.0000 −0.619522
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 0 0
\(679\) 40.0000 1.53506
\(680\) 0 0
\(681\) −20.0000 −0.766402
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 0 0
\(687\) 6.00000 0.228914
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 38.0000 1.43524 0.717620 0.696435i \(-0.245231\pi\)
0.717620 + 0.696435i \(0.245231\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 72.0000 2.70784
\(708\) 0 0
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) −64.0000 −2.39682
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20.0000 0.746914
\(718\) 0 0
\(719\) −28.0000 −1.04422 −0.522112 0.852877i \(-0.674856\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 0 0
\(723\) −14.0000 −0.520666
\(724\) 0 0
\(725\) 2.00000 0.0742781
\(726\) 0 0
\(727\) −12.0000 −0.445055 −0.222528 0.974926i \(-0.571431\pi\)
−0.222528 + 0.974926i \(0.571431\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 16.0000 0.591781
\(732\) 0 0
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) 0 0
\(735\) 9.00000 0.331970
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 28.0000 1.03000 0.514998 0.857191i \(-0.327793\pi\)
0.514998 + 0.857191i \(0.327793\pi\)
\(740\) 0 0
\(741\) 6.00000 0.220416
\(742\) 0 0
\(743\) 32.0000 1.17397 0.586983 0.809599i \(-0.300316\pi\)
0.586983 + 0.809599i \(0.300316\pi\)
\(744\) 0 0
\(745\) −2.00000 −0.0732743
\(746\) 0 0
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) 80.0000 2.92314
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 0 0
\(763\) −24.0000 −0.868858
\(764\) 0 0
\(765\) 2.00000 0.0723102
\(766\) 0 0
\(767\) −72.0000 −2.59977
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) 46.0000 1.65451 0.827253 0.561830i \(-0.189903\pi\)
0.827253 + 0.561830i \(0.189903\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) −40.0000 −1.43499
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) −10.0000 −0.356915
\(786\) 0 0
\(787\) 20.0000 0.712923 0.356462 0.934310i \(-0.383983\pi\)
0.356462 + 0.934310i \(0.383983\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −72.0000 −2.56003
\(792\) 0 0
\(793\) 12.0000 0.426132
\(794\) 0 0
\(795\) −2.00000 −0.0709327
\(796\) 0 0
\(797\) −18.0000 −0.637593 −0.318796 0.947823i \(-0.603279\pi\)
−0.318796 + 0.947823i \(0.603279\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 32.0000 1.12785
\(806\) 0 0
\(807\) 18.0000 0.633630
\(808\) 0 0
\(809\) −22.0000 −0.773479 −0.386739 0.922189i \(-0.626399\pi\)
−0.386739 + 0.922189i \(0.626399\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) −8.00000 −0.280228
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 0 0
\(819\) 24.0000 0.838628
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) −44.0000 −1.53374 −0.766872 0.641800i \(-0.778188\pi\)
−0.766872 + 0.641800i \(0.778188\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 52.0000 1.80822 0.904109 0.427303i \(-0.140536\pi\)
0.904109 + 0.427303i \(0.140536\pi\)
\(828\) 0 0
\(829\) 22.0000 0.764092 0.382046 0.924143i \(-0.375220\pi\)
0.382046 + 0.924143i \(0.375220\pi\)
\(830\) 0 0
\(831\) −2.00000 −0.0693792
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −2.00000 −0.0688837
\(844\) 0 0
\(845\) 23.0000 0.791224
\(846\) 0 0
\(847\) 44.0000 1.51186
\(848\) 0 0
\(849\) 16.0000 0.549119
\(850\) 0 0
\(851\) −80.0000 −2.74236
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) −1.00000 −0.0341993
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) −44.0000 −1.50126 −0.750630 0.660722i \(-0.770250\pi\)
−0.750630 + 0.660722i \(0.770250\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 0 0
\(863\) −8.00000 −0.272323 −0.136162 0.990687i \(-0.543477\pi\)
−0.136162 + 0.990687i \(0.543477\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −72.0000 −2.43963
\(872\) 0 0
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) −4.00000 −0.135225
\(876\) 0 0
\(877\) −6.00000 −0.202606 −0.101303 0.994856i \(-0.532301\pi\)
−0.101303 + 0.994856i \(0.532301\pi\)
\(878\) 0 0
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 0 0
\(885\) 12.0000 0.403376
\(886\) 0 0
\(887\) 16.0000 0.537227 0.268614 0.963248i \(-0.413434\pi\)
0.268614 + 0.963248i \(0.413434\pi\)
\(888\) 0 0
\(889\) −32.0000 −1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 20.0000 0.668526
\(896\) 0 0
\(897\) 48.0000 1.60267
\(898\) 0 0
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) −4.00000 −0.133259
\(902\) 0 0
\(903\) −32.0000 −1.06489
\(904\) 0 0
\(905\) −18.0000 −0.598340
\(906\) 0 0
\(907\) 60.0000 1.99227 0.996134 0.0878507i \(-0.0279999\pi\)
0.996134 + 0.0878507i \(0.0279999\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −2.00000 −0.0661180
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) −48.0000 −1.57994
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 0 0
\(931\) −9.00000 −0.294963
\(932\) 0 0
\(933\) −12.0000 −0.392862
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −6.00000 −0.195803
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 0 0
\(943\) −48.0000 −1.56310
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) −44.0000 −1.42981 −0.714904 0.699223i \(-0.753530\pi\)
−0.714904 + 0.699223i \(0.753530\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) −26.0000 −0.843108
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −20.0000 −0.644491
\(964\) 0 0
\(965\) −2.00000 −0.0643823
\(966\) 0 0
\(967\) −44.0000 −1.41494 −0.707472 0.706741i \(-0.750165\pi\)
−0.707472 + 0.706741i \(0.750165\pi\)
\(968\) 0 0
\(969\) −2.00000 −0.0642493
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) −48.0000 −1.53881
\(974\) 0 0
\(975\) −6.00000 −0.192154
\(976\) 0 0
\(977\) −54.0000 −1.72761 −0.863807 0.503824i \(-0.831926\pi\)
−0.863807 + 0.503824i \(0.831926\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 6.00000 0.191565
\(982\) 0 0
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −64.0000 −2.03508
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 0 0
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4560.2.a.x.1.1 1
4.3 odd 2 570.2.a.i.1.1 1
12.11 even 2 1710.2.a.e.1.1 1
20.3 even 4 2850.2.d.c.799.1 2
20.7 even 4 2850.2.d.c.799.2 2
20.19 odd 2 2850.2.a.h.1.1 1
60.59 even 2 8550.2.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
570.2.a.i.1.1 1 4.3 odd 2
1710.2.a.e.1.1 1 12.11 even 2
2850.2.a.h.1.1 1 20.19 odd 2
2850.2.d.c.799.1 2 20.3 even 4
2850.2.d.c.799.2 2 20.7 even 4
4560.2.a.x.1.1 1 1.1 even 1 trivial
8550.2.a.s.1.1 1 60.59 even 2