# Properties

 Label 4560.2.a.n Level $4560$ Weight $2$ Character orbit 4560.a Self dual yes Analytic conductor $36.412$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4560 = 2^{4} \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4560.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$36.4117833217$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 2280) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{3} + q^{5} + q^{9} + O(q^{10})$$ $$q - q^{3} + q^{5} + q^{9} - 4 q^{11} - 2 q^{13} - q^{15} + 2 q^{17} + q^{19} + q^{25} - q^{27} + 6 q^{29} + 4 q^{33} + 6 q^{37} + 2 q^{39} - 6 q^{41} - 4 q^{43} + q^{45} - 8 q^{47} - 7 q^{49} - 2 q^{51} + 6 q^{53} - 4 q^{55} - q^{57} + 12 q^{59} - 2 q^{61} - 2 q^{65} - 4 q^{67} - 8 q^{71} - 6 q^{73} - q^{75} - 16 q^{79} + q^{81} + 4 q^{83} + 2 q^{85} - 6 q^{87} - 6 q^{89} + q^{95} + 10 q^{97} - 4 q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 1.00000 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$
$$5$$ $$-1$$
$$19$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4560.2.a.n 1
4.b odd 2 1 2280.2.a.h 1
12.b even 2 1 6840.2.a.d 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2280.2.a.h 1 4.b odd 2 1
4560.2.a.n 1 1.a even 1 1 trivial
6840.2.a.d 1 12.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4560))$$:

 $$T_{7}$$ $$T_{11} + 4$$ $$T_{13} + 2$$ $$T_{17} - 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$1 + T$$
$5$ $$-1 + T$$
$7$ $$T$$
$11$ $$4 + T$$
$13$ $$2 + T$$
$17$ $$-2 + T$$
$19$ $$-1 + T$$
$23$ $$T$$
$29$ $$-6 + T$$
$31$ $$T$$
$37$ $$-6 + T$$
$41$ $$6 + T$$
$43$ $$4 + T$$
$47$ $$8 + T$$
$53$ $$-6 + T$$
$59$ $$-12 + T$$
$61$ $$2 + T$$
$67$ $$4 + T$$
$71$ $$8 + T$$
$73$ $$6 + T$$
$79$ $$16 + T$$
$83$ $$-4 + T$$
$89$ $$6 + T$$
$97$ $$-10 + T$$