Properties

Label 4560.2.a.bm
Level $4560$
Weight $2$
Character orbit 4560.a
Self dual yes
Analytic conductor $36.412$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4560 = 2^{4} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4560.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(36.4117833217\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 2280)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - q^{5} + \beta q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} - q^{5} + \beta q^{7} + q^{9} - \beta q^{11} + (\beta - 2) q^{13} - q^{15} + ( - 2 \beta - 2) q^{17} + q^{19} + \beta q^{21} - 4 q^{23} + q^{25} + q^{27} + ( - \beta + 2) q^{29} - \beta q^{33} - \beta q^{35} + ( - \beta - 2) q^{37} + (\beta - 2) q^{39} + ( - \beta + 2) q^{41} - \beta q^{43} - q^{45} - 4 q^{47} + q^{49} + ( - 2 \beta - 2) q^{51} - 2 q^{53} + \beta q^{55} + q^{57} - 8 q^{59} + (4 \beta - 2) q^{61} + \beta q^{63} + ( - \beta + 2) q^{65} + (2 \beta - 4) q^{67} - 4 q^{69} - 8 q^{71} + (2 \beta - 6) q^{73} + q^{75} - 8 q^{77} + ( - 2 \beta - 8) q^{79} + q^{81} - 8 q^{83} + (2 \beta + 2) q^{85} + ( - \beta + 2) q^{87} + ( - \beta + 10) q^{89} + ( - 2 \beta + 8) q^{91} - q^{95} + ( - \beta - 2) q^{97} - \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} - 2 q^{5} + 2 q^{9} - 4 q^{13} - 2 q^{15} - 4 q^{17} + 2 q^{19} - 8 q^{23} + 2 q^{25} + 2 q^{27} + 4 q^{29} - 4 q^{37} - 4 q^{39} + 4 q^{41} - 2 q^{45} - 8 q^{47} + 2 q^{49} - 4 q^{51} - 4 q^{53} + 2 q^{57} - 16 q^{59} - 4 q^{61} + 4 q^{65} - 8 q^{67} - 8 q^{69} - 16 q^{71} - 12 q^{73} + 2 q^{75} - 16 q^{77} - 16 q^{79} + 2 q^{81} - 16 q^{83} + 4 q^{85} + 4 q^{87} + 20 q^{89} + 16 q^{91} - 2 q^{95} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 1.00000 0 −1.00000 0 −2.82843 0 1.00000 0
1.2 0 1.00000 0 −1.00000 0 2.82843 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4560.2.a.bm 2
4.b odd 2 1 2280.2.a.l 2
12.b even 2 1 6840.2.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2280.2.a.l 2 4.b odd 2 1
4560.2.a.bm 2 1.a even 1 1 trivial
6840.2.a.ba 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4560))\):

\( T_{7}^{2} - 8 \) Copy content Toggle raw display
\( T_{11}^{2} - 8 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 4 \) Copy content Toggle raw display
\( T_{17}^{2} + 4T_{17} - 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 8 \) Copy content Toggle raw display
$11$ \( T^{2} - 8 \) Copy content Toggle raw display
$13$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 28 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
$41$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$43$ \( T^{2} - 8 \) Copy content Toggle raw display
$47$ \( (T + 4)^{2} \) Copy content Toggle raw display
$53$ \( (T + 2)^{2} \) Copy content Toggle raw display
$59$ \( (T + 8)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 4T - 124 \) Copy content Toggle raw display
$67$ \( T^{2} + 8T - 16 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 12T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 16T + 32 \) Copy content Toggle raw display
$83$ \( (T + 8)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 20T + 92 \) Copy content Toggle raw display
$97$ \( T^{2} + 4T - 4 \) Copy content Toggle raw display
show more
show less