Properties

Label 4560.2.a.bg
Level $4560$
Weight $2$
Character orbit 4560.a
Self dual yes
Analytic conductor $36.412$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4560 = 2^{4} \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4560.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(36.4117833217\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2280)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - q^{5} + ( 2 + \beta ) q^{7} + q^{9} +O(q^{10})\) \( q - q^{3} - q^{5} + ( 2 + \beta ) q^{7} + q^{9} + \beta q^{11} + 3 \beta q^{13} + q^{15} + 2 \beta q^{17} + q^{19} + ( -2 - \beta ) q^{21} + ( 2 + 2 \beta ) q^{23} + q^{25} - q^{27} + ( -2 + 3 \beta ) q^{29} + ( 6 + 2 \beta ) q^{31} -\beta q^{33} + ( -2 - \beta ) q^{35} -5 \beta q^{37} -3 \beta q^{39} + ( -2 + 3 \beta ) q^{41} + ( 6 - 3 \beta ) q^{43} - q^{45} + ( -2 - 2 \beta ) q^{47} + ( -1 + 4 \beta ) q^{49} -2 \beta q^{51} + ( -4 - 6 \beta ) q^{53} -\beta q^{55} - q^{57} + 2 \beta q^{59} -8 q^{61} + ( 2 + \beta ) q^{63} -3 \beta q^{65} + 8 \beta q^{67} + ( -2 - 2 \beta ) q^{69} + ( 8 - 2 \beta ) q^{71} + ( 2 - 4 \beta ) q^{73} - q^{75} + ( 2 + 2 \beta ) q^{77} + ( 8 - 4 \beta ) q^{79} + q^{81} + 6 q^{83} -2 \beta q^{85} + ( 2 - 3 \beta ) q^{87} + ( 2 - 11 \beta ) q^{89} + ( 6 + 6 \beta ) q^{91} + ( -6 - 2 \beta ) q^{93} - q^{95} + 7 \beta q^{97} + \beta q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} - 2q^{5} + 4q^{7} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} - 2q^{5} + 4q^{7} + 2q^{9} + 2q^{15} + 2q^{19} - 4q^{21} + 4q^{23} + 2q^{25} - 2q^{27} - 4q^{29} + 12q^{31} - 4q^{35} - 4q^{41} + 12q^{43} - 2q^{45} - 4q^{47} - 2q^{49} - 8q^{53} - 2q^{57} - 16q^{61} + 4q^{63} - 4q^{69} + 16q^{71} + 4q^{73} - 2q^{75} + 4q^{77} + 16q^{79} + 2q^{81} + 12q^{83} + 4q^{87} + 4q^{89} + 12q^{91} - 12q^{93} - 2q^{95} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −1.00000 0 −1.00000 0 0.585786 0 1.00000 0
1.2 0 −1.00000 0 −1.00000 0 3.41421 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(1\)
\(19\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4560.2.a.bg 2
4.b odd 2 1 2280.2.a.o 2
12.b even 2 1 6840.2.a.x 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2280.2.a.o 2 4.b odd 2 1
4560.2.a.bg 2 1.a even 1 1 trivial
6840.2.a.x 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4560))\):

\( T_{7}^{2} - 4 T_{7} + 2 \)
\( T_{11}^{2} - 2 \)
\( T_{13}^{2} - 18 \)
\( T_{17}^{2} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( ( 1 + T )^{2} \)
$7$ \( 2 - 4 T + T^{2} \)
$11$ \( -2 + T^{2} \)
$13$ \( -18 + T^{2} \)
$17$ \( -8 + T^{2} \)
$19$ \( ( -1 + T )^{2} \)
$23$ \( -4 - 4 T + T^{2} \)
$29$ \( -14 + 4 T + T^{2} \)
$31$ \( 28 - 12 T + T^{2} \)
$37$ \( -50 + T^{2} \)
$41$ \( -14 + 4 T + T^{2} \)
$43$ \( 18 - 12 T + T^{2} \)
$47$ \( -4 + 4 T + T^{2} \)
$53$ \( -56 + 8 T + T^{2} \)
$59$ \( -8 + T^{2} \)
$61$ \( ( 8 + T )^{2} \)
$67$ \( -128 + T^{2} \)
$71$ \( 56 - 16 T + T^{2} \)
$73$ \( -28 - 4 T + T^{2} \)
$79$ \( 32 - 16 T + T^{2} \)
$83$ \( ( -6 + T )^{2} \)
$89$ \( -238 - 4 T + T^{2} \)
$97$ \( -98 + T^{2} \)
show more
show less