# Properties

 Label 4560.2.a.bd Level $4560$ Weight $2$ Character orbit 4560.a Self dual yes Analytic conductor $36.412$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4560 = 2^{4} \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4560.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$36.4117833217$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 570) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{3} + q^{5} + 2 q^{7} + q^{9} + O(q^{10})$$ $$q + q^{3} + q^{5} + 2 q^{7} + q^{9} + 2 q^{11} + q^{15} - 2 q^{17} - q^{19} + 2 q^{21} + 8 q^{23} + q^{25} + q^{27} + 2 q^{33} + 2 q^{35} + 4 q^{37} - 8 q^{41} + 6 q^{43} + q^{45} + 8 q^{47} - 3 q^{49} - 2 q^{51} - 10 q^{53} + 2 q^{55} - q^{57} + 8 q^{59} + 2 q^{61} + 2 q^{63} + 8 q^{69} - 8 q^{71} - 2 q^{73} + q^{75} + 4 q^{77} + 8 q^{79} + q^{81} + 16 q^{83} - 2 q^{85} + 16 q^{89} - q^{95} + 8 q^{97} + 2 q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 1.00000 0 2.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4560.2.a.bd 1
4.b odd 2 1 570.2.a.c 1
12.b even 2 1 1710.2.a.n 1
20.d odd 2 1 2850.2.a.ba 1
20.e even 4 2 2850.2.d.n 2
60.h even 2 1 8550.2.a.o 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.a.c 1 4.b odd 2 1
1710.2.a.n 1 12.b even 2 1
2850.2.a.ba 1 20.d odd 2 1
2850.2.d.n 2 20.e even 4 2
4560.2.a.bd 1 1.a even 1 1 trivial
8550.2.a.o 1 60.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4560))$$:

 $$T_{7} - 2$$ $$T_{11} - 2$$ $$T_{13}$$ $$T_{17} + 2$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$-1 + T$$
$5$ $$-1 + T$$
$7$ $$-2 + T$$
$11$ $$-2 + T$$
$13$ $$T$$
$17$ $$2 + T$$
$19$ $$1 + T$$
$23$ $$-8 + T$$
$29$ $$T$$
$31$ $$T$$
$37$ $$-4 + T$$
$41$ $$8 + T$$
$43$ $$-6 + T$$
$47$ $$-8 + T$$
$53$ $$10 + T$$
$59$ $$-8 + T$$
$61$ $$-2 + T$$
$67$ $$T$$
$71$ $$8 + T$$
$73$ $$2 + T$$
$79$ $$-8 + T$$
$83$ $$-16 + T$$
$89$ $$-16 + T$$
$97$ $$-8 + T$$