Properties

Label 456.3.o
Level $456$
Weight $3$
Character orbit 456.o
Rep. character $\chi_{456}(265,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 456.o (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(456, [\chi])\).

Total New Old
Modular forms 168 20 148
Cusp forms 152 20 132
Eisenstein series 16 0 16

Trace form

\( 20 q - 16 q^{7} - 60 q^{9} + O(q^{10}) \) \( 20 q - 16 q^{7} - 60 q^{9} + 16 q^{11} + 32 q^{17} + 40 q^{19} + 64 q^{23} + 68 q^{25} - 208 q^{35} + 48 q^{39} + 64 q^{43} + 48 q^{47} + 20 q^{49} - 336 q^{55} - 60 q^{57} + 184 q^{61} + 48 q^{63} + 104 q^{73} + 88 q^{77} + 180 q^{81} + 224 q^{83} - 136 q^{85} - 240 q^{87} + 120 q^{93} - 320 q^{95} - 48 q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(456, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
456.3.o.a 456.o 19.b $20$ $12.425$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{3}-\beta _{4}q^{5}+(-1-\beta _{3})q^{7}-3q^{9}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(456, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(456, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)