Defining parameters
Level: | \( N \) | \(=\) | \( 456 = 2^{3} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 456.o (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(456, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 168 | 20 | 148 |
Cusp forms | 152 | 20 | 132 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(456, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
456.3.o.a | $20$ | $12.425$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-16\) | \(q+\beta _{7}q^{3}-\beta _{4}q^{5}+(-1-\beta _{3})q^{7}-3q^{9}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(456, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(456, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(114, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)