Newspace parameters
Level: | \( N \) | \(=\) | \( 456 = 2^{3} \cdot 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 456.p (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.64117833217\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
341.1 | −1.39926 | − | 0.205108i | −1.01233 | + | 1.40541i | 1.91586 | + | 0.573998i | −1.38187 | 1.70478 | − | 1.75890i | 1.61031 | −2.56306 | − | 1.19613i | −0.950371 | − | 2.84549i | 1.93360 | + | 0.283433i | ||||
341.2 | −1.39926 | − | 0.205108i | 1.01233 | + | 1.40541i | 1.91586 | + | 0.573998i | 1.38187 | −1.12825 | − | 2.17418i | 1.61031 | −2.56306 | − | 1.19613i | −0.950371 | + | 2.84549i | −1.93360 | − | 0.283433i | ||||
341.3 | −1.39926 | + | 0.205108i | −1.01233 | − | 1.40541i | 1.91586 | − | 0.573998i | −1.38187 | 1.70478 | + | 1.75890i | 1.61031 | −2.56306 | + | 1.19613i | −0.950371 | + | 2.84549i | 1.93360 | − | 0.283433i | ||||
341.4 | −1.39926 | + | 0.205108i | 1.01233 | − | 1.40541i | 1.91586 | − | 0.573998i | 1.38187 | −1.12825 | + | 2.17418i | 1.61031 | −2.56306 | + | 1.19613i | −0.950371 | − | 2.84549i | −1.93360 | + | 0.283433i | ||||
341.5 | −1.34810 | − | 0.427337i | −0.346436 | − | 1.69705i | 1.63477 | + | 1.15219i | 3.35151 | −0.258182 | + | 2.43585i | −3.22924 | −1.71146 | − | 2.25187i | −2.75996 | + | 1.17584i | −4.51819 | − | 1.43223i | ||||
341.6 | −1.34810 | − | 0.427337i | 0.346436 | − | 1.69705i | 1.63477 | + | 1.15219i | −3.35151 | −1.19224 | + | 2.13976i | −3.22924 | −1.71146 | − | 2.25187i | −2.75996 | − | 1.17584i | 4.51819 | + | 1.43223i | ||||
341.7 | −1.34810 | + | 0.427337i | −0.346436 | + | 1.69705i | 1.63477 | − | 1.15219i | 3.35151 | −0.258182 | − | 2.43585i | −3.22924 | −1.71146 | + | 2.25187i | −2.75996 | − | 1.17584i | −4.51819 | + | 1.43223i | ||||
341.8 | −1.34810 | + | 0.427337i | 0.346436 | + | 1.69705i | 1.63477 | − | 1.15219i | −3.35151 | −1.19224 | − | 2.13976i | −3.22924 | −1.71146 | + | 2.25187i | −2.75996 | + | 1.17584i | 4.51819 | − | 1.43223i | ||||
341.9 | −1.24348 | − | 0.673618i | −1.47930 | + | 0.900922i | 1.09248 | + | 1.67526i | 0.886774 | 2.44636 | − | 0.123791i | −3.55534 | −0.229986 | − | 2.81906i | 1.37668 | − | 2.66547i | −1.10268 | − | 0.597347i | ||||
341.10 | −1.24348 | − | 0.673618i | 1.47930 | + | 0.900922i | 1.09248 | + | 1.67526i | −0.886774 | −1.23260 | − | 2.11676i | −3.55534 | −0.229986 | − | 2.81906i | 1.37668 | + | 2.66547i | 1.10268 | + | 0.597347i | ||||
341.11 | −1.24348 | + | 0.673618i | −1.47930 | − | 0.900922i | 1.09248 | − | 1.67526i | 0.886774 | 2.44636 | + | 0.123791i | −3.55534 | −0.229986 | + | 2.81906i | 1.37668 | + | 2.66547i | −1.10268 | + | 0.597347i | ||||
341.12 | −1.24348 | + | 0.673618i | 1.47930 | − | 0.900922i | 1.09248 | − | 1.67526i | −0.886774 | −1.23260 | + | 2.11676i | −3.55534 | −0.229986 | + | 2.81906i | 1.37668 | − | 2.66547i | 1.10268 | − | 0.597347i | ||||
341.13 | −1.20225 | − | 0.744704i | −1.60049 | − | 0.662144i | 0.890831 | + | 1.79065i | −2.20279 | 1.43109 | + | 1.98796i | 1.65376 | 0.262497 | − | 2.81622i | 2.12313 | + | 2.11951i | 2.64831 | + | 1.64043i | ||||
341.14 | −1.20225 | − | 0.744704i | 1.60049 | − | 0.662144i | 0.890831 | + | 1.79065i | 2.20279 | −2.41730 | − | 0.395826i | 1.65376 | 0.262497 | − | 2.81622i | 2.12313 | − | 2.11951i | −2.64831 | − | 1.64043i | ||||
341.15 | −1.20225 | + | 0.744704i | −1.60049 | + | 0.662144i | 0.890831 | − | 1.79065i | −2.20279 | 1.43109 | − | 1.98796i | 1.65376 | 0.262497 | + | 2.81622i | 2.12313 | − | 2.11951i | 2.64831 | − | 1.64043i | ||||
341.16 | −1.20225 | + | 0.744704i | 1.60049 | + | 0.662144i | 0.890831 | − | 1.79065i | 2.20279 | −2.41730 | + | 0.395826i | 1.65376 | 0.262497 | + | 2.81622i | 2.12313 | + | 2.11951i | −2.64831 | + | 1.64043i | ||||
341.17 | −0.968690 | − | 1.03036i | −0.749561 | + | 1.56146i | −0.123280 | + | 1.99620i | 3.14901 | 2.33496 | − | 0.740254i | 4.20433 | 2.17622 | − | 1.80667i | −1.87632 | − | 2.34082i | −3.05041 | − | 3.24461i | ||||
341.18 | −0.968690 | − | 1.03036i | 0.749561 | + | 1.56146i | −0.123280 | + | 1.99620i | −3.14901 | 0.882773 | − | 2.28489i | 4.20433 | 2.17622 | − | 1.80667i | −1.87632 | + | 2.34082i | 3.05041 | + | 3.24461i | ||||
341.19 | −0.968690 | + | 1.03036i | −0.749561 | − | 1.56146i | −0.123280 | − | 1.99620i | 3.14901 | 2.33496 | + | 0.740254i | 4.20433 | 2.17622 | + | 1.80667i | −1.87632 | + | 2.34082i | −3.05041 | + | 3.24461i | ||||
341.20 | −0.968690 | + | 1.03036i | 0.749561 | − | 1.56146i | −0.123280 | − | 1.99620i | −3.14901 | 0.882773 | + | 2.28489i | 4.20433 | 2.17622 | + | 1.80667i | −1.87632 | − | 2.34082i | 3.05041 | − | 3.24461i | ||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
8.b | even | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
24.h | odd | 2 | 1 | inner |
57.d | even | 2 | 1 | inner |
152.g | odd | 2 | 1 | inner |
456.p | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 456.2.p.b | ✓ | 64 |
3.b | odd | 2 | 1 | inner | 456.2.p.b | ✓ | 64 |
4.b | odd | 2 | 1 | 1824.2.p.b | 64 | ||
8.b | even | 2 | 1 | inner | 456.2.p.b | ✓ | 64 |
8.d | odd | 2 | 1 | 1824.2.p.b | 64 | ||
12.b | even | 2 | 1 | 1824.2.p.b | 64 | ||
19.b | odd | 2 | 1 | inner | 456.2.p.b | ✓ | 64 |
24.f | even | 2 | 1 | 1824.2.p.b | 64 | ||
24.h | odd | 2 | 1 | inner | 456.2.p.b | ✓ | 64 |
57.d | even | 2 | 1 | inner | 456.2.p.b | ✓ | 64 |
76.d | even | 2 | 1 | 1824.2.p.b | 64 | ||
152.b | even | 2 | 1 | 1824.2.p.b | 64 | ||
152.g | odd | 2 | 1 | inner | 456.2.p.b | ✓ | 64 |
228.b | odd | 2 | 1 | 1824.2.p.b | 64 | ||
456.l | odd | 2 | 1 | 1824.2.p.b | 64 | ||
456.p | even | 2 | 1 | inner | 456.2.p.b | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
456.2.p.b | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
456.2.p.b | ✓ | 64 | 3.b | odd | 2 | 1 | inner |
456.2.p.b | ✓ | 64 | 8.b | even | 2 | 1 | inner |
456.2.p.b | ✓ | 64 | 19.b | odd | 2 | 1 | inner |
456.2.p.b | ✓ | 64 | 24.h | odd | 2 | 1 | inner |
456.2.p.b | ✓ | 64 | 57.d | even | 2 | 1 | inner |
456.2.p.b | ✓ | 64 | 152.g | odd | 2 | 1 | inner |
456.2.p.b | ✓ | 64 | 456.p | even | 2 | 1 | inner |
1824.2.p.b | 64 | 4.b | odd | 2 | 1 | ||
1824.2.p.b | 64 | 8.d | odd | 2 | 1 | ||
1824.2.p.b | 64 | 12.b | even | 2 | 1 | ||
1824.2.p.b | 64 | 24.f | even | 2 | 1 | ||
1824.2.p.b | 64 | 76.d | even | 2 | 1 | ||
1824.2.p.b | 64 | 152.b | even | 2 | 1 | ||
1824.2.p.b | 64 | 228.b | odd | 2 | 1 | ||
1824.2.p.b | 64 | 456.l | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{16} - 54 T_{5}^{14} + 1174 T_{5}^{12} - 13344 T_{5}^{10} + 86113 T_{5}^{8} - 320322 T_{5}^{6} + \cdots + 246784 \)
acting on \(S_{2}^{\mathrm{new}}(456, [\chi])\).