Properties

Label 456.2.p
Level $456$
Weight $2$
Character orbit 456.p
Rep. character $\chi_{456}(341,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $2$
Sturm bound $160$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 456 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(160\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(456, [\chi])\).

Total New Old
Modular forms 84 84 0
Cusp forms 76 76 0
Eisenstein series 8 8 0

Trace form

\( 76 q - 8 q^{4} + 2 q^{6} - 8 q^{7} - 4 q^{9} - 8 q^{16} - 2 q^{24} + 52 q^{25} - 20 q^{28} - 38 q^{36} - 16 q^{39} + 38 q^{42} + 60 q^{49} + 32 q^{54} - 48 q^{55} - 12 q^{57} + 12 q^{58} - 32 q^{63} - 32 q^{64}+ \cdots - 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(456, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
456.2.p.a 456.p 456.p $12$ $3.641$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) \(\Q(\sqrt{-38}) \) 456.2.p.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{3}q^{2}+\beta _{8}q^{3}-2q^{4}-\beta _{2}q^{6}+(\beta _{10}+\cdots)q^{7}+\cdots\)
456.2.p.b 456.p 456.p $64$ $3.641$ None 456.2.p.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$