Properties

Label 456.2.bm.b.89.8
Level $456$
Weight $2$
Character 456.89
Analytic conductor $3.641$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [456,2,Mod(41,456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(456, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 9, 13])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("456.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 456 = 2^{3} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 456.bm (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.64117833217\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 89.8
Character \(\chi\) \(=\) 456.89
Dual form 456.2.bm.b.41.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20462 + 1.24454i) q^{3} +(1.70062 - 0.299865i) q^{5} +(1.13747 - 1.97015i) q^{7} +(-0.0977739 + 2.99841i) q^{9} +(2.36730 - 1.36676i) q^{11} +(0.405512 + 1.11413i) q^{13} +(2.42180 + 1.75527i) q^{15} +(-5.05418 - 6.02334i) q^{17} +(1.37777 + 4.13543i) q^{19} +(3.82215 - 0.957659i) q^{21} +(4.39335 + 0.774666i) q^{23} +(-1.89627 + 0.690186i) q^{25} +(-3.84943 + 3.49026i) q^{27} +(-3.61452 - 3.03294i) q^{29} +(2.36577 + 1.36588i) q^{31} +(4.55269 + 1.29978i) q^{33} +(1.34362 - 3.69157i) q^{35} +11.4585i q^{37} +(-0.898099 + 1.84679i) q^{39} +(-6.52964 - 2.37659i) q^{41} +(-0.346684 - 1.96614i) q^{43} +(0.732842 + 5.12847i) q^{45} +(-2.74268 + 3.26860i) q^{47} +(0.912338 + 1.58022i) q^{49} +(1.40793 - 13.5460i) q^{51} +(-0.919456 + 5.21449i) q^{53} +(3.61603 - 3.03421i) q^{55} +(-3.48703 + 6.69632i) q^{57} +(3.56459 - 2.99105i) q^{59} +(2.38649 - 13.5345i) q^{61} +(5.79610 + 3.60322i) q^{63} +(1.02371 + 1.77312i) q^{65} +(1.79402 - 2.13803i) q^{67} +(4.32822 + 6.40089i) q^{69} +(-1.40518 - 7.96915i) q^{71} +(-11.7489 - 4.27624i) q^{73} +(-3.14326 - 1.52858i) q^{75} -6.21858i q^{77} +(-2.44606 + 6.72050i) q^{79} +(-8.98088 - 0.586332i) q^{81} +(-8.58466 - 4.95636i) q^{83} +(-10.4014 - 8.72784i) q^{85} +(-0.579502 - 8.15198i) q^{87} +(4.25172 - 1.54750i) q^{89} +(2.65627 + 0.468372i) q^{91} +(1.14996 + 4.58967i) q^{93} +(3.58313 + 6.61965i) q^{95} +(-4.14485 - 4.93964i) q^{97} +(3.86664 + 7.23176i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q - 6 q^{9} + 3 q^{13} - 3 q^{15} - 6 q^{17} + 3 q^{19} + 6 q^{25} + 3 q^{27} + 6 q^{29} + 24 q^{35} + 18 q^{39} + 3 q^{41} - 21 q^{43} + 63 q^{45} - 18 q^{47} - 30 q^{49} + 33 q^{51} - 36 q^{53} + 18 q^{55}+ \cdots - 39 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/456\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(229\) \(305\) \(343\)
\(\chi(n)\) \(e\left(\frac{5}{18}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.20462 + 1.24454i 0.695489 + 0.718537i
\(4\) 0 0
\(5\) 1.70062 0.299865i 0.760541 0.134104i 0.220090 0.975480i \(-0.429365\pi\)
0.540451 + 0.841376i \(0.318254\pi\)
\(6\) 0 0
\(7\) 1.13747 1.97015i 0.429922 0.744647i −0.566944 0.823756i \(-0.691874\pi\)
0.996866 + 0.0791096i \(0.0252077\pi\)
\(8\) 0 0
\(9\) −0.0977739 + 2.99841i −0.0325913 + 0.999469i
\(10\) 0 0
\(11\) 2.36730 1.36676i 0.713767 0.412094i −0.0986870 0.995119i \(-0.531464\pi\)
0.812454 + 0.583025i \(0.198131\pi\)
\(12\) 0 0
\(13\) 0.405512 + 1.11413i 0.112469 + 0.309005i 0.983138 0.182863i \(-0.0585365\pi\)
−0.870670 + 0.491868i \(0.836314\pi\)
\(14\) 0 0
\(15\) 2.42180 + 1.75527i 0.625306 + 0.453209i
\(16\) 0 0
\(17\) −5.05418 6.02334i −1.22582 1.46087i −0.843747 0.536742i \(-0.819655\pi\)
−0.382072 0.924132i \(-0.624789\pi\)
\(18\) 0 0
\(19\) 1.37777 + 4.13543i 0.316082 + 0.948732i
\(20\) 0 0
\(21\) 3.82215 0.957659i 0.834062 0.208978i
\(22\) 0 0
\(23\) 4.39335 + 0.774666i 0.916077 + 0.161529i 0.611761 0.791042i \(-0.290461\pi\)
0.304315 + 0.952571i \(0.401572\pi\)
\(24\) 0 0
\(25\) −1.89627 + 0.690186i −0.379254 + 0.138037i
\(26\) 0 0
\(27\) −3.84943 + 3.49026i −0.740822 + 0.671701i
\(28\) 0 0
\(29\) −3.61452 3.03294i −0.671200 0.563204i 0.242220 0.970221i \(-0.422124\pi\)
−0.913420 + 0.407018i \(0.866569\pi\)
\(30\) 0 0
\(31\) 2.36577 + 1.36588i 0.424905 + 0.245319i 0.697174 0.716902i \(-0.254441\pi\)
−0.272269 + 0.962221i \(0.587774\pi\)
\(32\) 0 0
\(33\) 4.55269 + 1.29978i 0.792522 + 0.226262i
\(34\) 0 0
\(35\) 1.34362 3.69157i 0.227113 0.623988i
\(36\) 0 0
\(37\) 11.4585i 1.88376i 0.335949 + 0.941880i \(0.390943\pi\)
−0.335949 + 0.941880i \(0.609057\pi\)
\(38\) 0 0
\(39\) −0.898099 + 1.84679i −0.143811 + 0.295722i
\(40\) 0 0
\(41\) −6.52964 2.37659i −1.01976 0.371162i −0.222586 0.974913i \(-0.571450\pi\)
−0.797173 + 0.603751i \(0.793672\pi\)
\(42\) 0 0
\(43\) −0.346684 1.96614i −0.0528688 0.299834i 0.946896 0.321541i \(-0.104201\pi\)
−0.999764 + 0.0217074i \(0.993090\pi\)
\(44\) 0 0
\(45\) 0.732842 + 5.12847i 0.109246 + 0.764507i
\(46\) 0 0
\(47\) −2.74268 + 3.26860i −0.400061 + 0.476774i −0.928039 0.372484i \(-0.878506\pi\)
0.527978 + 0.849258i \(0.322951\pi\)
\(48\) 0 0
\(49\) 0.912338 + 1.58022i 0.130334 + 0.225745i
\(50\) 0 0
\(51\) 1.40793 13.5460i 0.197149 1.89682i
\(52\) 0 0
\(53\) −0.919456 + 5.21449i −0.126297 + 0.716266i 0.854232 + 0.519892i \(0.174028\pi\)
−0.980529 + 0.196374i \(0.937083\pi\)
\(54\) 0 0
\(55\) 3.61603 3.03421i 0.487586 0.409133i
\(56\) 0 0
\(57\) −3.48703 + 6.69632i −0.461868 + 0.886949i
\(58\) 0 0
\(59\) 3.56459 2.99105i 0.464070 0.389401i −0.380556 0.924758i \(-0.624267\pi\)
0.844626 + 0.535357i \(0.179823\pi\)
\(60\) 0 0
\(61\) 2.38649 13.5345i 0.305559 1.73291i −0.315301 0.948992i \(-0.602105\pi\)
0.620860 0.783921i \(-0.286783\pi\)
\(62\) 0 0
\(63\) 5.79610 + 3.60322i 0.730240 + 0.453963i
\(64\) 0 0
\(65\) 1.02371 + 1.77312i 0.126976 + 0.219928i
\(66\) 0 0
\(67\) 1.79402 2.13803i 0.219175 0.261202i −0.645242 0.763978i \(-0.723243\pi\)
0.864417 + 0.502776i \(0.167688\pi\)
\(68\) 0 0
\(69\) 4.32822 + 6.40089i 0.521056 + 0.770577i
\(70\) 0 0
\(71\) −1.40518 7.96915i −0.166764 0.945764i −0.947227 0.320563i \(-0.896128\pi\)
0.780464 0.625201i \(-0.214983\pi\)
\(72\) 0 0
\(73\) −11.7489 4.27624i −1.37510 0.500496i −0.454412 0.890792i \(-0.650151\pi\)
−0.920690 + 0.390296i \(0.872373\pi\)
\(74\) 0 0
\(75\) −3.14326 1.52858i −0.362952 0.176505i
\(76\) 0 0
\(77\) 6.21858i 0.708673i
\(78\) 0 0
\(79\) −2.44606 + 6.72050i −0.275204 + 0.756116i 0.722686 + 0.691177i \(0.242907\pi\)
−0.997889 + 0.0649388i \(0.979315\pi\)
\(80\) 0 0
\(81\) −8.98088 0.586332i −0.997876 0.0651480i
\(82\) 0 0
\(83\) −8.58466 4.95636i −0.942289 0.544031i −0.0516118 0.998667i \(-0.516436\pi\)
−0.890677 + 0.454636i \(0.849769\pi\)
\(84\) 0 0
\(85\) −10.4014 8.72784i −1.12819 0.946667i
\(86\) 0 0
\(87\) −0.579502 8.15198i −0.0621292 0.873984i
\(88\) 0 0
\(89\) 4.25172 1.54750i 0.450682 0.164035i −0.106700 0.994291i \(-0.534028\pi\)
0.557381 + 0.830257i \(0.311806\pi\)
\(90\) 0 0
\(91\) 2.65627 + 0.468372i 0.278452 + 0.0490987i
\(92\) 0 0
\(93\) 1.14996 + 4.58967i 0.119246 + 0.475926i
\(94\) 0 0
\(95\) 3.58313 + 6.61965i 0.367621 + 0.679162i
\(96\) 0 0
\(97\) −4.14485 4.93964i −0.420846 0.501545i 0.513412 0.858142i \(-0.328381\pi\)
−0.934258 + 0.356597i \(0.883937\pi\)
\(98\) 0 0
\(99\) 3.86664 + 7.23176i 0.388612 + 0.726819i
\(100\) 0 0
\(101\) 1.50177 + 4.12608i 0.149432 + 0.410561i 0.991712 0.128479i \(-0.0410095\pi\)
−0.842280 + 0.539040i \(0.818787\pi\)
\(102\) 0 0
\(103\) 2.26117 1.30549i 0.222800 0.128633i −0.384446 0.923147i \(-0.625608\pi\)
0.607246 + 0.794514i \(0.292274\pi\)
\(104\) 0 0
\(105\) 6.21286 2.77475i 0.606314 0.270788i
\(106\) 0 0
\(107\) 3.44458 5.96619i 0.333000 0.576773i −0.650098 0.759850i \(-0.725272\pi\)
0.983099 + 0.183077i \(0.0586057\pi\)
\(108\) 0 0
\(109\) −5.43536 + 0.958401i −0.520614 + 0.0917982i −0.427779 0.903883i \(-0.640704\pi\)
−0.0928345 + 0.995682i \(0.529593\pi\)
\(110\) 0 0
\(111\) −14.2606 + 13.8031i −1.35355 + 1.31013i
\(112\) 0 0
\(113\) 0.374354 0.0352162 0.0176081 0.999845i \(-0.494395\pi\)
0.0176081 + 0.999845i \(0.494395\pi\)
\(114\) 0 0
\(115\) 7.70372 0.718375
\(116\) 0 0
\(117\) −3.38027 + 1.10696i −0.312506 + 0.102338i
\(118\) 0 0
\(119\) −17.6158 + 3.10615i −1.61484 + 0.284740i
\(120\) 0 0
\(121\) −1.76393 + 3.05522i −0.160357 + 0.277747i
\(122\) 0 0
\(123\) −4.90797 10.9893i −0.442537 0.990873i
\(124\) 0 0
\(125\) −10.4954 + 6.05951i −0.938735 + 0.541979i
\(126\) 0 0
\(127\) −3.52132 9.67473i −0.312466 0.858494i −0.992157 0.124995i \(-0.960108\pi\)
0.679691 0.733498i \(-0.262114\pi\)
\(128\) 0 0
\(129\) 2.02933 2.79992i 0.178672 0.246519i
\(130\) 0 0
\(131\) −1.53064 1.82414i −0.133732 0.159376i 0.695022 0.718988i \(-0.255394\pi\)
−0.828755 + 0.559612i \(0.810950\pi\)
\(132\) 0 0
\(133\) 9.71458 + 1.98950i 0.842361 + 0.172512i
\(134\) 0 0
\(135\) −5.49980 + 7.08992i −0.473348 + 0.610203i
\(136\) 0 0
\(137\) 5.85480 + 1.03236i 0.500209 + 0.0882004i 0.418060 0.908420i \(-0.362710\pi\)
0.0821498 + 0.996620i \(0.473821\pi\)
\(138\) 0 0
\(139\) −3.58667 + 1.30544i −0.304217 + 0.110726i −0.489618 0.871937i \(-0.662864\pi\)
0.185401 + 0.982663i \(0.440642\pi\)
\(140\) 0 0
\(141\) −7.37180 + 0.524042i −0.620818 + 0.0441323i
\(142\) 0 0
\(143\) 2.48272 + 2.08325i 0.207616 + 0.174210i
\(144\) 0 0
\(145\) −7.05641 4.07402i −0.586003 0.338329i
\(146\) 0 0
\(147\) −0.867624 + 3.03901i −0.0715605 + 0.250653i
\(148\) 0 0
\(149\) 4.43285 12.1792i 0.363153 0.997755i −0.614755 0.788718i \(-0.710745\pi\)
0.977908 0.209037i \(-0.0670328\pi\)
\(150\) 0 0
\(151\) 21.8171i 1.77545i 0.460374 + 0.887725i \(0.347715\pi\)
−0.460374 + 0.887725i \(0.652285\pi\)
\(152\) 0 0
\(153\) 18.5546 14.5656i 1.50005 1.17756i
\(154\) 0 0
\(155\) 4.43286 + 1.61343i 0.356056 + 0.129594i
\(156\) 0 0
\(157\) −0.487265 2.76342i −0.0388880 0.220545i 0.959170 0.282829i \(-0.0912728\pi\)
−0.998058 + 0.0622837i \(0.980162\pi\)
\(158\) 0 0
\(159\) −7.59726 + 5.13719i −0.602502 + 0.407406i
\(160\) 0 0
\(161\) 6.52350 7.77440i 0.514124 0.612709i
\(162\) 0 0
\(163\) −7.70552 13.3464i −0.603543 1.04537i −0.992280 0.124018i \(-0.960422\pi\)
0.388737 0.921349i \(-0.372912\pi\)
\(164\) 0 0
\(165\) 8.13216 + 0.845231i 0.633088 + 0.0658011i
\(166\) 0 0
\(167\) −2.70822 + 15.3591i −0.209569 + 1.18852i 0.680518 + 0.732731i \(0.261755\pi\)
−0.890087 + 0.455791i \(0.849356\pi\)
\(168\) 0 0
\(169\) 8.88172 7.45265i 0.683209 0.573281i
\(170\) 0 0
\(171\) −12.5344 + 3.72677i −0.958530 + 0.284993i
\(172\) 0 0
\(173\) −2.65226 + 2.22551i −0.201647 + 0.169202i −0.738020 0.674779i \(-0.764239\pi\)
0.536372 + 0.843982i \(0.319794\pi\)
\(174\) 0 0
\(175\) −0.797175 + 4.52100i −0.0602608 + 0.341756i
\(176\) 0 0
\(177\) 8.01647 + 0.833207i 0.602555 + 0.0626277i
\(178\) 0 0
\(179\) −12.7899 22.1528i −0.955965 1.65578i −0.732144 0.681150i \(-0.761480\pi\)
−0.223822 0.974630i \(-0.571853\pi\)
\(180\) 0 0
\(181\) 8.85306 10.5507i 0.658043 0.784225i −0.329061 0.944309i \(-0.606732\pi\)
0.987103 + 0.160084i \(0.0511766\pi\)
\(182\) 0 0
\(183\) 19.7191 13.3338i 1.45768 0.985666i
\(184\) 0 0
\(185\) 3.43600 + 19.4865i 0.252619 + 1.43268i
\(186\) 0 0
\(187\) −20.1972 7.35119i −1.47697 0.537572i
\(188\) 0 0
\(189\) 2.49775 + 11.5540i 0.181684 + 0.840430i
\(190\) 0 0
\(191\) 15.3025i 1.10725i 0.832766 + 0.553625i \(0.186756\pi\)
−0.832766 + 0.553625i \(0.813244\pi\)
\(192\) 0 0
\(193\) −7.10946 + 19.5331i −0.511750 + 1.40602i 0.367661 + 0.929960i \(0.380159\pi\)
−0.879411 + 0.476063i \(0.842064\pi\)
\(194\) 0 0
\(195\) −0.973539 + 3.40999i −0.0697166 + 0.244195i
\(196\) 0 0
\(197\) 5.61056 + 3.23926i 0.399736 + 0.230788i 0.686370 0.727253i \(-0.259203\pi\)
−0.286634 + 0.958040i \(0.592536\pi\)
\(198\) 0 0
\(199\) 18.1261 + 15.2096i 1.28492 + 1.07818i 0.992545 + 0.121875i \(0.0388906\pi\)
0.292377 + 0.956303i \(0.405554\pi\)
\(200\) 0 0
\(201\) 4.82199 0.342783i 0.340117 0.0241780i
\(202\) 0 0
\(203\) −10.0868 + 3.67128i −0.707952 + 0.257673i
\(204\) 0 0
\(205\) −11.8171 2.08367i −0.825342 0.145530i
\(206\) 0 0
\(207\) −2.75232 + 13.0973i −0.191299 + 0.910326i
\(208\) 0 0
\(209\) 8.91373 + 7.90671i 0.616575 + 0.546919i
\(210\) 0 0
\(211\) 10.4139 + 12.4108i 0.716925 + 0.854398i 0.994328 0.106356i \(-0.0339182\pi\)
−0.277403 + 0.960754i \(0.589474\pi\)
\(212\) 0 0
\(213\) 8.22524 11.3486i 0.563584 0.777594i
\(214\) 0 0
\(215\) −1.17916 3.23970i −0.0804178 0.220946i
\(216\) 0 0
\(217\) 5.38197 3.10728i 0.365352 0.210936i
\(218\) 0 0
\(219\) −8.83098 19.7732i −0.596742 1.33615i
\(220\) 0 0
\(221\) 4.66128 8.07357i 0.313551 0.543087i
\(222\) 0 0
\(223\) 27.2136 4.79849i 1.82236 0.321331i 0.845298 0.534295i \(-0.179423\pi\)
0.977060 + 0.212965i \(0.0683119\pi\)
\(224\) 0 0
\(225\) −1.88405 5.75328i −0.125604 0.383552i
\(226\) 0 0
\(227\) 18.7680 1.24568 0.622838 0.782351i \(-0.285979\pi\)
0.622838 + 0.782351i \(0.285979\pi\)
\(228\) 0 0
\(229\) 17.6129 1.16389 0.581947 0.813227i \(-0.302291\pi\)
0.581947 + 0.813227i \(0.302291\pi\)
\(230\) 0 0
\(231\) 7.73929 7.49104i 0.509208 0.492874i
\(232\) 0 0
\(233\) 23.7313 4.18447i 1.55469 0.274134i 0.670731 0.741701i \(-0.265981\pi\)
0.883957 + 0.467567i \(0.154869\pi\)
\(234\) 0 0
\(235\) −3.68412 + 6.38108i −0.240325 + 0.416256i
\(236\) 0 0
\(237\) −11.3105 + 5.05143i −0.734698 + 0.328126i
\(238\) 0 0
\(239\) −5.92338 + 3.41987i −0.383152 + 0.221213i −0.679189 0.733964i \(-0.737668\pi\)
0.296037 + 0.955176i \(0.404335\pi\)
\(240\) 0 0
\(241\) 4.39799 + 12.0834i 0.283299 + 0.778359i 0.996963 + 0.0778705i \(0.0248121\pi\)
−0.713664 + 0.700488i \(0.752966\pi\)
\(242\) 0 0
\(243\) −10.0888 11.8834i −0.647200 0.762320i
\(244\) 0 0
\(245\) 2.02539 + 2.41377i 0.129398 + 0.154210i
\(246\) 0 0
\(247\) −4.04872 + 3.21198i −0.257614 + 0.204373i
\(248\) 0 0
\(249\) −4.17287 16.6545i −0.264445 1.05544i
\(250\) 0 0
\(251\) 20.4899 + 3.61293i 1.29331 + 0.228046i 0.777624 0.628730i \(-0.216425\pi\)
0.515689 + 0.856776i \(0.327536\pi\)
\(252\) 0 0
\(253\) 11.4592 4.17079i 0.720431 0.262215i
\(254\) 0 0
\(255\) −1.66762 23.4588i −0.104430 1.46905i
\(256\) 0 0
\(257\) −14.1602 11.8818i −0.883287 0.741166i 0.0835651 0.996502i \(-0.473369\pi\)
−0.966852 + 0.255336i \(0.917814\pi\)
\(258\) 0 0
\(259\) 22.5749 + 13.0336i 1.40274 + 0.809870i
\(260\) 0 0
\(261\) 9.44741 10.5413i 0.584780 0.652488i
\(262\) 0 0
\(263\) 0.446655 1.22717i 0.0275419 0.0756707i −0.925160 0.379578i \(-0.876069\pi\)
0.952702 + 0.303907i \(0.0982914\pi\)
\(264\) 0 0
\(265\) 9.14359i 0.561686i
\(266\) 0 0
\(267\) 7.04765 + 3.42730i 0.431309 + 0.209747i
\(268\) 0 0
\(269\) 5.32181 + 1.93698i 0.324476 + 0.118100i 0.499122 0.866532i \(-0.333656\pi\)
−0.174646 + 0.984631i \(0.555878\pi\)
\(270\) 0 0
\(271\) −1.92559 10.9206i −0.116971 0.663378i −0.985755 0.168186i \(-0.946209\pi\)
0.868784 0.495192i \(-0.164902\pi\)
\(272\) 0 0
\(273\) 2.61689 + 3.87005i 0.158381 + 0.234226i
\(274\) 0 0
\(275\) −3.54572 + 4.22563i −0.213815 + 0.254815i
\(276\) 0 0
\(277\) −15.1132 26.1769i −0.908067 1.57282i −0.816747 0.576996i \(-0.804225\pi\)
−0.0913202 0.995822i \(-0.529109\pi\)
\(278\) 0 0
\(279\) −4.32677 + 6.95999i −0.259037 + 0.416684i
\(280\) 0 0
\(281\) −2.59528 + 14.7186i −0.154822 + 0.878037i 0.804127 + 0.594458i \(0.202633\pi\)
−0.958949 + 0.283580i \(0.908478\pi\)
\(282\) 0 0
\(283\) −8.57356 + 7.19407i −0.509645 + 0.427643i −0.861004 0.508598i \(-0.830164\pi\)
0.351359 + 0.936241i \(0.385720\pi\)
\(284\) 0 0
\(285\) −3.92212 + 12.4335i −0.232326 + 0.736499i
\(286\) 0 0
\(287\) −12.1095 + 10.1611i −0.714801 + 0.599789i
\(288\) 0 0
\(289\) −7.78384 + 44.1443i −0.457873 + 2.59673i
\(290\) 0 0
\(291\) 1.15462 11.1088i 0.0676850 0.651212i
\(292\) 0 0
\(293\) 14.9865 + 25.9574i 0.875520 + 1.51645i 0.856208 + 0.516632i \(0.172814\pi\)
0.0193121 + 0.999814i \(0.493852\pi\)
\(294\) 0 0
\(295\) 5.16511 6.15553i 0.300724 0.358389i
\(296\) 0 0
\(297\) −4.34239 + 13.5237i −0.251971 + 0.784727i
\(298\) 0 0
\(299\) 0.918472 + 5.20891i 0.0531166 + 0.301239i
\(300\) 0 0
\(301\) −4.26794 1.55340i −0.246000 0.0895366i
\(302\) 0 0
\(303\) −3.32602 + 6.83939i −0.191075 + 0.392913i
\(304\) 0 0
\(305\) 23.7327i 1.35893i
\(306\) 0 0
\(307\) −3.30994 + 9.09398i −0.188908 + 0.519021i −0.997602 0.0692087i \(-0.977953\pi\)
0.808694 + 0.588229i \(0.200175\pi\)
\(308\) 0 0
\(309\) 4.34859 + 1.24150i 0.247382 + 0.0706267i
\(310\) 0 0
\(311\) 18.3990 + 10.6227i 1.04331 + 0.602357i 0.920770 0.390106i \(-0.127562\pi\)
0.122543 + 0.992463i \(0.460895\pi\)
\(312\) 0 0
\(313\) −12.8192 10.7566i −0.724586 0.608000i 0.204064 0.978958i \(-0.434585\pi\)
−0.928650 + 0.370958i \(0.879029\pi\)
\(314\) 0 0
\(315\) 10.9374 + 4.38966i 0.616255 + 0.247329i
\(316\) 0 0
\(317\) −16.0860 + 5.85481i −0.903478 + 0.328839i −0.751646 0.659567i \(-0.770740\pi\)
−0.151832 + 0.988406i \(0.548517\pi\)
\(318\) 0 0
\(319\) −12.7020 2.23970i −0.711174 0.125399i
\(320\) 0 0
\(321\) 11.5746 2.90007i 0.646031 0.161866i
\(322\) 0 0
\(323\) 17.9456 29.2000i 0.998519 1.62473i
\(324\) 0 0
\(325\) −1.53792 1.83282i −0.0853085 0.101667i
\(326\) 0 0
\(327\) −7.74033 5.61003i −0.428041 0.310236i
\(328\) 0 0
\(329\) 3.31992 + 9.12142i 0.183033 + 0.502880i
\(330\) 0 0
\(331\) −1.99575 + 1.15225i −0.109696 + 0.0633333i −0.553844 0.832620i \(-0.686840\pi\)
0.444148 + 0.895953i \(0.353506\pi\)
\(332\) 0 0
\(333\) −34.3571 1.12034i −1.88276 0.0613942i
\(334\) 0 0
\(335\) 2.40983 4.17395i 0.131663 0.228047i
\(336\) 0 0
\(337\) −0.881977 + 0.155516i −0.0480443 + 0.00847151i −0.197619 0.980279i \(-0.563321\pi\)
0.149574 + 0.988750i \(0.452210\pi\)
\(338\) 0 0
\(339\) 0.450954 + 0.465899i 0.0244925 + 0.0253042i
\(340\) 0 0
\(341\) 7.46731 0.404378
\(342\) 0 0
\(343\) 20.0756 1.08398
\(344\) 0 0
\(345\) 9.28006 + 9.58760i 0.499622 + 0.516179i
\(346\) 0 0
\(347\) −20.9177 + 3.68835i −1.12292 + 0.198001i −0.704122 0.710079i \(-0.748659\pi\)
−0.418797 + 0.908080i \(0.637548\pi\)
\(348\) 0 0
\(349\) −1.90514 + 3.29981i −0.101980 + 0.176635i −0.912500 0.409076i \(-0.865851\pi\)
0.810520 + 0.585711i \(0.199184\pi\)
\(350\) 0 0
\(351\) −5.44960 2.87343i −0.290878 0.153373i
\(352\) 0 0
\(353\) −26.4683 + 15.2815i −1.40877 + 0.813352i −0.995269 0.0971532i \(-0.969026\pi\)
−0.413498 + 0.910505i \(0.635693\pi\)
\(354\) 0 0
\(355\) −4.77934 13.1311i −0.253661 0.696928i
\(356\) 0 0
\(357\) −25.0862 18.1819i −1.32770 0.962290i
\(358\) 0 0
\(359\) −10.6079 12.6420i −0.559862 0.667218i 0.409655 0.912240i \(-0.365649\pi\)
−0.969517 + 0.245023i \(0.921205\pi\)
\(360\) 0 0
\(361\) −15.2035 + 11.3953i −0.800185 + 0.599753i
\(362\) 0 0
\(363\) −5.92722 + 1.48509i −0.311098 + 0.0779472i
\(364\) 0 0
\(365\) −21.2627 3.74918i −1.11294 0.196241i
\(366\) 0 0
\(367\) −21.3217 + 7.76048i −1.11299 + 0.405094i −0.832088 0.554644i \(-0.812854\pi\)
−0.280898 + 0.959738i \(0.590632\pi\)
\(368\) 0 0
\(369\) 7.76442 19.3461i 0.404200 1.00712i
\(370\) 0 0
\(371\) 9.22748 + 7.74278i 0.479067 + 0.401985i
\(372\) 0 0
\(373\) 13.8874 + 8.01792i 0.719064 + 0.415152i 0.814408 0.580292i \(-0.197062\pi\)
−0.0953438 + 0.995444i \(0.530395\pi\)
\(374\) 0 0
\(375\) −20.1843 5.76253i −1.04231 0.297576i
\(376\) 0 0
\(377\) 1.91338 5.25696i 0.0985439 0.270747i
\(378\) 0 0
\(379\) 12.2124i 0.627310i −0.949537 0.313655i \(-0.898446\pi\)
0.949537 0.313655i \(-0.101554\pi\)
\(380\) 0 0
\(381\) 7.79877 16.0368i 0.399543 0.821591i
\(382\) 0 0
\(383\) −10.3260 3.75835i −0.527633 0.192043i 0.0644484 0.997921i \(-0.479471\pi\)
−0.592081 + 0.805879i \(0.701693\pi\)
\(384\) 0 0
\(385\) −1.86474 10.5754i −0.0950358 0.538975i
\(386\) 0 0
\(387\) 5.92919 0.847262i 0.301398 0.0430687i
\(388\) 0 0
\(389\) −2.99194 + 3.56565i −0.151697 + 0.180786i −0.836541 0.547904i \(-0.815426\pi\)
0.684844 + 0.728690i \(0.259870\pi\)
\(390\) 0 0
\(391\) −17.5387 30.3779i −0.886970 1.53628i
\(392\) 0 0
\(393\) 0.426384 4.10234i 0.0215082 0.206936i
\(394\) 0 0
\(395\) −2.14458 + 12.1625i −0.107906 + 0.611963i
\(396\) 0 0
\(397\) 25.5841 21.4676i 1.28403 1.07743i 0.291355 0.956615i \(-0.405894\pi\)
0.992675 0.120814i \(-0.0385506\pi\)
\(398\) 0 0
\(399\) 9.22637 + 14.4868i 0.461896 + 0.725247i
\(400\) 0 0
\(401\) −6.59413 + 5.53314i −0.329295 + 0.276312i −0.792413 0.609985i \(-0.791175\pi\)
0.463117 + 0.886297i \(0.346731\pi\)
\(402\) 0 0
\(403\) −0.562424 + 3.18966i −0.0280163 + 0.158888i
\(404\) 0 0
\(405\) −15.4489 + 1.69593i −0.767662 + 0.0842713i
\(406\) 0 0
\(407\) 15.6610 + 27.1256i 0.776286 + 1.34457i
\(408\) 0 0
\(409\) 24.7880 29.5412i 1.22569 1.46072i 0.381757 0.924263i \(-0.375319\pi\)
0.843930 0.536454i \(-0.180237\pi\)
\(410\) 0 0
\(411\) 5.76800 + 8.53015i 0.284515 + 0.420761i
\(412\) 0 0
\(413\) −1.83821 10.4250i −0.0904523 0.512981i
\(414\) 0 0
\(415\) −16.0855 5.85464i −0.789606 0.287393i
\(416\) 0 0
\(417\) −5.94526 2.89120i −0.291140 0.141583i
\(418\) 0 0
\(419\) 13.5426i 0.661599i 0.943701 + 0.330800i \(0.107318\pi\)
−0.943701 + 0.330800i \(0.892682\pi\)
\(420\) 0 0
\(421\) 3.77353 10.3677i 0.183911 0.505291i −0.813137 0.582072i \(-0.802242\pi\)
0.997048 + 0.0767815i \(0.0244644\pi\)
\(422\) 0 0
\(423\) −9.53242 8.54325i −0.463482 0.415387i
\(424\) 0 0
\(425\) 13.7413 + 7.93356i 0.666552 + 0.384834i
\(426\) 0 0
\(427\) −23.9504 20.0968i −1.15904 0.972551i
\(428\) 0 0
\(429\) 0.398045 + 5.59938i 0.0192178 + 0.270341i
\(430\) 0 0
\(431\) 28.3609 10.3225i 1.36610 0.497219i 0.448163 0.893952i \(-0.352078\pi\)
0.917934 + 0.396733i \(0.129856\pi\)
\(432\) 0 0
\(433\) 5.90393 + 1.04102i 0.283725 + 0.0500284i 0.313700 0.949522i \(-0.398432\pi\)
−0.0299746 + 0.999551i \(0.509543\pi\)
\(434\) 0 0
\(435\) −3.43001 13.6897i −0.164456 0.656369i
\(436\) 0 0
\(437\) 2.84944 + 19.2357i 0.136307 + 0.920168i
\(438\) 0 0
\(439\) 9.38099 + 11.1798i 0.447730 + 0.533584i 0.941950 0.335753i \(-0.108991\pi\)
−0.494220 + 0.869337i \(0.664546\pi\)
\(440\) 0 0
\(441\) −4.82733 + 2.58106i −0.229873 + 0.122907i
\(442\) 0 0
\(443\) 10.1225 + 27.8113i 0.480934 + 1.32135i 0.908694 + 0.417462i \(0.137080\pi\)
−0.427761 + 0.903892i \(0.640697\pi\)
\(444\) 0 0
\(445\) 6.76653 3.90666i 0.320764 0.185193i
\(446\) 0 0
\(447\) 20.4974 9.15440i 0.969493 0.432988i
\(448\) 0 0
\(449\) 2.00340 3.46999i 0.0945464 0.163759i −0.814873 0.579640i \(-0.803193\pi\)
0.909419 + 0.415881i \(0.136527\pi\)
\(450\) 0 0
\(451\) −18.7058 + 3.29835i −0.880824 + 0.155313i
\(452\) 0 0
\(453\) −27.1523 + 26.2813i −1.27573 + 1.23481i
\(454\) 0 0
\(455\) 4.65775 0.218359
\(456\) 0 0
\(457\) −24.2985 −1.13663 −0.568317 0.822810i \(-0.692405\pi\)
−0.568317 + 0.822810i \(0.692405\pi\)
\(458\) 0 0
\(459\) 40.4787 + 5.54598i 1.88938 + 0.258864i
\(460\) 0 0
\(461\) −0.557098 + 0.0982314i −0.0259466 + 0.00457509i −0.186606 0.982435i \(-0.559749\pi\)
0.160660 + 0.987010i \(0.448638\pi\)
\(462\) 0 0
\(463\) 11.3553 19.6679i 0.527724 0.914045i −0.471753 0.881731i \(-0.656379\pi\)
0.999478 0.0323149i \(-0.0102879\pi\)
\(464\) 0 0
\(465\) 3.33193 + 7.46045i 0.154515 + 0.345970i
\(466\) 0 0
\(467\) −15.2952 + 8.83071i −0.707779 + 0.408636i −0.810238 0.586101i \(-0.800662\pi\)
0.102459 + 0.994737i \(0.467329\pi\)
\(468\) 0 0
\(469\) −2.17161 5.96644i −0.100275 0.275504i
\(470\) 0 0
\(471\) 2.85222 3.93530i 0.131424 0.181329i
\(472\) 0 0
\(473\) −3.50795 4.18061i −0.161296 0.192225i
\(474\) 0 0
\(475\) −5.46684 6.89098i −0.250836 0.316180i
\(476\) 0 0
\(477\) −15.5453 3.26674i −0.711769 0.149574i
\(478\) 0 0
\(479\) −18.8260 3.31954i −0.860183 0.151674i −0.273879 0.961764i \(-0.588307\pi\)
−0.586305 + 0.810091i \(0.699418\pi\)
\(480\) 0 0
\(481\) −12.7663 + 4.64654i −0.582092 + 0.211864i
\(482\) 0 0
\(483\) 17.5339 1.24644i 0.797821 0.0567150i
\(484\) 0 0
\(485\) −8.53005 7.15756i −0.387330 0.325008i
\(486\) 0 0
\(487\) −0.536606 0.309810i −0.0243159 0.0140388i 0.487793 0.872959i \(-0.337802\pi\)
−0.512109 + 0.858921i \(0.671136\pi\)
\(488\) 0 0
\(489\) 7.32787 25.6672i 0.331378 1.16071i
\(490\) 0 0
\(491\) −10.0111 + 27.5052i −0.451793 + 1.24129i 0.479667 + 0.877450i \(0.340757\pi\)
−0.931461 + 0.363842i \(0.881465\pi\)
\(492\) 0 0
\(493\) 37.1005i 1.67092i
\(494\) 0 0
\(495\) 8.74425 + 11.1390i 0.393025 + 0.500661i
\(496\) 0 0
\(497\) −17.2988 6.29623i −0.775956 0.282425i
\(498\) 0 0
\(499\) −1.69657 9.62174i −0.0759490 0.430728i −0.998945 0.0459190i \(-0.985378\pi\)
0.922996 0.384809i \(-0.125733\pi\)
\(500\) 0 0
\(501\) −22.3774 + 15.1314i −0.999750 + 0.676021i
\(502\) 0 0
\(503\) 15.8295 18.8649i 0.705803 0.841143i −0.287367 0.957821i \(-0.592780\pi\)
0.993170 + 0.116677i \(0.0372244\pi\)
\(504\) 0 0
\(505\) 3.79121 + 6.56657i 0.168707 + 0.292209i
\(506\) 0 0
\(507\) 19.9743 + 2.07606i 0.887088 + 0.0922011i
\(508\) 0 0
\(509\) 4.54614 25.7825i 0.201504 1.14279i −0.701342 0.712825i \(-0.747416\pi\)
0.902847 0.429963i \(-0.141473\pi\)
\(510\) 0 0
\(511\) −21.7888 + 18.2830i −0.963879 + 0.808791i
\(512\) 0 0
\(513\) −19.7373 11.1103i −0.871425 0.490530i
\(514\) 0 0
\(515\) 3.45392 2.89818i 0.152198 0.127709i
\(516\) 0 0
\(517\) −2.02535 + 11.4863i −0.0890748 + 0.505169i
\(518\) 0 0
\(519\) −5.96471 0.619953i −0.261822 0.0272129i
\(520\) 0 0
\(521\) −2.06261 3.57254i −0.0903645 0.156516i 0.817300 0.576212i \(-0.195470\pi\)
−0.907665 + 0.419696i \(0.862137\pi\)
\(522\) 0 0
\(523\) 19.4644 23.1968i 0.851119 1.01432i −0.148558 0.988904i \(-0.547463\pi\)
0.999677 0.0254208i \(-0.00809255\pi\)
\(524\) 0 0
\(525\) −6.58688 + 4.45398i −0.287475 + 0.194388i
\(526\) 0 0
\(527\) −3.72988 21.1532i −0.162476 0.921449i
\(528\) 0 0
\(529\) −2.91152 1.05971i −0.126588 0.0460742i
\(530\) 0 0
\(531\) 8.61985 + 10.9805i 0.374070 + 0.476515i
\(532\) 0 0
\(533\) 8.23863i 0.356855i
\(534\) 0 0
\(535\) 4.06887 11.1791i 0.175913 0.483316i
\(536\) 0 0
\(537\) 12.1631 42.6034i 0.524877 1.83847i
\(538\) 0 0
\(539\) 4.31955 + 2.49390i 0.186056 + 0.107420i
\(540\) 0 0
\(541\) 15.8434 + 13.2942i 0.681162 + 0.571563i 0.916346 0.400388i \(-0.131125\pi\)
−0.235183 + 0.971951i \(0.575569\pi\)
\(542\) 0 0
\(543\) 23.7953 1.69155i 1.02116 0.0725912i
\(544\) 0 0
\(545\) −8.95610 + 3.25975i −0.383637 + 0.139633i
\(546\) 0 0
\(547\) −21.7347 3.83242i −0.929310 0.163862i −0.311550 0.950230i \(-0.600848\pi\)
−0.617759 + 0.786367i \(0.711959\pi\)
\(548\) 0 0
\(549\) 40.3485 + 8.47900i 1.72203 + 0.361875i
\(550\) 0 0
\(551\) 7.56255 19.1263i 0.322175 0.814807i
\(552\) 0 0
\(553\) 10.4581 + 12.4635i 0.444723 + 0.530000i
\(554\) 0 0
\(555\) −20.1127 + 27.7501i −0.853737 + 1.17793i
\(556\) 0 0
\(557\) −4.12552 11.3348i −0.174804 0.480269i 0.821090 0.570799i \(-0.193366\pi\)
−0.995894 + 0.0905293i \(0.971144\pi\)
\(558\) 0 0
\(559\) 2.04996 1.18355i 0.0867041 0.0500587i
\(560\) 0 0
\(561\) −15.1811 33.9917i −0.640948 1.43513i
\(562\) 0 0
\(563\) 17.3789 30.1011i 0.732434 1.26861i −0.223407 0.974725i \(-0.571718\pi\)
0.955840 0.293887i \(-0.0949489\pi\)
\(564\) 0 0
\(565\) 0.636633 0.112256i 0.0267834 0.00472263i
\(566\) 0 0
\(567\) −11.3706 + 17.0268i −0.477521 + 0.715056i
\(568\) 0 0
\(569\) 0.922002 0.0386523 0.0193262 0.999813i \(-0.493848\pi\)
0.0193262 + 0.999813i \(0.493848\pi\)
\(570\) 0 0
\(571\) 31.1356 1.30298 0.651492 0.758655i \(-0.274143\pi\)
0.651492 + 0.758655i \(0.274143\pi\)
\(572\) 0 0
\(573\) −19.0446 + 18.4337i −0.795600 + 0.770080i
\(574\) 0 0
\(575\) −8.86565 + 1.56325i −0.369723 + 0.0651921i
\(576\) 0 0
\(577\) −11.5819 + 20.0604i −0.482159 + 0.835124i −0.999790 0.0204802i \(-0.993481\pi\)
0.517631 + 0.855604i \(0.326814\pi\)
\(578\) 0 0
\(579\) −32.8740 + 14.6819i −1.36620 + 0.610161i
\(580\) 0 0
\(581\) −19.5295 + 11.2754i −0.810222 + 0.467782i
\(582\) 0 0
\(583\) 4.95034 + 13.6009i 0.205022 + 0.563293i
\(584\) 0 0
\(585\) −5.41663 + 2.89614i −0.223950 + 0.119741i
\(586\) 0 0
\(587\) −26.7727 31.9065i −1.10503 1.31692i −0.943990 0.329974i \(-0.892960\pi\)
−0.161038 0.986948i \(-0.551484\pi\)
\(588\) 0 0
\(589\) −2.38901 + 11.6653i −0.0984373 + 0.480661i
\(590\) 0 0
\(591\) 2.72721 + 10.8847i 0.112182 + 0.447735i
\(592\) 0 0
\(593\) −37.1913 6.55783i −1.52726 0.269298i −0.653981 0.756511i \(-0.726902\pi\)
−0.873283 + 0.487214i \(0.838013\pi\)
\(594\) 0 0
\(595\) −29.0264 + 10.5648i −1.18997 + 0.433113i
\(596\) 0 0
\(597\) 2.90608 + 40.8804i 0.118938 + 1.67312i
\(598\) 0 0
\(599\) 36.3437 + 30.4960i 1.48496 + 1.24603i 0.900681 + 0.434481i \(0.143068\pi\)
0.584282 + 0.811551i \(0.301376\pi\)
\(600\) 0 0
\(601\) 28.2909 + 16.3338i 1.15401 + 0.666268i 0.949861 0.312672i \(-0.101224\pi\)
0.204149 + 0.978940i \(0.434557\pi\)
\(602\) 0 0
\(603\) 6.23528 + 5.58825i 0.253920 + 0.227571i
\(604\) 0 0
\(605\) −2.08362 + 5.72471i −0.0847113 + 0.232742i
\(606\) 0 0
\(607\) 12.9568i 0.525898i −0.964810 0.262949i \(-0.915305\pi\)
0.964810 0.262949i \(-0.0846951\pi\)
\(608\) 0 0
\(609\) −16.7198 8.13090i −0.677520 0.329481i
\(610\) 0 0
\(611\) −4.75385 1.73026i −0.192320 0.0699987i
\(612\) 0 0
\(613\) −2.25785 12.8049i −0.0911939 0.517186i −0.995847 0.0910384i \(-0.970981\pi\)
0.904653 0.426148i \(-0.140130\pi\)
\(614\) 0 0
\(615\) −11.6419 17.2169i −0.469447 0.694253i
\(616\) 0 0
\(617\) −11.8376 + 14.1075i −0.476565 + 0.567948i −0.949748 0.313016i \(-0.898661\pi\)
0.473183 + 0.880964i \(0.343105\pi\)
\(618\) 0 0
\(619\) 22.3471 + 38.7063i 0.898205 + 1.55574i 0.829787 + 0.558080i \(0.188462\pi\)
0.0684178 + 0.997657i \(0.478205\pi\)
\(620\) 0 0
\(621\) −19.6157 + 12.3519i −0.787149 + 0.495665i
\(622\) 0 0
\(623\) 1.78738 10.1368i 0.0716101 0.406121i
\(624\) 0 0
\(625\) −8.30235 + 6.96650i −0.332094 + 0.278660i
\(626\) 0 0
\(627\) 0.897424 + 20.6181i 0.0358397 + 0.823408i
\(628\) 0 0
\(629\) 69.0182 57.9132i 2.75194 2.30915i
\(630\) 0 0
\(631\) 0.664942 3.77107i 0.0264709 0.150124i −0.968708 0.248205i \(-0.920159\pi\)
0.995178 + 0.0980810i \(0.0312704\pi\)
\(632\) 0 0
\(633\) −2.90098 + 27.9110i −0.115304 + 1.10936i
\(634\) 0 0
\(635\) −8.88954 15.3971i −0.352771 0.611017i
\(636\) 0 0
\(637\) −1.39061 + 1.65726i −0.0550979 + 0.0656631i
\(638\) 0 0
\(639\) 24.0321 3.43411i 0.950697 0.135851i
\(640\) 0 0
\(641\) 4.27908 + 24.2679i 0.169014 + 0.958523i 0.944829 + 0.327564i \(0.106228\pi\)
−0.775816 + 0.630960i \(0.782661\pi\)
\(642\) 0 0
\(643\) 43.1808 + 15.7165i 1.70288 + 0.619799i 0.996149 0.0876796i \(-0.0279452\pi\)
0.706735 + 0.707479i \(0.250167\pi\)
\(644\) 0 0
\(645\) 2.61151 5.37013i 0.102828 0.211449i
\(646\) 0 0
\(647\) 33.9965i 1.33654i −0.743918 0.668271i \(-0.767035\pi\)
0.743918 0.668271i \(-0.232965\pi\)
\(648\) 0 0
\(649\) 4.35041 11.9526i 0.170768 0.469182i
\(650\) 0 0
\(651\) 10.3504 + 2.95499i 0.405663 + 0.115815i
\(652\) 0 0
\(653\) 16.5918 + 9.57930i 0.649289 + 0.374867i 0.788184 0.615440i \(-0.211022\pi\)
−0.138895 + 0.990307i \(0.544355\pi\)
\(654\) 0 0
\(655\) −3.15003 2.64319i −0.123082 0.103278i
\(656\) 0 0
\(657\) 13.9706 34.8098i 0.545046 1.35806i
\(658\) 0 0
\(659\) −36.5442 + 13.3010i −1.42356 + 0.518133i −0.935078 0.354442i \(-0.884671\pi\)
−0.488480 + 0.872575i \(0.662449\pi\)
\(660\) 0 0
\(661\) 16.1892 + 2.85460i 0.629688 + 0.111031i 0.479379 0.877608i \(-0.340862\pi\)
0.150309 + 0.988639i \(0.451973\pi\)
\(662\) 0 0
\(663\) 15.6630 3.92443i 0.608300 0.152412i
\(664\) 0 0
\(665\) 17.1174 + 0.470323i 0.663784 + 0.0182383i
\(666\) 0 0
\(667\) −13.5303 16.1248i −0.523897 0.624356i
\(668\) 0 0
\(669\) 38.7540 + 28.0881i 1.49832 + 1.08595i
\(670\) 0 0
\(671\) −12.8489 35.3019i −0.496025 1.36282i
\(672\) 0 0
\(673\) −2.52834 + 1.45974i −0.0974602 + 0.0562687i −0.547938 0.836519i \(-0.684587\pi\)
0.450478 + 0.892788i \(0.351254\pi\)
\(674\) 0 0
\(675\) 4.89063 9.27530i 0.188240 0.357007i
\(676\) 0 0
\(677\) 1.71065 2.96294i 0.0657457 0.113875i −0.831279 0.555856i \(-0.812391\pi\)
0.897025 + 0.441981i \(0.145724\pi\)
\(678\) 0 0
\(679\) −14.4465 + 2.54730i −0.554405 + 0.0977565i
\(680\) 0 0
\(681\) 22.6083 + 23.3576i 0.866354 + 0.895065i
\(682\) 0 0
\(683\) 36.0864 1.38081 0.690404 0.723424i \(-0.257433\pi\)
0.690404 + 0.723424i \(0.257433\pi\)
\(684\) 0 0
\(685\) 10.2664 0.392258
\(686\) 0 0
\(687\) 21.2169 + 21.9200i 0.809475 + 0.836301i
\(688\) 0 0
\(689\) −6.18249 + 1.09014i −0.235534 + 0.0415310i
\(690\) 0 0
\(691\) −1.37889 + 2.38830i −0.0524553 + 0.0908553i −0.891061 0.453884i \(-0.850038\pi\)
0.838605 + 0.544739i \(0.183371\pi\)
\(692\) 0 0
\(693\) 18.6458 + 0.608015i 0.708296 + 0.0230966i
\(694\) 0 0
\(695\) −5.70811 + 3.29558i −0.216521 + 0.125008i
\(696\) 0 0
\(697\) 18.6869 + 51.3420i 0.707819 + 1.94472i
\(698\) 0 0
\(699\) 33.7950 + 24.4939i 1.27824 + 0.926445i
\(700\) 0 0
\(701\) −4.56617 5.44174i −0.172462 0.205532i 0.672889 0.739743i \(-0.265053\pi\)
−0.845351 + 0.534211i \(0.820609\pi\)
\(702\) 0 0
\(703\) −47.3857 + 15.7871i −1.78718 + 0.595422i
\(704\) 0 0
\(705\) −12.3795 + 3.10174i −0.466239 + 0.116818i
\(706\) 0 0
\(707\) 9.83722 + 1.73457i 0.369967 + 0.0652351i
\(708\) 0 0
\(709\) 30.5071 11.1037i 1.14572 0.417008i 0.301743 0.953389i \(-0.402431\pi\)
0.843975 + 0.536382i \(0.180209\pi\)
\(710\) 0 0
\(711\) −19.9116 7.99138i −0.746745 0.299700i
\(712\) 0 0
\(713\) 9.33555 + 7.83346i 0.349619 + 0.293365i
\(714\) 0 0
\(715\) 4.84686 + 2.79834i 0.181262 + 0.104652i
\(716\) 0 0
\(717\) −11.3916 3.25226i −0.425427 0.121458i
\(718\) 0 0
\(719\) 10.5400 28.9585i 0.393076 1.07997i −0.572513 0.819896i \(-0.694031\pi\)
0.965589 0.260072i \(-0.0837464\pi\)
\(720\) 0 0
\(721\) 5.93979i 0.221209i
\(722\) 0 0
\(723\) −9.74036 + 20.0294i −0.362248 + 0.744901i
\(724\) 0 0
\(725\) 8.94741 + 3.25659i 0.332299 + 0.120947i
\(726\) 0 0
\(727\) 0.123372 + 0.699679i 0.00457562 + 0.0259496i 0.987010 0.160658i \(-0.0513617\pi\)
−0.982434 + 0.186608i \(0.940251\pi\)
\(728\) 0 0
\(729\) 2.63616 26.8710i 0.0976354 0.995222i
\(730\) 0 0
\(731\) −10.0905 + 12.0254i −0.373212 + 0.444777i
\(732\) 0 0
\(733\) 5.28122 + 9.14735i 0.195066 + 0.337865i 0.946922 0.321462i \(-0.104174\pi\)
−0.751856 + 0.659328i \(0.770841\pi\)
\(734\) 0 0
\(735\) −0.564207 + 5.42837i −0.0208111 + 0.200228i
\(736\) 0 0
\(737\) 1.32481 7.51336i 0.0488000 0.276758i
\(738\) 0 0
\(739\) 24.9740 20.9557i 0.918682 0.770866i −0.0550684 0.998483i \(-0.517538\pi\)
0.973751 + 0.227617i \(0.0730933\pi\)
\(740\) 0 0
\(741\) −8.87462 1.16958i −0.326017 0.0429657i
\(742\) 0 0
\(743\) −23.8083 + 19.9775i −0.873442 + 0.732905i −0.964820 0.262912i \(-0.915317\pi\)
0.0913781 + 0.995816i \(0.470873\pi\)
\(744\) 0 0
\(745\) 3.88649 22.0414i 0.142390 0.807534i
\(746\) 0 0
\(747\) 15.7005 25.2557i 0.574452 0.924058i
\(748\) 0 0
\(749\) −7.83619 13.5727i −0.286328 0.495935i
\(750\) 0 0
\(751\) 4.33202 5.16270i 0.158078 0.188389i −0.681192 0.732104i \(-0.738538\pi\)
0.839270 + 0.543715i \(0.182983\pi\)
\(752\) 0 0
\(753\) 20.1862 + 29.8528i 0.735625 + 1.08790i
\(754\) 0 0
\(755\) 6.54219 + 37.1026i 0.238095 + 1.35030i
\(756\) 0 0
\(757\) −5.03676 1.83323i −0.183064 0.0666300i 0.248862 0.968539i \(-0.419944\pi\)
−0.431926 + 0.901909i \(0.642166\pi\)
\(758\) 0 0
\(759\) 18.9947 + 9.23718i 0.689463 + 0.335289i
\(760\) 0 0
\(761\) 20.3885i 0.739083i −0.929214 0.369541i \(-0.879515\pi\)
0.929214 0.369541i \(-0.120485\pi\)
\(762\) 0 0
\(763\) −4.29435 + 11.7986i −0.155466 + 0.427139i
\(764\) 0 0
\(765\) 27.1866 30.3344i 0.982934 1.09674i
\(766\) 0 0
\(767\) 4.77791 + 2.75853i 0.172520 + 0.0996047i
\(768\) 0 0
\(769\) −13.9535 11.7084i −0.503177 0.422216i 0.355543 0.934660i \(-0.384296\pi\)
−0.858721 + 0.512444i \(0.828740\pi\)
\(770\) 0 0
\(771\) −2.27024 31.9360i −0.0817609 1.15015i
\(772\) 0 0
\(773\) −36.5716 + 13.3110i −1.31539 + 0.478763i −0.901978 0.431781i \(-0.857885\pi\)
−0.413412 + 0.910544i \(0.635663\pi\)
\(774\) 0 0
\(775\) −5.42885 0.957253i −0.195010 0.0343855i
\(776\) 0 0
\(777\) 10.9733 + 43.7960i 0.393665 + 1.57117i
\(778\) 0 0
\(779\) 0.831907 30.2772i 0.0298062 1.08479i
\(780\) 0 0
\(781\) −14.2184 16.9448i −0.508774 0.606333i
\(782\) 0 0
\(783\) 24.4996 0.940533i 0.875544 0.0336119i
\(784\) 0 0
\(785\) −1.65731 4.55341i −0.0591518 0.162518i
\(786\) 0 0
\(787\) 8.63577 4.98587i 0.307832 0.177727i −0.338124 0.941102i \(-0.609792\pi\)
0.645956 + 0.763375i \(0.276459\pi\)
\(788\) 0 0
\(789\) 2.06532 0.922399i 0.0735273 0.0328383i
\(790\) 0 0
\(791\) 0.425815 0.737533i 0.0151402 0.0262237i
\(792\) 0 0
\(793\) 16.0470 2.82952i 0.569845 0.100479i
\(794\) 0 0
\(795\) −11.3796 + 11.0146i −0.403592 + 0.390646i
\(796\) 0 0
\(797\) −11.6810 −0.413764 −0.206882 0.978366i \(-0.566332\pi\)
−0.206882 + 0.978366i \(0.566332\pi\)
\(798\) 0 0
\(799\) 33.5499 1.18691
\(800\) 0 0
\(801\) 4.22433 + 12.8997i 0.149259 + 0.455788i
\(802\) 0 0
\(803\) −33.6577 + 5.93476i −1.18775 + 0.209433i
\(804\) 0 0
\(805\) 8.76272 15.1775i 0.308845 0.534936i
\(806\) 0 0
\(807\) 4.00011 + 8.95655i 0.140811 + 0.315285i
\(808\) 0 0
\(809\) 15.8409 9.14576i 0.556937 0.321548i −0.194978 0.980808i \(-0.562464\pi\)
0.751915 + 0.659260i \(0.229130\pi\)
\(810\) 0 0
\(811\) −9.54842 26.2341i −0.335290 0.921203i −0.986711 0.162486i \(-0.948049\pi\)
0.651420 0.758717i \(-0.274173\pi\)
\(812\) 0 0
\(813\) 11.2715 15.5516i 0.395309 0.545420i
\(814\) 0 0
\(815\) −17.1063 20.3865i −0.599207 0.714107i
\(816\) 0 0
\(817\) 7.65319 4.14257i 0.267751 0.144930i
\(818\) 0 0
\(819\) −1.66408 + 7.91877i −0.0581477 + 0.276704i
\(820\) 0 0
\(821\) 45.1994 + 7.96987i 1.57747 + 0.278150i 0.892714 0.450623i \(-0.148798\pi\)
0.684755 + 0.728773i \(0.259909\pi\)
\(822\) 0 0
\(823\) −49.9436 + 18.1780i −1.74092 + 0.633645i −0.999309 0.0371801i \(-0.988162\pi\)
−0.741616 + 0.670825i \(0.765940\pi\)
\(824\) 0 0
\(825\) −9.53023 + 0.677478i −0.331800 + 0.0235868i
\(826\) 0 0
\(827\) −17.4610 14.6515i −0.607179 0.509484i 0.286565 0.958061i \(-0.407487\pi\)
−0.893744 + 0.448577i \(0.851931\pi\)
\(828\) 0 0
\(829\) −7.21681 4.16663i −0.250650 0.144713i 0.369412 0.929266i \(-0.379559\pi\)
−0.620062 + 0.784553i \(0.712893\pi\)
\(830\) 0 0
\(831\) 14.3725 50.3423i 0.498578 1.74636i
\(832\) 0 0
\(833\) 4.90705 13.4820i 0.170019 0.467124i
\(834\) 0 0
\(835\) 26.9321i 0.932024i
\(836\) 0 0
\(837\) −13.8741 + 2.99931i −0.479560 + 0.103671i
\(838\) 0 0
\(839\) −26.9124 9.79530i −0.929118 0.338171i −0.167258 0.985913i \(-0.553491\pi\)
−0.761860 + 0.647742i \(0.775714\pi\)
\(840\) 0 0
\(841\) −1.16978 6.63413i −0.0403371 0.228763i
\(842\) 0 0
\(843\) −21.4442 + 14.5004i −0.738579 + 0.499420i
\(844\) 0 0
\(845\) 12.8697 15.3375i 0.442729 0.527624i
\(846\) 0 0
\(847\) 4.01283 + 6.95042i 0.137882 + 0.238819i
\(848\) 0 0
\(849\) −19.2812 2.00403i −0.661730 0.0687781i
\(850\) 0 0
\(851\) −8.87648 + 50.3410i −0.304282 + 1.72567i
\(852\) 0 0
\(853\) −3.37434 + 2.83141i −0.115535 + 0.0969457i −0.698725 0.715390i \(-0.746249\pi\)
0.583190 + 0.812336i \(0.301804\pi\)
\(854\) 0 0
\(855\) −20.1987 + 10.0965i −0.690782 + 0.345291i
\(856\) 0 0
\(857\) 24.9404 20.9275i 0.851947 0.714869i −0.108270 0.994122i \(-0.534531\pi\)
0.960218 + 0.279253i \(0.0900867\pi\)
\(858\) 0 0
\(859\) 2.11844 12.0143i 0.0722802 0.409921i −0.927103 0.374806i \(-0.877709\pi\)
0.999383 0.0351148i \(-0.0111797\pi\)
\(860\) 0 0
\(861\) −27.2333 2.83054i −0.928107 0.0964645i
\(862\) 0 0
\(863\) 1.53095 + 2.65169i 0.0521143 + 0.0902646i 0.890906 0.454188i \(-0.150071\pi\)
−0.838791 + 0.544453i \(0.816737\pi\)
\(864\) 0 0
\(865\) −3.84313 + 4.58007i −0.130670 + 0.155727i
\(866\) 0 0
\(867\) −64.3161 + 43.4899i −2.18429 + 1.47699i
\(868\) 0 0
\(869\) 3.39476 + 19.2526i 0.115159 + 0.653100i
\(870\) 0 0
\(871\) 3.10955 + 1.13178i 0.105363 + 0.0383491i
\(872\) 0 0
\(873\) 15.2163 11.9450i 0.514994 0.404277i
\(874\) 0 0
\(875\) 27.5700i 0.932035i
\(876\) 0 0
\(877\) 1.79442 4.93014i 0.0605934 0.166479i −0.905702 0.423915i \(-0.860655\pi\)
0.966295 + 0.257436i \(0.0828777\pi\)
\(878\) 0 0
\(879\) −14.2520 + 49.9201i −0.480708 + 1.68376i
\(880\) 0 0
\(881\) −40.9801 23.6599i −1.38065 0.797121i −0.388417 0.921484i \(-0.626978\pi\)
−0.992237 + 0.124363i \(0.960311\pi\)
\(882\) 0 0
\(883\) 34.0597 + 28.5794i 1.14620 + 0.961775i 0.999624 0.0274247i \(-0.00873064\pi\)
0.146575 + 0.989200i \(0.453175\pi\)
\(884\) 0 0
\(885\) 13.8828 0.986893i 0.466666 0.0331740i
\(886\) 0 0
\(887\) 23.2057 8.44619i 0.779172 0.283595i 0.0783444 0.996926i \(-0.475037\pi\)
0.700827 + 0.713331i \(0.252814\pi\)
\(888\) 0 0
\(889\) −23.0661 4.06717i −0.773611 0.136408i
\(890\) 0 0
\(891\) −22.0618 + 10.8867i −0.739098 + 0.364718i
\(892\) 0 0
\(893\) −17.2958 6.83878i −0.578783 0.228851i
\(894\) 0 0
\(895\) −28.3937 33.8383i −0.949097 1.13109i
\(896\) 0 0
\(897\) −5.37631 + 7.41785i −0.179510 + 0.247675i
\(898\) 0 0
\(899\) −4.40850 12.1122i −0.147032 0.403966i
\(900\) 0 0
\(901\) 36.0558 20.8168i 1.20119 0.693508i
\(902\) 0 0
\(903\) −3.20797 7.18289i −0.106755 0.239032i
\(904\) 0 0
\(905\) 11.8919 20.5974i 0.395301 0.684681i
\(906\) 0 0
\(907\) −8.07243 + 1.42339i −0.268041 + 0.0472628i −0.306053 0.952014i \(-0.599008\pi\)
0.0380123 + 0.999277i \(0.487897\pi\)
\(908\) 0 0
\(909\) −12.5185 + 4.09950i −0.415213 + 0.135972i
\(910\) 0 0
\(911\) 24.5898 0.814695 0.407348 0.913273i \(-0.366454\pi\)
0.407348 + 0.913273i \(0.366454\pi\)
\(912\) 0 0
\(913\) −27.0966 −0.896767
\(914\) 0 0
\(915\) 29.5363 28.5889i 0.976440 0.945119i
\(916\) 0 0
\(917\) −5.33488 + 0.940683i −0.176173 + 0.0310641i
\(918\) 0 0
\(919\) −18.6876 + 32.3680i −0.616449 + 1.06772i 0.373680 + 0.927558i \(0.378096\pi\)
−0.990129 + 0.140163i \(0.955237\pi\)
\(920\) 0 0
\(921\) −15.3051 + 6.83544i −0.504319 + 0.225235i
\(922\) 0 0
\(923\) 8.30888 4.79714i 0.273490 0.157900i
\(924\) 0 0
\(925\) −7.90848 21.7284i −0.260029 0.714424i
\(926\) 0 0
\(927\) 3.69330 + 6.90755i 0.121304 + 0.226874i
\(928\) 0 0
\(929\) 18.9324 + 22.5627i 0.621152 + 0.740260i 0.981268 0.192648i \(-0.0617075\pi\)
−0.360116 + 0.932907i \(0.617263\pi\)
\(930\) 0 0
\(931\) −5.27788 + 5.95008i −0.172975 + 0.195006i
\(932\) 0 0
\(933\) 8.94348 + 35.6947i 0.292796 + 1.16859i
\(934\) 0 0
\(935\) −36.5522 6.44513i −1.19538 0.210778i
\(936\) 0 0
\(937\) −10.3758 + 3.77647i −0.338962 + 0.123372i −0.505892 0.862597i \(-0.668837\pi\)
0.166931 + 0.985969i \(0.446614\pi\)
\(938\) 0 0
\(939\) −2.05526 28.9117i −0.0670708 0.943499i
\(940\) 0 0
\(941\) 36.7707 + 30.8543i 1.19869 + 1.00582i 0.999666 + 0.0258270i \(0.00822190\pi\)
0.199025 + 0.979994i \(0.436223\pi\)
\(942\) 0 0
\(943\) −26.8459 15.4995i −0.874223 0.504733i
\(944\) 0 0
\(945\) 7.71236 + 18.9000i 0.250883 + 0.614817i
\(946\) 0 0
\(947\) 0.813773 2.23582i 0.0264441 0.0726545i −0.925768 0.378092i \(-0.876580\pi\)
0.952212 + 0.305437i \(0.0988026\pi\)
\(948\) 0 0
\(949\) 14.8239i 0.481204i
\(950\) 0 0
\(951\) −26.6641 12.9668i −0.864642 0.420479i
\(952\) 0 0
\(953\) −50.4055 18.3461i −1.63280 0.594289i −0.647037 0.762459i \(-0.723992\pi\)
−0.985758 + 0.168170i \(0.946214\pi\)
\(954\) 0 0
\(955\) 4.58869 + 26.0238i 0.148487 + 0.842109i
\(956\) 0 0
\(957\) −12.5137 18.5061i −0.404509 0.598218i
\(958\) 0 0
\(959\) 8.69355 10.3606i 0.280729 0.334560i
\(960\) 0 0
\(961\) −11.7688 20.3841i −0.379637 0.657551i
\(962\) 0 0
\(963\) 17.5523 + 10.9116i 0.565614 + 0.351621i
\(964\) 0 0
\(965\) −6.23320 + 35.3503i −0.200654 + 1.13797i
\(966\) 0 0
\(967\) 11.6317 9.76013i 0.374049 0.313865i −0.436312 0.899796i \(-0.643716\pi\)
0.810361 + 0.585931i \(0.199271\pi\)
\(968\) 0 0
\(969\) 57.9582 12.8408i 1.86189 0.412507i
\(970\) 0 0
\(971\) −14.2121 + 11.9253i −0.456087 + 0.382702i −0.841689 0.539963i \(-0.818438\pi\)
0.385602 + 0.922665i \(0.373994\pi\)
\(972\) 0 0
\(973\) −1.50780 + 8.55117i −0.0483379 + 0.274138i
\(974\) 0 0
\(975\) 0.428414 4.12186i 0.0137202 0.132005i
\(976\) 0 0
\(977\) 12.2070 + 21.1431i 0.390536 + 0.676429i 0.992520 0.122079i \(-0.0389563\pi\)
−0.601984 + 0.798508i \(0.705623\pi\)
\(978\) 0 0
\(979\) 7.95004 9.47448i 0.254084 0.302806i
\(980\) 0 0
\(981\) −2.34224 16.3911i −0.0747820 0.523329i
\(982\) 0 0
\(983\) −0.779019 4.41804i −0.0248468 0.140913i 0.969861 0.243660i \(-0.0783481\pi\)
−0.994708 + 0.102746i \(0.967237\pi\)
\(984\) 0 0
\(985\) 10.5128 + 3.82634i 0.334965 + 0.121917i
\(986\) 0 0
\(987\) −7.35274 + 15.1196i −0.234040 + 0.481263i
\(988\) 0 0
\(989\) 8.90651i 0.283211i
\(990\) 0 0
\(991\) −1.21302 + 3.33274i −0.0385328 + 0.105868i −0.957467 0.288543i \(-0.906829\pi\)
0.918934 + 0.394411i \(0.129051\pi\)
\(992\) 0 0
\(993\) −3.83815 1.09578i −0.121800 0.0347734i
\(994\) 0 0
\(995\) 35.3864 + 20.4303i 1.12182 + 0.647685i
\(996\) 0 0
\(997\) −31.5620 26.4836i −0.999578 0.838746i −0.0126521 0.999920i \(-0.504027\pi\)
−0.986926 + 0.161174i \(0.948472\pi\)
\(998\) 0 0
\(999\) −39.9930 44.1085i −1.26532 1.39553i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 456.2.bm.b.89.8 yes 60
3.2 odd 2 456.2.bm.a.89.1 yes 60
4.3 odd 2 912.2.cc.g.545.3 60
12.11 even 2 912.2.cc.h.545.10 60
19.3 odd 18 456.2.bm.a.41.1 60
57.41 even 18 inner 456.2.bm.b.41.8 yes 60
76.3 even 18 912.2.cc.h.497.10 60
228.155 odd 18 912.2.cc.g.497.3 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
456.2.bm.a.41.1 60 19.3 odd 18
456.2.bm.a.89.1 yes 60 3.2 odd 2
456.2.bm.b.41.8 yes 60 57.41 even 18 inner
456.2.bm.b.89.8 yes 60 1.1 even 1 trivial
912.2.cc.g.497.3 60 228.155 odd 18
912.2.cc.g.545.3 60 4.3 odd 2
912.2.cc.h.497.10 60 76.3 even 18
912.2.cc.h.545.10 60 12.11 even 2